Density, Viscosity, and Speed of Sound in Binary Mixtures of 1-Chloronaphthalene with Methanol, Ethanol, Propan-1-ol, Butan-1-ol, Pentan-1-ol, and Hexan-1-ol in the Temperature Range (298.15–308.15) K

Tejraj M. Aminabhavi* and Virupakshagouda B. Patil

Department of Chemistry, Karnatak University, Dharwad 580 003, India

Density and viscosity data at 298.15, 303.15, and 308.15 K and speed of sound at 298.15 K in the binary mixtures of 1-chloronaphthalene with methanol, ethanol, propan-1-ol, butan-1-ol, pentan-1-ol, and hexan-1-ol are presented over the whole of the mixture composition. From these results, excess molar volume, V^E , deviations in viscosity, $\Delta \eta$, speed of sound, Δu , and isentropic compressibility, Δk_S have been calculated. These quantities are fitted to Redlich–Kister type equation to derive the binary coefficients and estimate the standard errors between the experimental and fitted quantities.

Introduction

In the literature of solution chemistry, binary mixtures containing 1-chloronaphthalene have attracted considerable interest in view of their widely varying molecular interactions with liquids such as alkanes and ketones (Bendiab et al., 1995: Grolier et al., 1981: Wilhelm et al., 1986; Costas et al., 1988; Comelli and Francesconi, 1992; Aminabhavi and Banerjee, 1997). In continuation of this research, we now present the experimental data of density, ρ , and viscosity, η , at 298.15, 303.15, and 308.15 K and speed of sound, u, at 298.15 K for the binary mixtures of 1-chloronaphthalene with methanol, ethanol, propan-1-ol, butan-1-ol, pentan-1-ol, and hexan-1-ol. From these data, excess volume, $V^{\mathbb{E}}$, deviations in viscosity, $\Delta \eta$, speed of sound, Δu , and isentropic compressibility, $\Delta k_{\rm S}$, have been calculated. These results are fitted to Redlich–Kister type equation (1948) to derive the binary coefficients and estimate the standard errors between the experimentally calculated and computed values.

Experimental Section

Materials and Methods. High-purity spectroscopic grade samples of 1-chloronaphthalene, pentan-1-ol, and hexan-1-ol were purchased from Fluka (Germany), but ethanol was procured from E. Merck (Germany). Methanol, propan-1-ol, and butan-1-ol were purchased from s.d. fine Chemicals Ltd., Mumbai, India. The GLC analyses of these liquids indicated a mol % purity of 90.06, 99.70, 99.65, 99.60, 99.70, 99.75, and 99.50, respectively. These analyses were performed on a gas chromatograph, HP Series 6890, using a flame ionization detector with fused silica columns, having a sensitivity better than 10^{-8} g of fatty acid/ μ L of the solvent. All the samples were used without further purification. Experimental values of ρ and refractive indices, $n_{\rm D}$, at the sodium D line for the pure liquids are compared with the published results at 298.15 K in Table 1.

Experimental details about the preparations of binary mixtures and measurements of mass, density, speed of

* Author for correspondence. Fax: 011-91-836-747884. E-mail: karuni@bom2.vsnl.net.in.

Table 1. Comparison of Experimental Densities (p) and
Refractive Indices (<i>n</i> _D) of Pure Liquids with Literature
Values at 298.15 K

	ρ/g .	cm ⁻³	1	<i>n</i> _D
liquid (mol % purity)	exptl	lit.	exptl	lit.
1-chloronaphthalene (90.06)	1.1891	1.1881 ^e		
methanol (99.7)	0.7866	0.7866 ^a	1.3273	1.3274^{b}
ethanol (99.6)	0.7855	0.7861 ^c	1.3603	1.3595^{b}
propan-1-ol (99.75)	0.7998	0.7994 ^c	1.3835	1.3833^{b}
butan-1-ol (99.5)	0.8059	0.8056 ^c	1.3974	1.3974^{b}
pentan-1-ol (99.7)	0.8110	0.8109^{d}	1.4085	1.4077^{b}
hexan-1-ol (99.65)	0.8153	0.8152^{b}	1.4164	1.4160^{b}

^a Won et al., 1981. ^b Ortega et al., 1986. ^c Rauf et al., 1983. ^d Garcia et al., 1991. ^e Comelli, 1992.

sound, and viscosity of pure liquids and binary mixtures are the same as described previously (Aralaguppi et al., 1991). The mass measurements (± 0.01 mg) were made using an electronic balance (Mettler AE 240, Switzerland). The reproducibility in mole fraction was within ± 0.0001 units. Densities of pure liquids and their mixtures were measured using a pycnometer having a bulb volume of 15 cm³ and a capillary bore with an internal diameter of 1 mm. Density values are accurate to ± 0.0002 g·cm⁻³.

