Temperature and Density Dependence of the Viscosity of Toluene

Kenneth R. Harris*
School of Chemistry, University College, University of New South Wales, Australian Defence Force Academy, Canberra, ACT 2600, Australia

Abstract

New measurements have been made for the viscosity of toluene between 255 K and 323 K at pressures up to approximately 400 MPa with a falling-body viscometer. These extend earlier high-pressure measurements below 298 K . The measurements form part of an intercomparison of high-pressure viscometers by the IUPAC Physical Chemistry Division, Commision 1.2, Subcommittee on Transport Properties. A revised correlation function is used to represent the results with a repeatability of $\pm 0.5 \%$. The uncertainty is estimated at $\pm 1 \%$.

Introduction

New measurements have been made for the viscosity (η) of toluene between 255 K and 323 K at pressures up to approximately 400 MPa using a falling-body viscometer. These extend past high-pressure measurements below 298 K . The work forms part of a comparison of high-pressure viscometers of different types by the IUPAC Physical Chemistry Division, Commission 1.2, Subcommittee on Transport Properties. It is intended that toluene can become a standard reference substance for such instruments.

Here we report only data obtained with our apparatus. They complement earlier measurements from this laboratory done at 298 and 323 K as a check on accuracy as part of a study on the viscosity of octane. ${ }^{1}$ In that paper, a correlation was produced using the best available data in the literature valid at pressures to 200 MPa . The equations employed reproduced individual data sets well but showed large residuals at high densities (where ($\mathrm{d} \eta / \mathrm{d} \rho$) is large), when all the available data sets were combined together. The present extension of the high-pressure falling-body data set to lower temperatures has been used to partially improve this situation.
An account of the comparison of data sets obtained with falling-body, vibrating wire, torsionally oscillating crystal, and capilliary viscometers is to be published elsewhere. ${ }^{2}$

Experimental Section

The toluene was High Purity Solvent grade from Burdick and J ackson (Muskegan, MI) (manufacturer's analysis: $>99.8 \%$ by GLC), dried over sodium wire. The density was determined, using matched pycnometers, to be (0.86221 $\pm 0.00001) \mathrm{g} / \mathrm{mL}$ at $25.00{ }^{\circ}{ }^{\circ} \mathrm{C}$. This compares well with the value obtained from the equation of state used in this and the previous work, $0.8622_{3} \mathrm{~g} / \mathrm{mL}$, which is based on several sets of reliable experimental data. ${ }^{3}$ The molar mass was taken to be $92.1408 \mathrm{~g} / \mathrm{mol}$.

The high-pressure viscometer and its operation have been described elsewhere. ${ }^{4}$ Temperatures below ambient were produced by cooling the thermostat fluid (Shell Diala B) with a heat exchanger coil through which cold alcohol from a Lauda UKW1500 refrigerated circulating unit was pumped. An on-off heater was controlled by a

