Thermodynamic Properties of the Ternary Mixture Acetone + Methanol + Ethanol at 298.15 K

Miguel Iglesias, ${ }^{\dagger}$ Beatriz Orge, ${ }^{\dagger}$ Manuel M. Piñeiro, ${ }^{\ddagger}$ Beatriz E. de Cominges, ${ }^{\ddagger}$ Gonzalo Marino, ${ }^{\dagger}$ and J ose Tojo*, ${ }^{\dagger}$

Departamento de Ingeniería Química, and Departamento de Física Aplicada, Universidad de Vigo, Apartado 874, 36200 Vigo, Spain

Abstract

Speeds of sound, densities, and refractive indices of the ternary mixture acetone + methanol + ethanol have been measured at 298.15 K and atmospheric pressure. The excess molar volumes, changes of refractive indices, and isentropic compressibilities were determined from the experimental data. Several methods for predicting multicomponent derived properties from binary data were tested. The PengRobinson and Soave-Redlich-Kwong equations of state were also applied, with three different mixing rules, to calculate binary interaction parameters and predict ternary excess volumes, satisfactory results being obtained for this mixture.

1. Introduction

This paper continues our study of various homogeneous and heterogeneous azeotropic mixtures (I glesias et al., 1996a, 1997, 1998; Orge et al., 1997). The aim of this research is the measurement of physical properties and study of liquid equilibrium of multicomponent mixtures, as well as the application of several predictive models to obtain theoretical predictions. The objective of the application of these techniques is identification of separation agents for binary azeotropic or binary mixtures with close boiling points in modified rectification processes.

This paper reports the measured densities, refractive indices and speeds of sound as well as excess and derived properties of the ternary mixture acetone + methanol + ethanol at 298.15 K and atmospheric pressure. The experimental data were fitted by means of the Cibulka (1982) equation.

The measured values have been al so used to test several empirical predictive methods (Piñeiro et al., 1998), used to estimate multicomponent properties from the corresponding magnitude of the binary mixtures involved.

The equations of state of Peng-Robinson (Peng and Robinson, 1976) and Soave-Redlich-K wong (Soave, 1972) were applied with several combination rules to calculate binary interaction parameters between the chemicals present in the mixture. After that, these parameters were applied for estimating the ternary excess molar volumes, no other multicomponent parameter being necessary. The results obtained agreed very close with the experimentaly determined volumetric data.

2. Experimental Section

The chemicals used for the preparation of the mixtures were Lichrosolv Quality and supplied by Merck. Before use, they were degassed by ultrasound technique, dried over molecular sieves type 3A (Aldrich catalog no. 208582), and kept in inert argon ($\mathrm{N}-55$, less than 3 ppm in water)

[^0]Table 1. Comparison of Measured Pure Component Properties Data with Literature Values at 298.15 K

component	$\rho /\left(\mathrm{g} \cdot \mathrm{cm}^{-3}\right)$		n_{D}		$\mathrm{u} /\left(\mathrm{m} \cdot \mathrm{s}^{-1}\right)$	
	exptl	lit.	exptl	lit. ${ }^{\text {b }}$	exptl	lit.
acetone	0.7844	0.784 29a	1.35580	1.35596	1161	1160.6c
methanol	0.7866	$0.78664^{\text {b }}$	1.32645	1.32652	1102	1102.0 ${ }^{\text {d }}$
ethanol	0.7850	$0.78509{ }^{\text {b }}$	1.35922	1.35941	1142	1142.4 ${ }^{\text {c }}$