Viscosities were measured using a Cannon Fenske Viscometer (size 75, Industrial Research Glassware Ltd., Roselle, NJ). An electronic digital stopwatch with a readability of ± 0.01 s was used for the flow time measurements. The measured viscosity values are accurate to ± 0.001 mPa·s. Calibrations of the pycnometer and viscometer are the same as described earlier (Aminabhavi and Bindu, 1995; Aminabhavi et al., 1994).

The speed of sound values were measured using a variable-path single-crystal interferometer (Mittal Enterprises, model M-84, New Delhi). The interferometer was used at a frequency of 1 kHz and was calibrated using water and benzene. The speed of sound values are accurate to $\pm 2 \text{ m} \cdot \text{s}^{-1}$. In all the property measurements, an IN-SREF, model 016 AP thermostat was used at a constant digital temperature display accurate to ± 0.01 K. The results of ρ , η , and u compiled in Table 2 represent the

Table 2.	Experimental	Densities (ρ),	Viscosities (η) ,	and Speeds	of Sound (u)) of Binary	Mixtures of 1-	Chloronaphthalene
with Alk	anols							

<i>X</i> ₁	density∕ (g∙cm ^{−3})	viscosity/ (mPa·s)	speed of sound/($m \cdot s^{-1}$)	<i>X</i> ₁	density∕ (g∙cm ⁻³)	viscosity/ (mPa·s)	speed of sound/($m \cdot s^{-1}$)	<i>X</i> 1	density∕ (g∙cm ⁻³)	viscosity/ (mPa·s)	speed of sound/($m \cdot s^{-1}$)
0.0000 0.0998 0.1992 0.3020	0.7866 0.9004 0.9757 1.0310	0.538 0.814 1.096 1.372	1118 1194 1244 1290	1-Ch 0.4003 0.4961 0.5978 0.6961	lloronaphth 1.0704 1.1004 1.1254 1.1452	nalene (1) + 1 298.15 K 1.617 1.847 2.064 2.237	Methanol (2) 1323 1354 1378 1402	0.8010 0.8922 1.0000	1.1629 1.1758 1.1891	2.454 2.670 3.020	$1426 \\ 1450 \\ 1462$
$\begin{array}{c} 0.0000\\ 0.0998\\ 0.1992\\ 0.3020 \end{array}$	0.7817 0.8957 0.9711 1.0265	$\begin{array}{c} 0.503 \\ 0.750 \\ 1.002 \\ 1.249 \end{array}$		$\begin{array}{c} 0.4003 \\ 0.4961 \\ 0.5978 \\ 0.6961 \end{array}$	$1.0659 \\ 1.0957 \\ 1.1209 \\ 1.1408$	303.15 K 1.468 1.672 1.863 2.012		0.8010 0.8922 1.0000	$1.1586 \\ 1.1715 \\ 1.1849$	$2.197 \\ 2.385 \\ 2.707$	
$\begin{array}{c} 0.0000\\ 0.0998\\ 0.1992\\ 0.3020 \end{array}$	$\begin{array}{c} 0.7769 \\ 0.8912 \\ 0.9664 \\ 1.0219 \end{array}$	$\begin{array}{c} 0.470 \\ 0.689 \\ 0.918 \\ 1.142 \end{array}$		0.4003 0.4961 0.5978 0.6961	1.0614 1.0913 1.1165 1.1364 bloronapht	308.15 K 1.336 1.516 1.683 1.818 halene (1) +	Ethanol (2)	0.8010 0.8922 1.0000	1.1543 1.1674 1.1807	$1.984 \\ 2.157 \\ 2.437$	
$\begin{array}{c} 0.0000\\ 0.0773\\ 0.2002\\ 0.3006 \end{array}$	$\begin{array}{c} 0.7855 \ 0.8558 \ 0.9411 \ 0.9950. \end{array}$	$1.084 \\ 1.238 \\ 1.455 \\ 1.630$	1162 1207 1262 1302	0.3989 0.5008 0.5979 0.7026	1.0374 1.0739 1.1027 1.1297	298.15 K 1.779 1.953 2.110 2.298	1330 1354 1376 1398	$\begin{array}{c} 0.8011 \\ 0.9009 \\ 1.0000 \end{array}$	1.1518 1.1715 1.1891	$2.470 \\ 2.655 \\ 3.020$	$1419 \\ 1438 \\ 1462$
