Density, Refractive Index, and Speed of Sound for 2-Ethoxy-2-Methylbutane + Ethanol + Water at 298.15 K

Alberto Arce,* Alberto Arce Jr., Eva Rodil, and Ana Soto

Department of Chemical Engineering, University of Santiago de Compostela, E-15706 Santiago de Compostela, Spain

The density, refractive index, and speed of sound at 298.15 K and atmospheric pressure were measured in the miscibility range for 2-ethoxy-2-methylbutane + ethanol + water. From these results, excess molar volumes and molar refraction and isentropic compressibility changes of mixing were calculated and satisfactorily correlated with the corresponding composition data using the Redlich–Kister polynomial.

Introduction

This contribution is a study on the behavior of alcohol and ether mixtures used as octane-enhancing components in gasoline (Arce et al., 1998, 1999). 2-Ethoxy-2-methylbutane (*tert*-amyl ethyl ether or TAEE) is a heavy tertiary ether which, if ethanol is elaborated by fermentation from renewable resources, seems to be an attractive solution for the insufficient supply of methyl *tert*-butyl ether (MTBE).

In this paper densities (ρ), refractive indices (n_D), and speeds of sound (u) have been determined over the complete concentration range of miscible mixtures of TAEE + ethanol + water at 298.15 K and atmospheric pressure. Excess molar volumes (V^E) and molar refraction and isentropic compressibility changes of mixing were calculated from the measured properties and correlated with composition using the Redlich–Kister polynomial. No comparable data for the binary system ethanol + TAEE and for the ternary system TAEE + ethanol + water have been found in the surveyed literature.

Experimental Section

Materials. Water was purified using a Milli-Q Plus system. TAEE was supplied by the Yarsintez Research Institute (Yaroslav, Russia), and ethanol (Gradient grade) was supplied by Merck, both with nominal purity of 99.8 mass % and water content (determined with a Metrohm 737 KF coulometer) of 0.04 and 0.05 mass %, respectively. The purities were verified chromatographically. Materials were used without further purification.

Table 1 lists the densities, refractive indices, and sound speeds measured for the pure components, together with the published values for these parameters (Riddick et al., 1986; Bruun and Hvidt, 1977; Aminabhavi et al., 1993).

Apparatus and Procedure. The mixtures were prepared by filling well-stoppered flasks with the liquids and weighing on a Mettler AE 240 balance that measured to within ± 0.000 01 g for calculating the mass. Densities were measured to within ± 0.000 01 g·cm⁻³ in an Anton Paar DMA 60/602 densimeter, and sound speeds were measured to within $\pm 1 \text{ m} \text{ s}^{-1}$ in an Anton Paar DSA 48 densimeter and sound analyzer. Both instruments were calibrated with air and water. Refractive indices were measured to an accuracy of ± 0.000 04 in an ATAGO RX-5000 refractometer. A Hetoterm thermostat was used to maintain the temperature at (298.15 \pm 0.02) K.

Table 1. Densities (ρ), Refractive Indices (n_D), and Speeds of Sound (u) for Pure Components at 298.15 K and Atmospheric Pressure

	$ ho/g\cdot cm^{-3}$		1	n _D	$u/m \cdot s^{-1}$	
component	exptl	lit.	exptl	lit.	exptl	lit.
water	0.997 04	0.997 04 ^a 0 784 93 ^a	1.332 50	1.332 50 ^a 1 359 41 ^a	1497 1143	1497 ^b
TAEE	0.760 50	d	1.388 57	d	1096	d

^{*a*} Riddick et al., 1986. ^{*b*} Bruun and Hvidt, 1977. ^{*c*} Aminabhavi et al., 1993. ^{*d*} Not found.

Results

The experimental values obtained of densities (ρ), sound speeds (u), and refractive indices (n_D) for the single-phase mixtures of TAEE + ethanol + water and for the binary mixture ethanol + TAEE are listed in Table 2. Data for a binary water + ethanol system have already been published (Arce et al., 1997). The same table includes the calculated values of isentropic compressibilities (κ_s), excess molar volumes (V^E), and molar refraction and isentropic compressibility changes of mixing (ΔR , $\Delta \kappa_s$).