${ }^{\text {a }}$ Hnedkovsky and Cibulka (1993). ${ }^{\text {b }}$ TRC Thermodynamic Tables (1994). c Papal oannou Panayiotou (1991). d Arce et al. (1996).
atmosphere. The purity of the chemicals was checked using gas chromatography, obtaining purities better than 99.8 mass \%. The values measured of density, refractive index, and speed of sound for the pure chemicals were compared with those found in open literature, and the results are listed in Table 1. The mixtures were prepared by weight using a Mettler AE-240 balance, with an accuracy of $\pm 10^{-4}$. Densities and speeds of sound of the mixtures were determined by means of an Anton Paar DSA-48 density and sound analyzer, with an accuracy of $\pm 5 \times 10^{-5} \mathrm{~g} \cdot \mathrm{~cm}^{-3}$ for densities and $\pm 1 \mathrm{~m} \times \mathrm{s}^{-1}$ for speeds of sound. Refractive indices were measured using an ABBEMAT-HP Dr. Kernchen automatic refractometer, the accuracy being $\pm 2 \times 10^{-5}$. The refractometer was thermostatyzed with a PolyScience controller bath model 9010, whose temperature stability was $\pm 10^{-2} \mathrm{~K}$. The mole fractions were determined with an accuracy of $\pm 10^{-4}$. The accuracy obtained when measuring excess molar volumes, changes of refractive indices, and isentropic compressibilities were $\pm 5 \times 10^{-3} \mathrm{~cm}^{3} \cdot \mathrm{~mol}^{-1}, \pm 10^{-4}$, and $\pm 1 \mathrm{TPa}^{-1}$, respectively. Further details of the experimental procedures used and the mode of operation in our laboratory have already been published (I glesias et al., 1996b).

3. Results and Discussion

The values corresponding to densities, refractive indices, speeds of sound, and isentropic compressibilities (cal culated by means of the Laplace equation $\kappa_{\mathrm{S}}=\rho^{-1} \cdot \mathrm{u}^{-2}$), are given in Table2. The excess molar volumes, changes of refractive indices on mixing, and changes of isentropic compressibili-

Figure 1. Curves of constant (a), excess molar volumes, (b) changes of refractive indices on mixing, and (c) changes of isentropic compressibilities for acetone (1) + methanol (2) + ethanol (3) at 298.15 K .
ties were calculated using the following expressions

$$
\begin{gather*}
\mathrm{V}^{\mathrm{E}}=\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{x}_{\mathrm{i}} \mathrm{M}_{\mathrm{i}}\left(\rho^{-1}-\rho_{\mathrm{i}}^{-1}\right) \tag{1}\\
\delta \mathrm{n}_{\mathrm{D}}=\mathrm{n}_{\mathrm{D}}-\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{x}_{\mathrm{i}} \mathrm{n}_{\mathrm{Di}} \tag{2}\\
\delta \kappa_{\mathrm{S}}=\kappa_{\mathrm{S}}-\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{x}_{\mathrm{i}} \kappa_{\mathrm{Si}} \tag{3}
\end{gather*}
$$

Figure 2. Curves of (a) $\delta \mathrm{V}_{123}^{\mathrm{E}}=\mathrm{V}^{\mathrm{E}}-\mathrm{V}_{12}^{\mathrm{E}}-\mathrm{V}_{13}^{\mathrm{E}}-\mathrm{V}_{23}^{\mathrm{E}}$, (b) $\delta\left(\delta \mathrm{n}_{\mathrm{D}, 123}\right)=\delta \mathrm{n}_{\mathrm{D}}-\delta \mathrm{n}_{\mathrm{D}, 12}-\delta \mathrm{n}_{\mathrm{D}, 13}-\delta \mathrm{n}_{\mathrm{D}, 23}$, and (c) $\delta(\delta \kappa \mathrm{s}, 123)=\delta \kappa \mathrm{s}$ $-\delta \kappa \mathrm{s}, 12-\delta \kappa \mathrm{s}, 13-\delta \kappa \mathrm{s}, 23$ at 298.15 K for acetone (1) + methanol (2) + ethanol (3).
where $\rho, \mathrm{n}_{\mathrm{D}}$, and k_{S} stand for the density, refractive index, and isentropic compressibility of the mixture, and $\rho_{\mathrm{i}}, \mathrm{n}_{\mathrm{Di}}$, and k_{si} are the corresponding properties of pure components. N represents the number of components in the mixture. The excess and derived values are also presented in Table 2. These magnitudes were correlated using the Cibulka equation
$\delta \mathbf{Q}_{123}=\delta \mathbf{Q}_{12}+\delta \mathbf{Q}_{13}+\delta \mathbf{Q}_{23}+\mathbf{x}_{1} \cdot \mathbf{x}_{2} \cdot \mathbf{x}_{3} \cdot\left(\mathrm{~B}_{0}+\mathrm{B}_{1} \cdot \mathbf{x}_{1}+\right.$
$\left.\mathbf{B}_{2} \cdot \mathbf{x}_{2}\right)$
where $\delta \mathrm{Q}_{12}, \delta \mathrm{Q}_{13}$, and $\delta \mathrm{Q}_{23}$ represent the binary contribu-