$\begin{array}{c} 0.0000\\ 0.0773\\ 0.2002\\ 0.3006 \end{array}$	$\begin{array}{c} 0.7811 \\ 0.8515 \\ 0.9366 \\ 0.9905 \end{array}$	$\begin{array}{c} 0.986 \\ 1.119 \\ 1.314 \\ 1.471 \end{array}$		$\begin{array}{c} 0.3989 \\ 0.5008 \\ 0.5979 \\ 0.7026 \end{array}$	$1.0330 \\ 1.0694 \\ 1.0983 \\ 1.1254$	303.15 K 1.606 1.757 1.890 2.045		$\begin{array}{c} 0.8011 \\ 0.9009 \\ 1.0000 \end{array}$	$1.1476 \\ 1.1673 \\ 1.1849$	2.214 2.389 2.707	
$\begin{array}{c} 0.0000\\ 0.0773\\ 0.2002\\ 0.3006 \end{array}$	$\begin{array}{c} 0.7767 \\ 0.8472 \\ 0.9321 \\ 0.9860 \end{array}$	$0.898 \\ 1.016 \\ 1.192 \\ 1.334$		0.3989 0.5008 0.5979 0.7026 1-Chl	1.0285 1.0650 1.0940 1.1211 oronaphtha	308.15 K 1.456 1.588 1.714 1.865 alene (1) + P	ropan-1-ol (2)	$\begin{array}{c} 0.8011 \\ 0.9009 \\ 1.0000 \end{array}$	$\begin{array}{c} 1.1433 \\ 1.1630 \\ 1.1807 \end{array}$	$2.006 \\ 2.158 \\ 2.437$	
$\begin{array}{c} 0.0000\\ 0.1004\\ 0.2017\\ 0.2983 \end{array}$	$\begin{array}{c} 0.7998 \\ 0.8698 \\ 0.9286 \\ 0.9761 \end{array}$	$1.927 \\ 1.968 \\ 2.039 \\ 2.091$	1216 1268 1300 1328	$\begin{array}{c} 0.3950 \\ 0.5003 \\ 0.6002 \\ 0.6993 \end{array}$	1.0171 1.0563 1.0888 1.1177	298.15 K 2.172 2.255 2.349 2.448	1350 1372 1393 1413	$\begin{array}{c} 0.7991 \\ 0.9003 \\ 1.0000 \end{array}$	1.1439 1.1680 1.1891	$2.567 \\ 2.716 \\ 3.020$	$1428 \\ 1444 \\ 1462$
$\begin{array}{c} 0.0000\\ 0.1004\\ 0.2017\\ 0.2983\end{array}$	$\begin{array}{c} 0.7956 \\ 0.8656 \\ 0.9242 \\ 0.9716 \end{array}$	$1.708 \\ 1.745 \\ 1.805 \\ 1.854$		$\begin{array}{c} 0.3950 \\ 0.5003 \\ 0.6002 \\ 0.6993 \end{array}$	$1.0128 \\ 1.0518 \\ 1.0845 \\ 1.1134$	303.15 K 1.918 1.999 2.077 2.166		$\begin{array}{c} 0.7991 \\ 0.9003 \\ 1.0000 \end{array}$	1.1397 1.1635 1.1849	2.275 2.417 2.707	
$\begin{array}{c} 0.0000\\ 0.1004\\ 0.2017\\ 0.2983\end{array}$	$\begin{array}{c} 0.7914 \\ 0.8613 \\ 0.9199 \\ 0.9671 \end{array}$	$1.520 \\ 1.570 \\ 1.620 \\ 1.672$		0.3950 0.5003 0.6002 0.6993 1-Ch	1.0084 1.0474 1.0801 1.1091 loronaphth	$ \begin{array}{r} 308.15 \text{ K} \\ 1.714 \\ 1.789 \\ 1.860 \\ 1.943 \\ alene (1) + E \end{array} $	Sutan-1-ol (2)	$\begin{array}{c} 0.7991 \\ 0.9003 \\ 1.0000 \end{array}$	$\begin{array}{c} 1.1354 \\ 1.1596 \\ 1.1807 \end{array}$	$2.043 \\ 2.178 \\ 2.437$	
$\begin{array}{c} 0.0000\\ 0.1002\\ 0.1997\\ 0.2969 \end{array}$	$\begin{array}{c} 0.8059 \\ 0.8639 \\ 0.9138 \\ 0.9584 \end{array}$	2.540 2.486 2.447 2.383	1248 1276 1308 1336	$\begin{array}{c} 0.4016 \\ 0.5004 \\ 0.5990 \\ 0.6949 \end{array}$	$\begin{array}{c} 1.0019 \\ 1.0392 \\ 1.0732 \\ 1.1041 \end{array}$	298.15 K 2.376 2.379 2.430 2.491	1362 1382 1397 1412	$\begin{array}{c} 0.8006 \\ 0.8969 \\ 1.0000 \end{array}$	1.1355 1.1621 1.1891	$2.591 \\ 2.697 \\ 3.020$	$1428 \\ 1444 \\ 1462$
$\begin{array}{c} 0.0000\\ 0.1002\\ 0.1997\\ 0.2969\end{array}$	$\begin{array}{c} 0.8018 \\ 0.8598 \\ 0.9097 \\ 0.9543 \end{array}$	$\begin{array}{c} 2.324 \\ 2.176 \\ 2.149 \\ 2.110 \end{array}$		$\begin{array}{c} 0.4016 \\ 0.5004 \\ 0.5990 \\ 0.6949 \end{array}$	$\begin{array}{c} 0.9977 \\ 1.0350 \\ 1.0690 \\ 1.0998 \end{array}$	303.15 K 2.102 2.109 2.153 2.207		$\begin{array}{c} 0.8006 \\ 0.8969 \\ 1.0000 \end{array}$	1.1313 1.1578 1.1849	$2.301 \\ 2.414 \\ 2.707$	