[^0]bridge circuit employing a sensitive thermistor as one arm of the bridge to maintain temperatures constant to ± 0.005 K. The uncertainty of the primary Pt resistance thermometer (Tinsley Instruments, U.K.) employed is estimated at ± 0.01 K. The primary pressure gauge (400 MPa Heise CM, Dresser Instruments, Stratford, CT) was cali brated against a dead weight tester to $\pm 0.05 \%$.
The viscometer is automatic. New software using Microsoft Visual Basic replaced earlier Turbo-Pascal based software. Data are obtained in the following way. Under computer control, replicate (usually 3) measurements at a set temperature are made at atmospheric pressure. (The viscometer pressure vessel is inverted by a stepper motor to return the slug after each fall time is measured.) Then the viscometer is manually pumped up to a pressure a little above the maximum value required for the isotherm. Control is returned to the computer program, and the pressure is adjusted automatically to the highest of a set of pressures contained in a table in the computer program. This adjustment is accomplished by driving out the piston of a screw injector (model 37-5.75-60, High Pressure Equipment Co., Erie, PA) connected to the viscometer pressure vessel but lying outside the viscometer bath. A Wika model 891.01.2002 pressure transducer (Alexander Wiegand GmbH \& Co., Klingenberg am Main, Germany) is used to monitor the pressure during this process. After a time interval sufficient for temperature and pressure equilibration, replicate (again usually 3) fall times are measured and the process is repeated through the series of set pressure points (see Table 2) until atmospheric pressure is reached.
The calibration method was changed from that used previously which relied on an atmospheric pressure correlation for toluene over a range of temperatures recommended by Nieto de Castro and Dymond. ${ }^{5}$ I nstead, a group of liquids was used for this purpose, with all calibrations being done at the single temperature, $25{ }^{\circ} \mathrm{C}$. The liquids included a set of calibration standards obtained from the Cannon Instrument Co. (State College, PA) (Table 1) and samples of toluene, octane, and cyclohexane. The viscosity used for toluene was that used previously. ${ }^{1,5}$ The viscosities of the octane and cyclohexane samples were determined to $\pm 0.2 \%$ in an independently calibrated, flared-capillary glass Ubbel ohde viscometer with a negl igi ble kinetic energy correction.

Table 1. Calibration Data at 298.15 Ka

substance	$\eta / \mathrm{mPa} \mathrm{s}$	$\rho / \mathrm{g} \mathrm{mL}^{-1}$	t / s	$\mathrm{t}\left(1-\rho / \rho_{\mathrm{s}}\right) / \mathrm{s}$	Re	$10^{-3} \mathrm{~A} / \mathrm{Pa}^{-1}$
N4 (hexane)						
octane	0.3081	0.66360	9.816	8.922	2177	28.958
toluene	$0.5136 \mathrm{c}, \mathrm{d}$	0.69860	16.342	14.775	823.5	28.767
N8 (xylenes)	0.5542	0.86219	18.043	15.908	855.6	28.704
cyclohexane	0.6268	0.86160	20.445	18.027	667.1	28.760
N1 (mixed HCs)	$0.8980^{\text {d }}$	0.77389	28.850	25.785	296.4	28.740
S3 (mineral oil)	1.0030	0.78960	32.313	28.811	241.7	28.725
S6 (mineral oil)	3.4250	0.84110	111.170	98.335	21.92	28.711
N10 (polybutene)	7.6800	0.85690	249.520	220.170	4.437	28.668
S20 (mineral oil)	15.1800	0.86510	493.530	434.923	1.146	28.651
average (disregarding N4)		0.85390	940.620	830.367	0.3106	28.633

a Sinker diameter $=6.3 \mathrm{~mm}$; density, $\rho_{\mathrm{s}}=7.285 \mathrm{~g} / \mathrm{mL} .{ }^{\mathrm{b}} \mathrm{N} 4, \mathrm{~S} 1$, and so forth are Cannon viscosity standard numbers. Calibration viscosity values used are those supplied by Cannon for their materials. ${ }^{\text {c }}$ The sample used is described in ref 1 . The viscosity differs from that recommended in ref 12. d These values were determined with a glass U bbelohde flared-capillary viscometer calibrated at $25^{\circ} \mathrm{C}$ with water and aqueous sucrose solutions. ${ }^{13}$

Figure 1. Calibration plot: viscometer constant for various calibration fluids at $25^{\circ} \mathrm{C}$ as a function of Reynolds number, Re