Table 2. Densities, Refractive Indices, Speeds of Sound, Isentropic Compressibilities, Excess Molar Volumes, Changes of Refractive Indices on Mixing, and Changes of Isentropic Compressibilities on Mixing, for Acetone (1) + Methanol (2) + Ethanol (3) at 298.15 K

x_{1}	X_{2}	$\rho /\left(\mathrm{g} \cdot \mathrm{cm}^{-3}\right)$	n_{D}	$\mathrm{u} /\left(\mathrm{m} \cdot \mathrm{s}^{-1}\right)$	$\kappa_{\mathrm{S}} /\left(\mathrm{TPa}^{-1}\right)$	V / $/\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right.$)	$\delta \mathrm{n}_{\mathrm{D}}$	$\delta \kappa_{\mathrm{S}} /\left(\mathrm{TPa}^{-1}\right)$
0.0312	0.0854	0.7856	1.35724	1143	975	-0.039	0.0009	6
0.0319	0.2371	0.7859	1.35359	1138	982	-0.045	0.0022	-10
0.0228	0.3871	0.7859	1.34939	1133	992	-0.029	0.0029	-11
0.0241	0.5152	0.7861	1.34522	1128	1000	-0.028	0.0030	-11
0.0230	0.6371	0.7864	1.34141	1123	1008	-0.033	0.0031	-12
0.0220	0.7477	0.7865	1.33745	1118	1018	-0.026	0.0028	-10
0.0230	0.8520	0.7868	1.33341	1113	1026	-0.031	0.0022	-9
0.0211	0.9460	0.7870	1.32930	1108	1035	-0.030	0.0012	-7
0.0906	0.0845	0.7858	1.35730	1145	970	-0.058	0.0012	-9
0.1069	0.2373	0.7863	1.35366	1142	975	-0.079	0.0026	-14
0.0984	0.3848	0.7867	1.34981	1138	982	-0.089	0.0035	-18
0.0941	0.5162	0.7870	1.34597	1133	990	-0.092	0.0040	-19
0.0898	0.6389	0.7874	1.34194	1128	997	-0.100	0.0040	-21
0.0854	0.7523	0.7878	1.33808	1124	1005	-0.108	0.0038	-21
0.0820	0.8514	0.7881	1.33429	1119	1013	-0.110	0.0033	-21
0.1711	0.0854	0.7860	1.35718	1148	965	-0.079	0.0013	-11
0.1644	0.2400	0.7867	1.35367	1145	970	-0.112	0.0029	-17
0.1482	0.3971	0.7871	1.34966	1140	978	-0.119	0.0040	-21
0.1464	0.5270	0.7876	1.34590	1136	984	-0.135	0.0045	-25
0.1401	0.6533	0.7882	1.34185	1131	991	-0.153	0.0045	-27
0.1323	0.7674	0.7886	1.33801	1127	998	-0.158	0.0044	-27
0.1449	0.8115	0.7891	1.33641	1126	999	-0.182	0.0043	-30
0.2132	0.3978	0.7875	1.34962	1143	973	-0.153	0.0042	-25
0.2042	0.5315	0.7882	1.34615	1139	978	-0.180	0.0050	-29
0.1942	0.6647	0.7889	1.34210	1135	985	-0.202	0.0053	-32