$\begin{array}{c} 0.0000\\ 0.1002\\ 0.1997\\ 0.2969 \end{array}$	$\begin{array}{c} 0.7978 \\ 0.8558 \\ 0.9056 \\ 0.9500 \end{array}$	$1.968 \\ 1.927 \\ 1.894 \\ 1.865$		0.4016 0.5004 0.5990 0.6949 1-Chl	0.9935 1.0307 1.0647 1.0956 oronaphtha	$\begin{array}{c} 308.15 \text{ K} \\ 1.854 \\ 1.864 \\ 1.914 \\ 1.977 \\ \text{alene (1)} + P \end{array}$	entan-1-ol (2)	$\begin{array}{c} 0.8006 \\ 0.8969 \\ 1.0000 \end{array}$	$\begin{array}{c} 1.1271 \\ 1.1536 \\ 1.1807 \end{array}$	$2.059 \\ 2.173 \\ 2.437$	
$\begin{array}{c} 0.0000\\ 0.1019\\ 0.1914\\ 0.3014 \end{array}$	$\begin{array}{c} 0.8110 \\ 0.8603 \\ 0.9009 \\ 0.9477 \end{array}$	3.421 3.204 3.078 2.928	1280 1302 1320 1342	$\begin{array}{c} 0.3710 \\ 0.4944 \\ 0.6006 \\ 0.6961 \end{array}$	$\begin{array}{c} 0.9759 \\ 1.0233 \\ 1.0616 \\ 1.0939 \end{array}$	298.15 K 2.833 2.708 2.669 2.659	1356 1379 1398 1414	$\begin{array}{c} 0.7909 \\ 0.9013 \\ 1.0000 \end{array}$	1.1249 1.1595 1.1819	2.702 2.761 3.020	$1429 \\ 1446 \\ 1462$
$\begin{array}{c} 0.0000\\ 0.1019\\ 0.1914\\ 0.3014 \end{array}$	$\begin{array}{c} 0.8074 \\ 0.8564 \\ 0.8968 \\ 0.9436 \end{array}$	3.007 2.830 2.704 2.555		$\begin{array}{c} 0.3710 \\ 0.4944 \\ 0.6006 \\ 0.6961 \end{array}$	$\begin{array}{c} 0.9717 \\ 1.0191 \\ 1.0573 \\ 1.0869 \end{array}$	303.15 K 2.473 2.388 2.364 2.358		$\begin{array}{c} 0.7909 \\ 0.9013 \\ 1.0000 \end{array}$	$\begin{array}{c} 1.1205 \\ 1.1550 \\ 1.1849 \end{array}$	2.393 2.464 2.707	
$\begin{array}{c} 0.0000\\ 0.1019\\ 0.1914\\ 0.3014 \end{array}$	$\begin{array}{c} 0.8037 \\ 0.8526 \\ 0.8928 \\ 0.9394 \end{array}$	2.607 2.469 2.370 2.232		0.3710 0.4944 0.6006 0.6961 1-Ch	0.9675 1.0148 1.0530 1.0853 loronaphth	2.179 2.115 2.107 2.107 alene (1) + H	lexan-1-ol (2)	$\begin{array}{c} 0.7909 \\ 0.9013 \\ 1.0000 \end{array}$	$\begin{array}{c} 1.1162 \\ 1.1508 \\ 1.1807 \end{array}$	2.134 2.217 2.437	
$\begin{array}{c} 0.0000\\ 0.1047\\ 0.2004\\ 0.3023\end{array}$	0.8153 0.8589 0.8979 0.9384	4.216 3.951 3.680 3.366	1328 1336 1347 1358	$\begin{array}{c} 0.3992 \\ 0.5019 \\ 0.6012 \\ 0.6993 \end{array}$	$\begin{array}{c} 0.9757 \\ 1.0144 \\ 1.0507 \\ 1.0859 \end{array}$	298.15 K 3.133 2.903 2.781 2.706	1370 1384 1398 1413	$\begin{array}{c} 0.8002 \\ 0.9013 \\ 1.0000 \end{array}$	1.1211 1.1559 1.1891	2.638 2.647 2.822	$1430 \\ 1446 \\ 1462$
$\begin{array}{c} 0.0000\\ 0.1047\\ 0.2004\\ 0.3023 \end{array}$	$\begin{array}{c} 0.8117 \\ 0.8553 \\ 0.8940 \\ 0.9345 \end{array}$	$3.567 \\ 3.335 \\ 3.105 \\ 2.858$		$\begin{array}{c} 0.3992 \\ 0.5019 \\ 0.6012 \\ 0.6993 \end{array}$	$\begin{array}{c} 0.9717 \\ 1.0104 \\ 1.0466 \\ 1.0817 \end{array}$	303.15 K 2.670 2.506 2.455 2.440		$\begin{array}{c} 0.8002 \\ 0.9013 \\ 1.0000 \end{array}$	$1.1169\\1.1516\\1.1849$	$2.304 \\ 2.337 \\ 2.497$	