The excess molar volumes (V^{E}) and molar refraction changes of mixing (ΔR) are calculated as a function of mole fraction, x_i , using the following expressions:

$$V^{\rm E} = V_{\rm M} - \sum_{i} x_i V_i \tag{1}$$

$$\Delta R = R_{\rm M} - \sum_i x_i R_i \tag{2}$$

where $V_{\rm M}$ is the molar volume of the mixture, $R_{\rm M}$ is the molar refraction of the mixture obtained from the Lorentz–Lorenz equation, and V_i and R_i are the molar volume and the molar refraction, respectively, for component *i*.

Isentropic compressibilities (κ_s) and their changes of mixing ($\Delta \kappa_s$) are calculated using the relationships

$$\kappa_{\rm s} = u^{-2} \rho^{-1} \tag{3}$$

$$\Delta \kappa_{\rm s} = \kappa_{\rm s} - \sum_{i} \phi_i \kappa_{si} \tag{4}$$

where κ_s and κ_{si} are the isentropic compressibilities of the mixture and component *i*, respectively, and ϕ_i are the

Table 2. Densities (ρ), Speeds of Sound (u), Isentropic Compressibilities (κ_s), Refractive Indices (n_D), Excess Molar Volumes (V^E), and $\Delta \kappa_s$ and ΔR Changes of Mixing for Mixtures of TAEE (1) + Ethanol (2) + Water (3) at 298.15 K and Atmospheric Pressure