The working equation for the falling-body viscometer is ${ }^{4,6,7}$

$$
\begin{equation*}
\eta(\mathrm{p}, \mathrm{~T})=\frac{\mathrm{t}\left(1-\rho / \rho_{\mathrm{s}}\right)}{\mathrm{A}\left[\left(1+2 \alpha\left(\mathrm{~T}-\mathrm{T}_{\text {ref }}\right)\right]\left[1-2 \beta\left(\mathrm{p}-\mathrm{p}_{\mathrm{ref}}\right) / 3\right]\right.} \tag{1}
\end{equation*}
$$

where t is the fall time, ρ is the density of the fluid, ρ_{s} is that of the sinker, α is the coefficient of thermal expansion ($1.6 \times 10^{-5} \mathrm{~K}^{-1}$) and β is the bulk compressibility (2×10^{-6} MPa^{-1}) of the sinker and tube material, in this case 316 stainless steel. (The factor $2 / 3$ in the second term of the denominator is incorrectly given as 2 in ref 4 . The effect of this error is negligibly small.) A is the calibration constant. The sinker density was corrected for changes in T and p from the calibration state point, $\mathrm{T}_{\text {ref }}=298.15 \mathrm{~K}$ and $\mathrm{p}_{\text {ref }}=$ 0.1 MPa, using the relation ${ }^{8}$

$$
\begin{equation*}
\rho_{\mathrm{s}}=\frac{\rho_{\mathrm{s}}\left(\mathrm{~T}_{\mathrm{ref}}, \mathrm{p}_{\mathrm{ref}}\right)}{\left[1+3 \alpha\left(\mathrm{~T}-\mathrm{T}_{\text {ref }}\right)\right]\left[1-\beta\left(\mathrm{p}-\mathrm{p}_{\mathrm{ref}}\right)\right]} \tag{2}
\end{equation*}
$$

Some workers ${ }^{6}$ express A in terms of the quantity $\left[\mathrm{t}\left(1-\rho / \rho_{\mathrm{s}}\right)\right]^{\mathrm{N}}$, where N is an arbitrary constant. For example, Malhotra et al., ${ }^{4}$ calibrating with various fluids, used $\mathrm{N}=1$. However in this work, A was found to be constant $(\mathrm{N}=0)$ within the experimental scatter (average deviation, $\pm 0.2 \%$; maximum deviation, $\pm 0.3 \%$).

Figure 1 is a plot of A against the Reynolds number, Re. Equation 5 is not exact at high Reynolds numbers, and the point at which turbulence can occur is dependent on the value of the viscometer constant A. Inspection of graphs given by Isdale and Spence ${ }^{6}$ suggests the critical Revalue is about 1000 to 2000 for A in the range 30000 to 38000 Pa^{-1}, dropping to about 5 at $\mathrm{A} \sim 3300 \mathrm{~Pa}^{-1}$. The value of A for the sinker used here was $28707 \mathrm{~Pa}^{-1}$, which can be
expected to be valid for $\mathrm{Re}<1000$ at least. The point for hexane (the least viscous calibrant), which is somewhat high and for which $\operatorname{Re} \sim$ 2180, was not included in this calibration average.

For toluene, densities were obtained from an equation of state used previously. ${ }^{3}$ The uncertainty, based on comparisons with other high-pressure equations of state, is $<0.1 \%$.

The accuracy of the high-pressure viscosity measurements is estimated to be $\pm 1 \%$ on the basis of the precision of the (best) correlation below, $\pm 0.5 \%$, and that of the calibration. The accuracy relative to the results of other techniques and laboratories is discussed elsewhere. ${ }^{2}$

Results

The results are presented in Table 2. Only a single point was obtained at the lowest temperature, 255 K , due to the very high viscosity of the thermostat bath fluid (Shell Diala B) and the resultant difficulty of maintaining adequate stirring.

At 323.15 K , the lower density points correspond to $1000<\operatorname{Re}<1450$, where there is the possibility of turbulent flow. However the 0.1 MPa point agrees very well with a value interpolated from the recent vibrating wire viscometer measurements of Assael et al., ${ }^{9} 0.4205 \mathrm{mPa} \mathrm{s}$ ($\pm 0.5 \%$). This value in turn lies in the middle of the best recent determinations at this state point, cited in Assael's work, so it seems that our viscometer calibration can be used to at least Re~1500.