Table 2 (Continued)

<i>X</i> 1	density∕ (g∙cm ⁻³)	viscosity/ (mPa•s)	speed of sound/($m \cdot s^{-1}$)	<i>X</i> 1	density∕ (g∙cm ^{−3})	viscosity/ (mPa•s)	speed of sound/($m \cdot s^{-1}$)	<i>X</i> 1	density∕ (g∙cm ⁻³)	viscosity/ (mPa•s)	speed of sound/($m \cdot s^{-1}$)
						308.15 K					
0.0000	0.8081	2.766		0.3992	0.9678	2.084		0.8002	1.1127	1.969	
0.1047	0.8515	2.608		0.5019	1.0063	1.971		0.9013	1.1473	2.066	
0.2004	0.8902	2.423		0.6012	1.0425	1.951		1.0000	1.1807	2.225	
0.3023	0.9305	2.248		0.6993	1.0775	1.942					

Table 3. Estimated Parameters of Excess Funtions for Mixtures

function	temp/K	A_0	A_1	A_2	σ
	1-0	Chloronaphthalene (1) +	Methanol (2)		
$I E / 10^{-6} (m^3 mol^{-1})$	208 15	_1 479	_1 168	-0.374	0.012
V /10 (III III0I)	202 15	-1 407	-1 255	-0.525	0.012
	303.13	-1.497	-1.233	-0.323	0.015
	308.15	-1.523	-1.317	-0.724	0.015
$\Delta \eta / (mPa \cdot s)$	298.15	0.295	0.686	-0.929	0.008
	303.15	0.294	0.663	-0.939	0.008
	308.15	0.270	0.597	-0.808	0.005
$\Delta u/(m \cdot s^{-1})$	298.15	249.4	133.1	131.1	2.503
$\Delta k_c/(TPa^{-1})$	298 15	-282 5	116.9	-44.8	1 989
	200.10		110.5	11.0	1.505
	I-	-Chloronaphthalene (1) +	Ethanol (2)		
$V^{\rm E}/10^{-6}$ (m ³ ·mol ⁻¹)	298.15	-1.985	-2.118	-0.685	0.015
	303.15	-2.000	-2.103	-0.802	0.016
	308.15	-2.039	-2.161	-0.917	0.020
$\Delta n/(mPa\cdot s)$	298 15	-0.386	0.830	-0.667	0.022
	303 15	-0 359	0.755	-0.585	0.014
	209.15	-0.200	0.615	-0.494	0.015
A ==/(=== ==1)	300.15	0.233	0.015	0.404	1.000
$\Delta u/(\text{m}\cdot\text{s}^{-1})$	298.15	1/1.5	135.4	19.8	1.282
$\Delta k_{\rm S}/({\rm TPa^{1-}})$	298.15	-294.8	124.5	33.7	1.382
	1-C	hloronaphthalene $(1) + F$	Propan-1-ol (2)		
V ^E /10 ^{−6} (m ³ ·mol ^{−1})	298.15	-1.998	-1.838	-1.424	0.006
· · · · · ·	303.15	-2.025	-1.878	-1.331	0.012
	308 15	-2.001	-1.803	-1 614	0.011
$\Delta n/(mPass)$	208 15	-0.847	0.637	-0.780	0.016
$\Delta \eta (\ln a 3)$	200.15	0.094	0.037	0.760	0.010
	303.13	-0.824	0.049	-0.737	0.014
	308.15	-0.754	0.655	-0.503	0.013
$\Delta u/(\mathbf{m} \cdot \mathbf{s}^{-1})$	298.15	134.6	101.1	75.0	2.314
$\Delta k_{\rm S}/({\rm TPa^{-1}})$	298.15	-254.7	134.9	-71.0	1.355
	1-0	Chloronaphthalene $(1) + 1$	Butan-1-ol (2)		
V ^E /10 ^{−6} (m ³ ·mol ^{−1})	298.15	-1.734	-1.831	-0.910	0.032
	303 15	-1 770	-1.848	-0.983	0.037
	308 15	-1 783	-1.847	-0.993	0.039
$\Delta m/(m \text{Data})$	209.15	-1 555	0.720	-0.507	0.035
$\Delta \eta $ (IIIF a'S)	290.15	-1.555	0.730	-0.307	0.027