<i>X</i> ₁	<i>X</i> 2	$ ho/{ m g}{ m \cdot cm^{-3}}$	$u/m \cdot s^{-1}$	$\kappa_{\rm s}/{\rm TPa^{-1}}$	n _D	V ^E /cm ³ ⋅mol ⁻¹	$\Delta \kappa_{\rm s}/{\rm TPa^{-1}}$	$\Delta R/cm^3 \cdot mol^{-1}$
0.0987	0.9013	0.782 00	1136	990	1.366 66	-0.198	-11	-0.007
0.0934	0.8527	0.787 95	1152	956	1.367 38	-0.413	-37	-0.014
0.0807	0.7367	0.802 72	1192	877	1.368 53	-0.793	-93	-0.026
0.0734	0.6698	0.811 89	1214	835	1.368 88	-0.943	-119	-0.030
0.0642	0.5866	0.824 37	1242	786	1.368 98	-1.074	-146	-0.034
0.0561	0.5123	0.836 83	1268	743	1.368 74	-1.144	-165	-0.036
0.0454	0.4143	0.855 87	1309	682	1.367 78	-1.169	-188	-0.036
0.1974	0.8026	0.779.00	1130	1005	1.372 12	-0.342	-16	-0.013
0.1889	0.7681	0.783 21	1141	981	1.372 60	-0.510	-35	-0.018
0 1657	0 6737	0 795 15	1171	917	1 373 47	-0.861	-80	-0.029
0.1488	0.6052	0 804 46	1192	875	1 373 71	-1.029	-106	-0.020
0 1253	0.5093	0.819.01	1219	821	1 373 48	-1 166	-132	-0.039
0.1263	0.4323	0.832 55	1242	778	1 372 72	-1 201	-147	-0.040
0.2991	0.7009	0.776 10	1124	1020	1 376 32	-0.436	-17	-0.016
0.2667	0.7000	0 785 68	1127	967	1 377 11	-0.801	-56	-0.030
0.2626	0.6150	0 786 96	1150	960	1 377 19	-0.840	-60	-0.031
0.2196	0.5144	0.801.21	1179	897	1 377 52	-1 134	-99	-0.040
0.1946	0.4558	0.810.30	1102	869	1 377 11	-1 200	-109	-0.043
0.1040	0.4000	0.773 50	1118	1033	1 379 59	-0.494	-17	-0.019
0.3750	0.5630	0 778 47	1130	1005	1 380 03	-0.723	-37	-0.027
0.3730	0.5316	0 782 78	1140	083	1 380 28	-0.878	-53	-0.027
0.3341	0.5510	0.787 20	1140	962	1 380 /1	-1.001	-66	-0.032
0.3165	0.3004	0 790 88	1155	947	1 380 41	-1.001	-74	-0.040
0.2982	0 4477	0 795 04	1161	933	1 380 31	-1 139	-81	-0.043
0.4928	0.5072	0 771 30	1115	1044	1 381 96	-0.518	-16	-0.020
0.4589	0.0072	0 776 34	1126	1016	1 382 36	-0.761	-36	-0.028
0.4295	0.4720	0 780 87	1125	994	1 382 56	-0.926	-50	-0.020
0 4083	0 4202	0 784 27	1141	980	1 382 62	-1.020	-59	-0.038
0.3939	0.4054	0.786 64	1144	972	1.382 60	-1.073	-63	-0.040
0.5939	0.4061	0.769 20	1111	1054	1.384 09	-0.531	-15	-0.020
0.5477	0.3745	0.774 38	1122	1027	1.384 41	-0.789	-34	-0.030
0.5450	0.3727	0.774 69	1122	1025	1.384 43	-0.802	-35	-0.031
0.5271	0.3604	0.776 82	1126	1016	1.384 51	-0.888	-41	-0.034
0.6950	0.3050	0.767 10	1107	1063	1.385 71	-0.491	-13	-0.029
0.6756	0.2970	0.768 79	1110	1055	1.385 84	-0.593	-19	-0.024
0.6373	0.2802	0.772 30	1117	1038	1.386 06	-0.780	-31	-0.030
0.7949	0.2051	0.765 10	1105	1071	1.387 02	-0.414	-12	-0.017
0.7760	0.2002	0.766 46	1107	1065	1.387 15	-0.506	-16	-0.018
0.7536	0.1945	0.768 12	1110	1057	1.387 28	-0.609	-21	-0.020
0.9252	0.0748	0.762 26	1100	1083	1.388 20	-0.194	-7	-0.004
0.8782	0.1218	0.763 29	1102	1078	1.387 86	-0.286	$^{-9}$	-0.007
0.8192	0.1808	0.764 53	1104	1073	1.387 32	-0.374	-12	-0.010
0.7825	0.2175	0.765 28	1105	1070	1.386 91	-0.416	-13	-0.012
0.7264	0.2736	0.766 41	1107	1065	1.386 20	-0.465	-13	-0.015
0.7017	0.2983	0.766 91	1107	1063	1.385 85	-0.481	-14	-0.016
0.6460	0.3540	0.768 03	1109	1059	1.384 97	-0.506	-14	-0.018
0.6010	0.3990	0.768 95	1110	1055	1.384 18	-0.518	-15	-0.020
0.5321	0.4679	0.770 41	1113	1048	1.382 80	-0.522	-16	-0.021
0.4918	0.5082	0.771 29	1115	1044	1.381 90	-0.518	-16	-0.022
0.4362	0.5638	0.772 57	1117	1037	1.380 51	-0.505	-17	-0.022
0.3954	0.6046	0.773 56	1119	1032	1.379 39	-0.490	-18	-0.022
0.3424	0.6576	0.774 90	1122	1025	1.377 76	-0.464	-18	-0.022
0.2999	0.7001	0.776 03	1124	1020	1.376 30	-0.437	-18	-0.021
0.2414	0.7586	0.777 67	1127	1012	1.374 02	-0.389	-17	-0.019
0.2014	0.7986	0.778 84	1129	1007	1.372 25	-0.348	-16	-0.017
0.1400	0.8600	0.780 71	1133	997	1.369 11	-0.270	-14	-0.013
0.0988	0.9012	0.782 00	1136	990	1.366 65	-0.206	-12	-0.010
0.0517	0.9483	0.783 49	1139	983	1.363 41	-0.118	-7	-0.005

volume fraction of component *i* in the mixture, given by

$$\phi_i = x_i V_i \sum_j x_j V_j \tag{5}$$

and *j* refers to all the components in the mixture.