Discussion

The equations employed for the original correlation ${ }^{1,10}$ were

$$
\begin{equation*}
1 / \eta^{*}=\phi^{*}=\zeta_{1}+\zeta_{2} \mathrm{~V}_{\mathrm{r}} /\left(1+\zeta_{3} / \mathrm{V}_{\mathrm{r}}\right) \tag{3}
\end{equation*}
$$

where η^{*} is the Dymond reduced viscosity ${ }^{11}$ and V_{r} is expressed in terms of molar volume V and temperature T by

$$
\begin{equation*}
\mathrm{V}_{\mathrm{r}}=\mathrm{V}\left(1-\xi_{1}\left(\mathrm{~T}-\mathrm{T}_{\mathrm{r}}\right)-\xi_{2}\left(\mathrm{~T}-\mathrm{T}_{\mathrm{r}}\right)^{2}\right) \tag{4}
\end{equation*}
$$

T_{r} being any convenient reference temperature (usually 273.15 K). η^{*} is defined by

$$
\begin{equation*}
\eta^{*}=\frac{\eta}{\eta^{\infty}}\left(\frac{\mathrm{V}}{\mathrm{~V}_{0}}\right)^{2 / 3} \tag{5}
\end{equation*}
$$

where η^{∞} is the Chapman-Enskog expression for the viscosity of the dilute hard-sphere gas and $\mathrm{V}_{0}\left(=\mathrm{L} \sigma^{3} / \sqrt{ } 2\right)$