	303.15	-1.568	0.370	-0.982	0.017
	308.15	-1.307	0.587	-0.400	0.018
$\Delta u/(\mathbf{m}\cdot\mathbf{s}^{-1})$	298.15	105.8	45.9	-71.6	1.558
$\Delta k_{\rm S}/({\rm TPa^{-1}})$	298.15	-227.8	58.4	60.8	0.618
	1-C	bloronanbthalene $(1) + F$	Pentan-1-ol (2)		
$1/E/10^{-6}(m^3,mol^{-1})$	208.15	-1740	_1 225	-0.025	0.017
V /10 (III / III01)	200.15	1.745	1.220	0.025	0.017
	303.13	-1.074	-1.219	0.217	0.018
	308.15	-1.593	-1.222	0.231	0.019
$\Delta \eta / (mPa \cdot s)$	298.15	-1.983	0.678	-0.611	0.023
	303.15	-1.847	0.578	-0.495	0.022
	308.15	-1.606	0.539	-0.432	0.021
$\Delta u/(\mathbf{m} \cdot \mathbf{s}^{-1})$	298.15	36.4	3.0	-11.5	0.355
$\Delta k_{\rm s}/({\rm TPa}^{-1})$	298.15	-167	37.5	-1.2	0.384
⊴ng(iiu)	200.10			1.00	0.001
1年/10-6(31-1)	1-0	Thioronaphthalene $(1) + I$	Hexan-1-ol (2)	0.945	0.000
$V^{-1}/10^{\circ}(m^{3}\cdot mol^{-1})$	298.15	-1.708	-0.711	0.245	0.008
	303.15	-1.713	-0.727	0.345	0.009
	308.15	-1.686	-0.724	0.442	0.007
$\Delta \eta / (mPa \cdot s)$	298.15	-2.363	0.989	0.211	0.029
	303.15	-1.954	0.547	-0.097	0.049
	308 15	-2 027	0.626	0 514	0.017
$\Delta u/(m \cdot c^{-1})$	202 15	A5G	-14.0	2 6	0.517
$\Delta u / (III'S^{-})$	290.10	-43.0	-14.0	3.0	0.332
$\Delta K_{\rm S}/(1Pa^{-1})$	298.15	-91.0	8.0	-1.6	0.467

averages of three independent measurements for each composition of the mixture.

Results and Discussion

Experimental values of ρ , η , and u are used to calculate the mixing functions using the general type equation (Aminabhavi and Bindu, 1995; Aminabhavi et al., 1994)

$$V^{\rm E} \text{ (or } \Delta Y) = V_{\rm m} \text{ (or } Y_{\rm m}) - V_1 \text{ (or } Y_1)x_1 - V_2 \text{ (or } Y_2)x_2$$
(1)

where $V_{\rm m}$ refers to molar volume of the mixture, which is

calculated as

$$V_{\rm m} = (M_1 x_1 + M_2 x_2) / \rho_{\rm m} \tag{2}$$

Here, M_1 and M_2 are molecular weights of the components 1 and 2; V_i (= M_i/ρ_i) represent the molar volumes of pure components; Y_m refers to the mixture properties, viz., η , u, and k_s , and Y_i refers to the properties of pure components (i = 1, 2). The quantity ΔY refers to $\Delta \eta$, Δu , and Δk_s . For the calculation of Δk_s , the volume fraction, ϕ_i , was used (Aminabhavi and Bindu, 1995; Aminabhavi et al., 1994)

Figure 1. Excess molar volume vs mole fraction of 1-Chloronaphthalene with (O) methanol, (Δ) ethanol, (\Box) propan-1-ol, (\bullet) butan-1-ol, (\blacktriangle) pentan-1-ol, and (\blacksquare) hexan-1-ol at 298.15 K.