0.1845	0.7785	0.7895	1.33830	1131	991	-0.217	0.0052	-34
0.3119	0.0901	0.7862	1.35690	1151	960	-0.105	0.0017	-13
0.2905	0.2523	0.7871	1.35343	1148	964	-0.152	0.0035	-21
0.2792	0.4062	0.7880	1.34988	1145	968	-0.194	0.0049	-28
0.2673	0.5429	0.7888	1.34611	1142	972	-0.226	0.0056	-34
0.2552	0.6686	0.7895	1.34242	1138	978	-0.248	0.0060	-38
0.3272	0.6397	0.7900	1.34369	1143	969	-0.296	0.0066	-42
0.3386	0.5058	0.7889	1.34733	1145	966	-0.248	0.0058	-35
0.3631	0.3501	0.7879	1.35102	1149	962	-0.205	0.0045	-28
0.3916	0.0867	0.7862	1.35671	1152	958	-0.111	0.0017	-13
0.3716	0.2552	0.7873	1.35322	1150	960	-0.175	0.0036	-22
0.4710	0.0827	0.7861	1.35655	1154	955	-0.110	0.0016	-12
0.4388	0.2663	0.7874	1.35306	1152	957	-0.188	0.0041	-24
0.4245	0.4137	0.7886	1.34967	1150	959	-0.253	0.0055	-33
0.4048	0.5592	0.7898	1.34590	1147	962	-0.310	0.0064	-41
0.5489	0.0827	0.7860	1.35637	1156	953	-0.108	0.0017	-12
0.5218	0.2612	0.7875	1.35290	1154	953	-0.205	0.0040	-26
0.4881	0.4216	0.7889	1.34967	1152	955	-0.282	0.0059	-36
0.6283	0.0983	0.7860	1.35577	1157	950	-0.112	0.0019	-14
0.5919	0.2662	0.7876	1.35270	1156	950	-0.219	0.0042	-27
0.5764	0.3701	0.7886	1.35059	1155	950	-0.280	0.0055	-35
0.7089	0.0956	0.7859	1.35570	1159	947	-0.110	0.0020	-14
0.6795	0.2756	0.7877	1.35250	1159	945	-0.235	0.0046	-30
0.8035	0.0864	0.7856	1.35545	1161	945	-0.091	0.0018	-13
0.1113	0.0548	0.7858	1.35798	1147	968	-0.062	0.0009	-9
0.2422	0.0630	0.7860	1.35758	1150	962	-0.086	0.0013	-11
0.0334	0.1480	0.7856	1.35572	1141	978	-0.033	0.0015	-7
0.1337	0.1378	0.7861	1.35601	1146	969	-0.078	0.0018	-13
0.2651	0.1642	0.7865	1.35538	1149	963	-0.115	0.0024	-16
0.4071	0.1716	0.7867	1.35497	1152	958	-0.142	0.0028	-18
0.4840	0.1805	0.7868	1.35464	1154	955	-0.156	0.0030	-19
0.6456	0.1811	0.7868	1.35426	1158	948	-0.171	0.0032	-21
0.0335	0.2335	0.7857	1.35350	1138	982	-0.032	0.0020	-9
0.0337	0.3093	0.7858	1.35152	1136	986	-0.031	0.0025	-10
0.1362	0.2948	0.7866	1.35222	1142	975	-0.096	0.0031	-17
0.2612	0.3285	0.7874	1.35155	1146	967	-0.161	0.0040	-24
0.4706	0.3532	0.7882	1.35105	1152	956	-0.239	0.0050	-31