For the ternary system, Figures 1–3 show the density, refractive index, and excess molar volume isolines (system compositions in mole fraction, x_i), and Figures 4 and 5 show the sound speed and the isentropic compressibility changes of mixing isolines (system composition in volume fraction, ϕ_i).

Correlation

The V^{E} , ΔR , and $\Delta \kappa_{s}$ values were correlated with the composition by means of the Redlich–Kister polynomial (Redlich–Kister, 1948), which for binary mixtures is

$$Q_{ij} = x_i x_j \sum_k A_k (x_i - x_j)^k \tag{6}$$

where Q_{ij} is V^{E} or ΔR and x_i is the mole fraction of component *i*, or Q_{ij} is $\Delta \kappa_s$, with x_i being the volume fraction of component *i*. A_k is the polynomial coefficient, and *k* is the number of the polynomial coefficient. For ternary

Figure 1. Density isolines for TAEE (1) + ethanol (2) + water (3) at 298.15 K and atmospheric pressure.

Figure 2. Refractive index isolines for TAEE (1) + ethanol (2) + water (3) at 298.15 K and atmospheric pressure.

Figure 3. Excess molar volume isolines for TAEE (1) + ethanol (2) + water (3) at 298.15 K and atmospheric pressure (system compositions in mole fraction).

systems the corresponding equation, as a function of the composition, x_i (for $\Delta \kappa_s$, volume fraction ϕ_i instead of mole fraction x_i), is

$$Q_{123} = Q_{21} + Q_{32} + Q_{13} + x_1 x_2 x_3 (A + B(x_2 - x_1) + C(x_3 - x_2) + D(x_1 - x_3) + E(x_2 - x_1)^2 + F(x_3 - x_2)^2 + G(x_1 - x_2)^2 + \dots$$
(7)

Figure 4. Speed of sound isolines for TAEE (1) + ethanol (2) + water (3) at 298.15 K and atmospheric pressure (system compositions in volume fraction).

Figure 5. Isentropic compressibility changes of mixing isolines for TAEE (1) + ethanol (2) + water (3) at 298.15 K and atmospheric pressure.

Table 3. Polynomial Coefficients and Standard Deviations (σ) Obtained for Fits of Eq 6 to the V^E , Δk_s , and ΔR Composition Data for the Binary Systems (for Δk_s , System Compositions Were in Volume Fractions, ϕ_i)

property	A_0	A_1	A_2	A_3	A_4	σ			
Ethanol (1) + TAEE (2)									
V ^E /cm ³ ⋅mol ⁻¹	-2.0764	0.2644	-0.6934			0.003			
$\Delta \kappa_{\rm s}/{\rm TPa^{-1}}$	-70.649	26.749	-98.173	-74.001	210.71	0.5			
$\Delta R/cm^3 \cdot mol^{-1}$	-0.0873	-0.0271				0.002			
Water (1) + Ethanol (2)									
V ^E /cm ³ ⋅mol ⁻¹	-4.296	-1.116	-1.235			0.001			
$\Delta \kappa_s / TPa^{-1}$	-974.5	-28.0	-259.1	584.5		0.3			
$\Lambda R/cm^3 \cdot mol^{-1}$	-0.092					0.001			

where Q_{123} represents $V^{\rm E}$, ΔR , or $\Delta \kappa_{\rm s}$ for the ternary mixture TAEE (1) + ethanol (2) + water (3) and Q_{ij} is the Redlich–Kister polynomial for the same property fitted to the binary systems data, with, in this case, Q_{13} equal to zero because of the immiscibility of water and TAEE.