Figure 2. Deviation in viscosity vs mole fraction of 1-chloronaphthalene at 298.15 K. Symbols are the same as given in Figure 1.

instead of the mole fraction, x_i . The ϕ_i was calculated as

$$\phi_i = \left(\frac{x_i V_i}{\sum_i x_i V_i}\right) \tag{3}$$

The mixing functions V^{E} , $\Delta \eta$, Δu , and Δk_{S} have been fitted to Redlich–Kister type equation (1948)

$$V^{E} \text{ (or } \Delta Y) = x_{1} x_{2} \sum_{i=1}^{2} A_{i} (x_{2} - x_{1})^{i-1}$$
 (4)

where the coefficients A_i (i = 0 to 2) were obtained by the method of least-squares using the Marquardt algorithm (1963). In solving eq 4 for $\Delta k_{\rm S}$, ϕ_i is used in place of x_i . The values of standard error, σ , are computed for each of the functions ($V^{\rm E}$, $\Delta \eta$, Δu , and $\Delta k_{\rm S}$). The calculated values of A_0 , A_1 , and A_2 along with σ are given in Table 3. While minimizing the function, we found that the best fits were obtained by solving eq 4 up to third degree, i.e., $A_i = 0$ to 2.

Figure 3. Deviation in speed of sound vs mole fraction of 1-chloronaphthalene at 298.15 K. Symbols are the same as given in Figure 1.

Figure 4. Deviation in isentropic compressibility vs volume fraction of 1-chloronaphthalene at 298.15 K. Symbols are the same as given in Figure 1.

Figure 1 displays the plots of V^E vs x_1 (referring to 1-chloronaphthalene) at 298.15 K for all the binary mixtures. For all the mixtures, the V^{E} values are negative, but these values do not show any systematic variation with an increasing size of n-alkanols. For mixtures of 1-chloronaphthalene with methanol or hexan-1-ol, the negative V^{E} values are higher than all the remaining mixtures. For the mixtures of 1-chloronaphthalene + ethanol, or + propan-1-ol, the $V^{\mathbb{E}}$ vs x_1 curves vary almost identically throughout the mixture composition. Compared to 1-chloronaphthalene + butan-1-ol, the 1-chloronaphthalene + pentan-1-ol mixture exhibits higher values of VE. The effect of temperature on V^{E} is not the same in all cases; i.e., with 1-chloronaphthalene + methanol, + ethanol, + propan-1-ol, or + butan-1-ol mixtures, the negative values of V^{E} increase with increasing temperature, whereas with 1-chloronaphthalene + pentan-1-ol, or + hexan-1-ol, the negative V^E values decrease with increasing temperature. In view of the limited temperature range studied, the temperature dependencies of V^{E} vs x_{1} curves are not displayed.

Figure 2 shows the plots of $\Delta \eta$ vs x_1 for 1-chloronaphthalene + n-alkanol mixtures at 298.15 K. For 1-chloronaphthalene + methanol mixture, $\Delta \eta$ vs x_1 curve is sigmoidal (varying from positive to negative with increasing concentration of 1-chloronaphthalene in the mixture). However, such a sigmoidal tendency is minimized for the mixtures of 1-chloronaphthalene with ethanol, and also for this mixture, the $\Delta \eta$ values are negative throughout the mixture composition. Similarly, for 1-chloronaphthalene + propan-1-ol mixture, no sharp minimum is observed. On the other hand, with increasing size of alkanols, the curves show sharper minima. Similar effects are also observed at 303.15 and 308.15 K, but these curves are not displayed to avoid redundancy. With increasing temperature, the $\Delta \eta$ values also increase for all the mixtures except 1-chloronaphthalene + methanol.

Figure 3 displays the plots of Δu vs x_1 at 298.1.5 K for all the binary mixtures. The Δu values are negative for 1-chloronaphthalene + hexan-1-ol mixtures. For the remaining mixtures, the Δu values are positive and increase with decreasing size of *n*-alkanols. On the other hand, the results of Δk_S displayed in Figure 4 are negative for all the mixtures, and these values decrease with decreasing size of *n*-alkanols. Thus, the Δk_S values for 1-chloronaphthalene + hexan-1-ol mixtures are higher than those observed for 1-chloronaphthalene + methanol mixtures. Also, the Δk_S values for the mixtures of 1-chloronaphthalene + methanol, or + ethanol, are somewhat identical.