Table 2. Viscosity of Toluene from 255 K to 323 K

T/K	p/MPa	$\mathrm{V} /\left(\mathrm{cm}^{3} \mathrm{~mol}^{-1}\right)$	$\rho /\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	$\eta /(\mathrm{mPa} \mathrm{s})$	Re	T/K	p/MPa	$\mathrm{V} /\left(\mathrm{cm}^{3} \mathrm{~mol}^{-1}\right)$	$\rho /\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	$\eta /(\mathrm{mPa} \mathrm{s})$	Re
255.12	0.1	102.14	0.90210	1.044	251.1						
258.15	0.1	102.47	0.89922	1.000	272.8	258.15	0.1	102.47	0.89922	0.9882	279.6
	0.3	102.45	0.89937	1.009	268.0		0.1	102.47	0.89922	0.9871	280.2
	3.5	102.21	0.90149	1.032	256.9		0.1	102.47	0.89922	0.9871	280.2
	6.6	102.00	0.90334	1.052	247.8		0.1	102.47	0.89922	0.9841	281.9
	10.5	101.74	0.90565	1.085	233.4		5.2	102.10	0.90247	1.032	257.1
	11.2	101.69	0.90609	1.089	231.5		9.3	101.82	0.90494	1.066	241.6
	26.0	100.76	0.91446	1.224	185.0		13.3	101.56	0.90730	1.102	226.4
	26.2	100.75	0.91455	1.224	184.8		24.4	100.86	0.91358	1.204	191.0
	29.5	100.55	0.91637	1.266	173.0		25.4	100.80	0.91412	1.213	188.1
	49.6	99.45	0.92650	1.460	131.4		49.6	99.45	0.92655	1.458	131.8
	50.2	99.41	0.92684	1.470	129.7		49.7	99.44	0.92661	1.459	131.7
	72.4	98.33	0.93708	1.722	95.4		72.8	98.31	0.93725	1.724	95.2
	73.1	98.30	0.93738	1.718	95.8		75.5	98.19	0.93843	1.756	91.8
	100.9	97.10	0.94896	2.101	64.8		98.2	97.21	0.94788	2.056	67.6
	103.1	97.01	0.94982	2.132	63.0		102.2	97.05	0.94946	2.113	64.0
	128.2	96.05	0.95926	2.527	45.2		126.0	96.13	0.95846	2.482	46.8
	150.0	95.30	0.96687	2.916	34.2		129.1	96.02	0.95959	2.533	45.0
	177.1	94.44	0.97566	3.481	24.2		148.8	95.34	0.96646	2.884	34.9
	196.6	93.87	0.98159	3.956	18.8		149.5	95.31	0.96671	2.895	34.7
	205.9	93.61	0.98431	4.199	16.7		175.4	94.49	0.97514	3.430	24.9
	228.5	93.01	0.99064	4.858	12.6		178.5	94.40	0.97610	3.496	24.0
	233.2	92.89	0.99191	5.013	11.8		195.6	93.90	0.98130	3.902	19.3
	246.3	92.57	0.99539	5.451	10.0		196.1	93.88	0.98144	3.919	19.2
	249.9	92.48	0.99632	5.569	9.6		219.4	93.25	0.98814	4.552	14.3
							226.0	93.08	0.98995	4.742	13.2
							240.1	92.72	0.99375	5.190	11.0
							244.4	92.61	0.99489	5.329	10.5
268.15	0.1	103.52	0.89004	0.8359	387.1	268.15	0.1	103.52	0.89004	0.8392	384.1
	0.1	103.52	0.89004	0.8366	386.5		3.2	103.29	0.89206	0.8588	367.5
	6.4	103.04	0.89419	0.8807	350.1		5.3	103.13	0.89344	0.8735	355.7
	11.1	102.70	0.89717	0.9173	323.7		10.3	102.76	0.89666	0.9100	328.7
	25.7	101.71	0.90590	1.027	260.2		25.7	101.71	0.90592	1.025	261.2
	50.7	100.23	0.91930	1.234	182.6		50.8	100.22	0.91939	1.232	183.4
	77.3	98.87	0.93192	1.482	128.1		75.2	98.97	0.93098	1.457	132.4
	100.9	97.81	0.94204	1.726	95.3		100.9	97.81	0.94204	1.727	95.2
	149.1	95.95	0.96028	2.338	52.8		126.7	96.77	0.95215	2.033	69.3