tion fitted with the Redlich-Kister expression for every binary mixture. The parameters of binary contributions were gathered in a previous work (Iglesias et al., 1997). $\mathrm{B}_{\mathrm{i}}, \mathrm{i}=0,1,2$, are the ternary fitting parameters that have been calculated applying the nonlinear algorithm due to Marquardt (Marquardt, 1963), and they are displayed in Table 3, as well as the root-mean-square deviations calculated according to the expression

$$
\begin{equation*}
\sigma=\left(\sum_{i}^{\mathrm{n}_{\mathrm{DAT}}} \frac{\left(\mathrm{z}_{\exp }-\mathrm{z}_{\mathrm{cal}}\right)^{2}}{\mathrm{n}_{\mathrm{DAT}}}\right)^{1 / 2} \tag{5}
\end{equation*}
$$

where $\mathrm{z}_{\mathrm{exp}}$ is the experimental value, $\mathrm{z}_{\text {cal }}$ is the calculated

Table 3. Parameters B_{i} of the Cibulka Equation and Root-Mean-Square Deviations σ

	Acetone (1) + Methanol (2) + Ethanol (3)			
$\mathrm{VE}_{\mathrm{E}}\left(\mathrm{cm}^{3 .}\right.$	$\mathrm{B}_{0}=-1.1325$	$\mathrm{~B}_{1}=1.6475$	$\mathrm{~B}_{2}=1.6184$	$\sigma=0.0076$
$\left.\mathrm{~mol}^{-1}\right)$				
$\delta \mathrm{n}_{\mathrm{D}}$	$\mathrm{B}_{0}=0.0027$	$\mathrm{~B}_{1}=-0.0137$	$\mathrm{~B}_{2}=-0.0022$	$\sigma=0.0001$
$\delta \kappa_{\mathrm{S}} /\left(\mathrm{TPa}^{-1}\right)$	$\mathrm{B}_{0}=-167.5$	$\mathrm{~B}_{1}=398.1$	$\mathrm{~B}_{2}=46.9$	$\sigma=0.4$

value, and $n_{\text {DAT }}$ is the number of experimental data points. Parts a, b, and c of Figure 1 show, respectively, the computed isol ines corresponding to ternary derived properties. Figure la shows a contractive trend through the whole composition range, where a minimum value is reached in approximately equimolar binary composition of

Table 4. Root-Mean-Square Deviations of the Experimental Results from the Predicted Results for Different Empirical Equations

	$\sigma\left(\mathrm{V}^{\mathrm{E}} /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)\right)$	$\sigma\left(\delta \mathrm{n}_{\mathrm{D}}\right)$	$\sigma\left(\delta \kappa_{\mathrm{s}} /\left(\mathrm{TPa}^{-1}\right)\right)$
K ohler	0.005	0.0001	1
J acob-Fitzner	0.005	0.0001	1
Colinet	0.005	0.0001	1
K nobeloch	0.037	0.0008	5
Tsao-Smitha	0.012	0.0006	3
Tsao-Smith ${ }^{\text {b }}$	0.010	0.0001	1
Tsao-Smith ${ }^{\text {c }}$	0.041	0.0010	6
Scatchard ${ }^{\text {a }}$	0.011	0.0002	2
Scatchard ${ }^{\text {b }}$	0.007	0.0001	2
Scatchard ${ }^{\text {c }}$	0.009	0.0001	1
Toopa	0.011	0.0002	2
Toop ${ }^{\text {b }}$	0.007	0.0001	1
Toop ${ }^{\text {c }}$	0.008	0.0001	1
Mathieson-Tynne ${ }^{\text {a }}$	0.248	0.0030	31
Mathieson-Tynne ${ }^{\text {b }}$	0.147	0.0048	23
Mathieson-Tynne ${ }^{\text {c }}$	0.013	0.0015	10
Hillerta	0.014	0.0015	5
Hillert ${ }^{\text {b }}$	0.031	0.0001	3
Hillertc	0.139	0.0028	19