Literature Cited

- Aminabhavi, T. M.; Banerjee, K. Thermodynamic Interactions in Binary Mixtures of 1-Chloronaphthalene and n-Alkanes. Fluid Phase Equilib. 1998, submitted.
- Aminabhavi, T. M.; Bindu, G. Density, Viscosity, Refractive Index, and Speed of Sound in Aqueous Mixtures of N,N-Dimethyl Sulfoxide, N,N-Dimethylacetamide, Acetonitrile, Ethylene Glycol, 1,4-Dioxane, Tetrahydrofuran, 2-Methoxyethanol, and 2-Ethoxyethanol at 298.15
 K. J. Chem. Eng. Data 1995, 40, 856–861.
- K. J. Chem. Eng. Data 1995, 40, 856–861.
 Aminabhavi, T. M.; Phyade, H. T. S.; Khinnavar, R. S.; Bindu, G.; Hansen, K. C. Densities, Refractive Indices, Speeds of Sound, and Shear Viscosities of Diethylene Glycol Dimethyl Ether with Ethyl Acetate, Methyl Benzoate, Ethyl Benzoate, and Diethyl Succinate in the Temparature Range from 298.15 to 318.15 K. J. Chem. Eng. Data 1994, 39, 251–260.

- Aralaguppi, M. I.; Aminabhavi, T. M.; Balundgi, R. H.; Joshi, S. S. Thermodynamic Interactions in Mixtures of Bromoform with Hydrocarbons. J. Phys. Chem. 1991, 95, 5299–5308.
- Bendiab, H.; Roux-Desgranges, G.; Roux, A. H.; Grolier, J. P. E.; Patterson, D. J. Application of Bronsted's Principles of Congruence to V^{E} and C_{ρ}^{E} of (Cyclohexane or Chlorobenzene or 1-Chloronaphthlene + an Alkane + another *n*-Alkane) *J. Chem. Thermodyn.* **1995**, *27*, 17–28.
- Comelli, F.; Francesconi, R. Excess Molar Volumes of 1-Chloronaphthalene and 1-Methylnaphthalene + 5-Methyl *n*-Alkyl Ketones at 298.15 K. *J. Chem. Eng. Data* **1992**, *37*, 327–330.
- Costas, M.; Tra, H. V.; Patterson, D.; Caceres-Alonso, M.; Tardajos, G.; Aicart, E. Liquid Structure and Second-Order Mixing Functions for 1- Chloronaphthalene with Linear and Branched Alkanes. *J. Chem. Soc., Faraday Trans. 1*, **1988**, *84*, 1603–1616.
- Garcia B.; Herrera C.; Leal J. M. Shear Viscosities of Binary Liquid Mixtures: 2-Pyrrolidone with 1-Alkanols. *J. Chem. Eng. Data* **1991**, *36*, 269–274.
- Grolier, J. P. E.; Inglese, A.; Roux, A. H.; Wilhelm, E. Thermodynamics of (1-Chloronaphthalene + n-Alkane): Excess Enthalpies, Excess Volumes and Excess Heat Capacities. *Ber. Bunsen-Ges. Phys. Chem.* **1981**, *85*, 768–772.
- Marquardt, D. W. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. J. Soc. Ind. Appl. Math. 1963, 11, 431-441.
- Ortega, J.; Matos, J. S. Estimation of the Isobaric Expansivities from Several Equations of Molar Refraction for Some Pure Organic Compounds. *Mater. Chem. Phys.* **1986**, *15*, 415–425.
- Rauf, M. A.; Stewart, G. H.; Farhataziz. Viscosities and Densities of Binary Mixtures of 1-Alkanols from 15 to 55 °C J. Chem. Eng. Data 1983, 28, 324–328.
- Redlich, O.; Kister, A. T. Algebraic Representation of Thermodynamic Properties and the Classification of Solutions. *Ind. Eng. Chem.* **1948**, *40*, 345–348.
- Riddick, J. A.; Bunger, W. B.; Sakano, T. K. Techniques of Chemistry, Organic Solvents, Physical Properties and Methods Of Purification; John Wiley & Sons: New York, 1986; Vol. II.
- Wilhelm, E.; Lainez, A.; Roux, A. H.; Grolier, J. P. E. Excess Molar Volumes and Heat Capacities of (1,2,4-Trichlorobenzene + an *n*-Alkane) and (1- Chloronaphthalene + an *n*-Alkane). *Thermochim. Acta* **1986**, *105*, 101–110.
- Won, Y. S.; Chang, D. K.; Mills, A. F. Density, Viscosity, Surface Tension, Carbon Dioxide Solubility, and Diffusivity of Methanol, Ethanol, Aqueous Propanol, and Aqueous Ethylene Glycol at 25 °C. J. Chem. Eng. Data 1981, 26, 140–141.

Received for review January 23, 1998. Accepted April 1, 1998. Authors are thankful to All India Council For Technical Education, New Delhi (F. No. 8017/RDII/BOR/96/(ID No. 138.23)) for major financial support of this study.

JE980032Q