	199.0	94.35	0.97656	3.167	29.2		148.0	95.99	0.95989	2.324	53.4
	250.1	92.96	0.99116	4.286	16.1		150.7	95.90	0.96084	2.361	51.8
	293.3	91.94	1.00221	5.546	9.7		200.9	94.30	0.97714	3.195	28.7
							225.9	93.59	0.98447	3.712	21.4
							250.5	92.95	0.99126	4.304	16.0
							284.8	92.13	1.00012	5.290	10.7
							297.5	91.84	1.00323	5.696	9.2
278.15	0.0	104.61	0.88079	0.7165	522.0	278.15	0.1	104.61	0.88079	0.7212	515.2
	0.1	104.61	0.88080	0.7203	516.5		0.1	104.61	0.88080	0.7211	515.4
	0.2	104.61	0.88080	0.7178	520.0		0.1	104.61	0.88080	0.7210	515.4
	2.4	104.42	0.88241	0.7302	503.3		5.1	104.18	0.88444	0.7506	477.2
	5.1	104.20	0.88430	0.7462	482.9		10.3	103.78	0.88785	0.7820	441.2
	19.1	103.12	0.89353	0.8309	393.0		10.6	103.76	0.88802	0.7846	438.4
	24.9	102.71	0.89710	0.8724	357.7		25.7	102.66	0.89753	0.8791	352.4
	49.8	101.13	0.91111	1.041	254.5		25.7	102.66	0.89753	0.8792	352.3
	75.0	99.76	0.92362	1.232	183.9		26.2	102.62	0.89788	0.8833	349.2
	99.9	98.57	0.93474	1.444	135.4		27.5	102.54	0.89858	0.8904	343.8
	124.9	97.51	0.94494	1.680	100.9		50.9	101.07	0.91165	1.052	249.6
	149.8	96.56	0.95428	1.947	75.7		52.3	100.99	0.91238	1.060	246.0
	174.4	95.70	0.96286	2.242	57.6		75.9	99.72	0.92400	1.242	181.1
	199.5	94.89	0.97103	2.584	43.6		99.9	98.57	0.93478	1.444	135.4
	224.6	94.15	0.97866	2.970	33.2		100.8	98.53	0.93515	1.454	133.5
	250.3	93.45	0.98601	3.425	25.2		151.6	96.49	0.95493	1.971	74.0
	276.2	92.79	0.99299	3.949	19.0		152.1	96.47	0.95512	1.973	73.8
	302.6	92.17	0.99973	4.570	14.3		193.9	95.06	0.96925	2.509	46.2
	328.1	91.60	1.00593	5.267	10.8		200.3	94.87	0.97123	2.596	43.3
	352.6	91.08	1.01167	6.028	8.3		219.3	94.30	0.97711	2.887	35.1
	374.5	90.63	1.01668	6.776	6.6		241.6	93.68	0.98358	3.267	27.6
							249.5	93.47	0.98579	3.425	25.2
							290.9	92.44	0.99678	4.298	16.1
							300.2	92.22	0.99912	4.520	14.6
288.15	0.1	105.72	0.87153	0.6375	653.1	298.15	0.1	106.86	0.86223	0.5557	851.3
	0.1	105.72	0.87153	0.6274	673.3		12.1	105.73	0.87144	0.6085	716.7
	5.1	105.27	0.87526	0.6539	622.2		25.7	104.60	0.88089	0.6733	591.0
	10.1	104.84	0.87884	0.6803	576.9		51.6	102.76	0.89669	0.8027	422.3
	24.8	103.69	0.88864	0.7593	467.5		73.8	101.42	0.90854	0.9241	322.3
	49.8	101.98	0.90354	0.9038	334.8		100.3	100.02	0.92122	1.082	238.1
	51.0	101.92	0.90402	0.9169	325.4		122.4	98.99	0.93085	1.226	187.0
	74.5	100.58	0.91613	1.061	245.9		152.7	97.72	0.94294	1.447	135.9
	100.5	99.27	0.92815	1.247	179.9		175.7	96.85	0.95143	1.632	107.6
	102.6	99.18	0.92906	1.260	176.4		202.4	95.92	0.96062	1.872	82.5
	126.1	98.14	0.93889	1.445	135.3		252.1	94.39	0.97616	2.395	51.2
	149.2	97.21	0.94783	1.645	105.2		270.6	93.88	0.98150	2.621	42.9