The A_k values for Q_{21} (ethanol + TAEE) and Q_{32} (water + ethanol) are summarized in Table 3 together with the corresponding standard deviations of the fit. The parameters of the fitted polynomials for the binary water + ethanol system have been published (Arce et al, 1997). The Redlich–Kister coefficients for the ternary system are listed in Table 4 together with the corresponding standard deviations of fit. All of these coefficients were obtained fitting, to the appropriate parameters, eqs 6 and 7 by least-

Table 4. Polynomial Coefficients and Standard Deviations (σ) Obtained for Fits of Eq 7 to the V^{E} , $\Delta \kappa_{s}$, and ΔR Composition Data for the Ternary System TAEE (1) + Ethanol (2) + Water (3) (for $\Delta \kappa_{s}$, System Compositions Are in Volume Fractions, ϕ_{i})

property	Α	В	С	D	Ε	F	G	σ
$V^{\!E}$ /cm ³ ·mol ⁻¹ $\Delta \kappa_{\rm s}$ /TPa ⁻¹ ΔR /cm ³ ·mol ⁻¹	$-13.480 \\ -791.18 \\ -0.7904$	7.7748 - 1068.1 0.1839	$-5.9383 \\ -732.46 \\ -0.4203$	-1.8365 1800.6 0.2347	-13.698 3491.8	$-0.6950 \\ -7961.7$	$-3.6215 \\ -14697$	0.006 1.45 0.002

squares regression; the Fisher's F-test were used to decide the degree of the polynomial.

Conclusions

Excess molar volumes at 298.15 K and atmospheric pressure for binary mixtures of ethanol + TAEE were negative, reaching a minimum around $-0.52 \text{ cm}^3 \cdot \text{mol}^{-1}$ in the neighborhood of x = 0.5. Isentropic compressibility changes of mixing are also negative, reaching a minimum of aproximately -18 TPa⁻¹. Values of molar refraction changes of mixing are likewise negative, but the absolute value of the change is never more than about 0.022 cm³·mol⁻¹.

The ternary system TAEE + ethanol + water exhibits relatively large and negative excess molar volumes for the entire range of homogeneous mixtures, reaching a minimum around $-1.2 \text{ cm}^3 \cdot \text{mol}^{-1}$. Isentropic compressibility changes of mixing are also negative; the lower values corresponding to the ethanol + water system which reaches a minimum of approximately -243 TPa^{-1} (Arce et al., 1997). Values of molar refraction changes of mixing are so small that it is difficult to establish any conclusion.

Literature Cited

- Aminabhavi, T. M.; Aralaguppi M. Y.; Harogoppad, Sh. B.; Balundgi, R. H. Densities, viscosities, refractive indices, and speeds of sound for methyl acetoacetate + aliphatic alcohols (C1–C8). J. Chem. Eng. Data 1993, 38, 31–39.
- Arce, A.; Martínez-Ageitos, J.; Mendoza, J.; Soto, A. Densities, refractive indices, speeds of sound and isentropic compresibilities of water + ethanol + 2-methoxy-2-methylbutane at 298.15 K. *Fluid Phase Equilib.* **1997**, *141*, 207–220.
- Arce, A.; Rodil, E.; Soto, A. Molar volume, molar refraction and isentropic compressibility changes of mixing at 25 °C for the system ethanol + methanol + dibutyl ether. J. Solution Chem. 1998, 27, 911–923.
- Arce, A.; Rodil, E.; Soto, A. Physical Properties of the Ternary System 1-Butanol + of Methanol + 2-Methoxy-2-methylpropane at 298.15 K: Measurement and Prediction. J. Chem. Eng. Data 1999a, 44, 1028–1033.
- Arce, A.; Martínez-Ageitos, J.; Rodil, E.; Soto, A. Thermodynamic behaviour of ethanol + methanol + 2-ethoxy-2-methylpropane system. Physical properties and phase equilibria. *Fluid Phase Equilib*, 165, 121–139.
- Bruun, S. G.; Hvidt, A. Ber. Bunsen-Ges. Phys. Chem. **1977**, 81, 930. Redlich, O.; Kister A. T. Thermodynamics of Nonelectrolyte Solutions. Ind. Eng. Chem. **1948**, 40, 345–348.
- Ind. Eng. Chem. **1948**, 40, 343–348. Riddick, J. A.; Bunger, W. B.; Sakano, T. Organic Solvents, 4th ed.; John Wiley: New York, 1986.

Received for review January 14, 2000. Accepted March 2, 2000.

JE000009G