${ }^{\text {a }}$ Ethanol is the asymmetric component in the equation. ${ }^{\mathrm{b}}$ Methanol is the asymmetric component in the equation. ${ }^{\text {c Acetone is }}$ the asymmetric component in the equation.
acetone + methanol owing to the hydrogen bonds between methanol and acetone molecules. In decreasing ethanol composition mixtures, lower values of excess molar volumes and an increasing trend toward pure methanol or acetone could be observed. The changes of refractive indices on mixing show positive values (Figure 1b), in agreement with this trend shown, a maximum appearing. The changes of isentropic compressibilities show a similar trend to excess molar volumes (Figure 1c).

The empirical predictive methods for derived properties of K ohler, J acob and Fitzner, Colinet, K nobel och, Tsao and Smith, Scatchard, Toop, Mathieson-Tynne, and Hillert (Piñeiro et al., 1998) calculate multicomponent properties by means of different additive binary contributions. Table 4 shows root-mean-square deviations computed using eq 5. The derived properties of multicomponent mixtures may be estimated using the corresponding binary data as follows

$$
\begin{equation*}
\delta \mathrm{Q}_{\mathrm{ij}}=\sum_{\mathrm{i}<\mathrm{j}}\left(\mathrm{x}_{\mathrm{i}} \mathrm{x}_{\mathrm{j}} / \mathrm{x}_{\mathrm{i}}^{\prime} \mathrm{X}_{\mathrm{j}}^{\prime}\right) \delta \mathrm{Q}_{\mathrm{ij}}\left(\mathrm{x}_{\mathrm{i}}^{\prime}, \mathrm{x}_{\mathrm{j}}^{\prime}\right) \tag{6}
\end{equation*}
$$

In this case, for each ternary mixture the mole fractions x^{\prime} may be obtained in a triangular Gibbs diagram, projecting the considered ternary composition point on the binary axis. The possible combinations of symmetric and asymmetric geometric choice yield the expressions of the referred
methods. Asymmetry can be regarded as the different individual contribution of one of the binary mixtures involved, caused by a polar or strong associative behavior in the multicomponent mixture. In Table 4 the deviations show that symmetric equations, except for K nobeloch, provide the best predictions for the set of magnitudes taken into consideration for this mixture. Low deviations are obtained by these methods owing to the scarce ternary contribution to derived magnitudes (Figure 2).
In what is referred to the equations of state, the facts of its high simplicity, low data requirements, and wide versatility in estimating different physical properties of both pure substances and multicomponent mixtures has attracted the general interest. The accuracy of the results obtained depend to a great extent on the combination of equations and mixing rules. A considerable number of equations of state are currently available, and most of them are adequate to obtain acceptable results, combined with simple rules, if some binary parameters are calculated from experimental data from the enclosed binary mixtures in the multicomponent system. In this case, the Soave-Redlich-K wong (SRK) and the Peng-Robinson (PR), equations were selected and applied with combining rules where the a and b factors in the mixture are dependent on one or two fitting parameters. These equations can be expressed by the general equation

$$
\begin{equation*}
\mathrm{P}=\frac{\mathrm{RT}}{\mathrm{~V}-\mathrm{b}}-\frac{\mathrm{a}}{\left(\mathrm{~V}+\delta_{1} \mathrm{~b}\right)\left(\mathrm{V}+\delta_{2} \mathrm{~b}\right)} \tag{7}
\end{equation*}
$$

where δ_{1} and δ_{2} are parameters with the following values: $\delta_{1}=1, \delta_{2}=0$ for SRK and $\delta_{1}=1+\sqrt{ } 2, \delta_{2}=1-\sqrt{ } 2$ for PR equations. For a binary mixture at constant P and T, the excess molar volume can be expressed according to

$$
\begin{equation*}
\mathrm{V}^{\mathrm{E}}=\Delta \mathrm{V}=\mathrm{V}_{\mathrm{m}}-\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{i}} \mathrm{~V}_{\mathrm{i}}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{i}}\left(\overline{\mathrm{~V}}_{\mathrm{i}}-\mathrm{V}_{\mathrm{i}}\right) \tag{8}
\end{equation*}
$$

where $\overline{\mathrm{V}}_{\mathrm{i}}$ is the partial molar volume defined by

$$
\begin{equation*}
\bar{V}_{i}=-\left(\frac{\partial P}{\partial n_{i}}\right)_{T, V, n}\left(\frac{\partial P}{\partial V_{m}}\right)^{-1}{ }_{T, n} \tag{9}
\end{equation*}
$$

and can be calculated from the selected equation of state, attending to the i component and mixture molar volume dependence.
Three different combining rules were tested with these equations, showing different dependences of a and b

Table 5. Computed Binary Interaction Parameters by the Applied Mixing Rules on the Equations of State SRK and PR, and Root-Mean-Square Deviations of the Ternary Prediction Results

mixture	Soave-Redlich-K wong			Peng-Robinson		
	R1	R2	R3	R1	R2	R3
acetone + methanol	$\begin{aligned} & 4.938 \times 10^{-2} \\ & (0.02) \end{aligned}$	1.753×10^{-2}	1.917	-5.764×10^{-2}	2.610×10^{-2}	1.934
		-2.258×10^{-2}	-6.373×10^{-3}	(0.02)	-1.969×10^{-2}	-6.351×10^{-3}
		(0.009)	-2.258×10^{-2}		(0.009)	-1.970×10^{-2}
			(0.01)			(0.009)
acetone + ethanol	$\begin{aligned} & 1.758 \times 10^{-2} \\ & (0.01) \end{aligned}$	3.224×10^{-2}	2.571×10^{-2}	1.436×10^{-2}	3.827×10^{-2}	2.327×10^{-2}
		-7.221×10^{-3}	2.187×10^{-5}	(0.01)	-5.578×10^{-3}	5.032×10^{-5}
		(0.006)	-7.221×10^{-3}		(0.007)	-5.578×10^{-3}
			(0.007)			(0.007)
methanol + ethanol	$\underset{(0.007)}{-1.013} \times 10^{-2}$	5.317×10^{-2}	1.776×10^{-1}			
		2.693×10^{-3}	-4.174×10^{-4}	-1.065×10^{-2}	6.145×10^{-2}	1.182×10^{-1}
		(0.004)	2.693×10^{-3}	(0.007)	3.922×10^{-3}	-1.904×10^{-4}
			(0.004)		(0.004)	3.922×10^{-3}
						(0.004)
acetone + methanol + ethanol	(0.01)	(0.007)	(0.007)	(0.01)	(0.007)	(0.007)

parameters. A general equations could be expresed as

$$
\begin{gather*}
a=\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} x_{j}\left(1-k_{i j}-l_{i j} T\right)\left(a_{i} a_{j}\right)^{1 / 2} \tag{10}\\
b=\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} x_{j}\left(1-m_{i j}\right)\left(b_{i} b_{j}\right)^{1 / 2} \tag{11}
\end{gather*}
$$

where for mixing rule $R 1 I_{i j}=m_{i j}=0$, for mixing rule R 2 $\mathrm{I}_{\mathrm{ij}}=0$, and for mixing rule $R 3 \mathrm{k}_{\mathrm{ij}}, \mathrm{I}_{\mathrm{ij}}, \mathrm{m}_{\mathrm{ij}} \neq 0$ these parameters being a constant value over the whole composition range for every binary mixture. The Marquardt algorithm was applied to calculate the parameters $\mathrm{K}_{\mathrm{ij}}, \mathrm{I}_{\mathrm{ij}}$, and $m_{i j}$ in the cases mentioned above, using the experimentaly measured binary excess volumes, in combination with a Newton-Raphson method to solve the equation of state. Once these binary parameters were computed, the ternary excess values were predicted and compared with the experimental results. The parameters are given in Table 5, together with the root-mean-square deviations from the experimental data. The results displayed show that the predictions achieve a good accuracy, especially those calculated with mixing rules R2 and R3, and more precise than that usually offered by other theoretical methods when polar mixtures are invol ved. The equations of state reveal its usefulness as a predictive tool for excess volumes, as they have been validated in many other thermophysical magnitudes.

Literature Cited

Arce, A.; Martínez Ageitos, J.; Mendoza, J.; Soto, A. Densities, Refractive Indices, Speeds of Sound, and I sentropic Compressibilities of Water + Methanol + 2-Methoxy-2-methylbutane at 298.15 K. J . Chem. Eng. Data 1996, 41, 724-727.

Cibulka, I. Estimation of Excess Volume and Density of Ternary Liquid Mixtures of Nonelectrolytes from Binary Data. Collect. Czech. Commun. 1982, 47, 1414-1419.
Hnedkovsky, L.; Cibulka, I. Int DATA Ser., Sel. Data Mixtures, Ser. A 1993, 21, 2, 167.
I glesias, M.; Orge, B.; Tojo, J. Densities and Refractive Indices for Acetone + Methanol + 1-Propanol at 298.15 K. J . Chem. Eng. Data 1996a, 41, 218-221.
I glesias, M.; Orge, B.; Tojo, J. Refractive Indices, Densities and Excess Properties on Mixing of the Systems Acetone + Methanol + Water and Acetone + Methanol +1 -Butanol at 298.15 K. Fluid Phase Equilib. 1996b, 126, 203-223.
I glesias, M.; Orge, B.; Dominguez, M.; Tojo, J. Mixing Properties of the Binary Mixtures of Acetone, Methanol, Ethanol, and 2-Butanone at 298.15 K. Phys. Chem. Liq. 1997, in press.
Iglesias, M.; Marino, G.; Orge, B.; Piñeiro, M. M.; Tojo, J. LiquidLiquid Equilibria and Thermodynamic Properties of the System Methyl Acetate + Methanol + Water at 298.15 K. Phys. Chem. Liq. 1998, in press.
Marquardt, D. W. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. J. Soc. Indust. Appl. Math. 1963, 2, 431441.

Orge, B.; Iglesias, M.; Rodríguez A.; Canosa J. M.; Tojo, J. Mixing Properties of (Methanol, Ethanol, or 1-Propanol) with (n-Pentane, n-Hexane, n-Heptane and n-Octane) at 298.15 K. Fluid Phase Equilib. 1997, 133, 213-227.
Papaloannou Zaklas, D.; Panayiotou, C. Volumetric Properties of Binary Mixtures 1. 2-Propanone + 2,2,4-Trimethylpentane and n-Heptane + Ethanol Mixtures. J. Chem. Eng. Data 1991, 36, 3539.

Peng, D. Y.; Robinson, D. B. A New Two Constant Equation of State. Ind. Eng. Chem. Fundam. 1976, 15, 59-64.
Piñeiro, M. M.; de Cominges, B. E.; García-Garabal, S.; Legido, J . L.; López, M.; Paz Andrade, M. I. Aplication of Different Group Contribution Models and Empirical Equations to H^{E} of Ternary Mixtures. J. Therm. Anal. 1998, 52, 799-814.
Soave, G. Equilibrium Constants from a Modified Redlich-Kwong Equation of State. Chem. Eng. Sci. 1972, 27, 1197-1203.
TRC Thermodynamic Tables; Thermodynamic Research Center, Texas A\&M University: College Station, TX, 1994.

Received for review February 11, 1998. Accepted May 20, 1998.
J E980041Z

[^0]: * To whom correspondence should be addressed. Fax: +34 86812382.

 E-mail: jtojo@uvigo.es.
 ${ }^{\dagger}$ Departamento de Ingeniería Química.
 ₹ Departamento de Física Aplicada.