Table 2. (Continued)

T/K	p/MPa	$\mathrm{V} /\left(\mathrm{cm}^{3} \mathrm{~mol}^{-1}\right)$	$\rho /\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	$\eta /(\mathrm{mPa} \mathrm{s})$	Re	T/K	p/MPa	$\mathrm{V} /\left(\mathrm{cm}^{3} \mathrm{~mol}^{-1}\right)$	$\rho /\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	$\eta /(\mathrm{mPa} \mathrm{s})$	Re
288.15	154.7	97.00	0.94988	1.698	99.1	298.15	303.7	93.02	0.99053	3.077	31.4
	200.5	95.42	0.96566	2.173	61.3		353.3	91.86	1.00305	3.897	19.8
	204.3	95.30	0.96689	2.221	58.7		372.0	91.45	1.00753	4.259	16.6
	239.4	94.25	0.97766	2.665	41.2		373.5	91.42	1.00790	4.297	16.4
	247.4	94.00	0.98020	2.781	37.9		390.0	91.07	1.01178	4.644	14.0
	272.3	93.36	0.98697	3.157	29.6		393.5	91.00	1.01259	4.719	13.6
	294.9	92.79	0.99299	3.551	23.5						
	296.9	92.74	0.99352	3.581	23.1						
	322.3	92.15	0.99994	4.079	17.9						
	329.1	91.99	1.00163	4.224	16.7						
	351.7	91.49	1.00710	4.739	13.4						
	387.3	90.75	1.01537	5.6803	9.4						
	390.4	90.68	1.01609	5.7716	9.1						
	392.3	90.64	1.01652	5.8255	8.9						
323.15	202.3	97.37	0.94632	1.343	158.4	323.15	0.1	109.86	0.83873	0.4215	1443
	225.3	96.55	0.95430	1.490	129.7		0.1	109.86	0.83873	0.4224	1444
	250.6	95.72	0.96259	1.668	104.3		0.1	109.86	0.83873	0.4225	1442
	275.5	94.96	0.97028	1.857	84.7		5.1	109.26	0.84332	0.4399	1337
	296.4	94.37	0.97641	2.030	71.2		10.3	108.68	0.84784	0.4584	1237
	301.5	94.23	0.97787	2.075	68.3		15.5	108.13	0.85215	0.4772	1147
	326.2	93.57	0.98469	2.300	55.9		20.3	107.65	0.85595	0.4940	1074
	341.8	93.18	0.98884	2.457	49.1		29.6	106.78	0.86290	0.5278	947.6
	352.5	92.92	0.99161	2.567	45.1		50.9	105.05	0.87711	0.6075	725.4
	375.8	92.37	0.99749	2.828	37.4		51.4	105.01	0.87741	0.6096	720.6
	393.2	91.98	1.00175	3.035	32.6		75.3	103.38	0.89127	0.7042	547.4
	399.6	91.84	1.00329	3.117	30.9		76.3	103.32	0.89181	0.7088	540.6
							101.0	101.88	0.90445	0.8132	415.7
							126.9	100.54	0.91644	0.9330	319.4
							156.9	99.17	0.92910	1.084	239.5
							176.1	98.37	0.93664	1.188	200.6

Table 3. Coefficients of Nonlinear Least Squares Fits

quantity fitted	η^{*}	η		
equations	3 and 4	3, 4, and 6		7 and 8
ζ_{1}	-0.444 080	-10.8424	$10^{-2} \zeta_{1} /(\mathrm{K} 0.5 /(\mathrm{mPa} \mathrm{s})$)	8.29507
$10^{2} \xi_{2}\left(\mathrm{~mol} \mathrm{~cm}^{-3}\right)$	0.257241	6.21294	$10^{-2} \zeta^{2} /\left(\mathrm{K}^{0.5} \mathrm{~mol} /\left(\mathrm{mPa} \mathrm{s} \mathrm{cm}{ }^{3}\right)\right.$)	-0.194 056
$10^{-2} \zeta_{3} /\left(\mathrm{cm}^{3} \mathrm{~mol}^{-1}\right)$	-0.432 201	-0.437 137	$\zeta_{3} /\left(\mathrm{K}^{0.5} \mathrm{~mol}^{2} /\left(\mathrm{mPa} \mathrm{s} \mathrm{cm}^{6}\right)\right.$)	0.113620
			$10^{2} \xi_{4} /\left(\mathrm{K}^{0.5} \mathrm{~mol}^{3} /\left(\mathrm{mPa} \mathrm{s} \mathrm{cm}{ }^{9}\right)\right.$)	0.873380
$10^{3} \xi_{1} / \mathrm{K}^{-1}$	-0.646 370	-0.623 107	$10 \xi_{1} /\left(\mathrm{cm}^{3} /(\mathrm{K} \mathrm{mol})\right.$)	-0.605 661
$10^{5} \xi_{2} / \mathrm{K}^{-2}$	0.127466	0.125517	$10^{3} \xi_{1}\left(\mathrm{~cm}^{3} /\left(\mathrm{K}^{2} \mathrm{~mol}\right)\right.$)	0.138663
T range/K	255-323	255-323		255-323
stand. devn/\%	0.4	0.7		0.5
max. devn/\%	3.7	2.2		1.3

is the volume of random close-packing of equivalent spherical molecules of diameter σ. In terms of practical quantities, eq 5 can be rewritten as

$$
\begin{equation*}
\eta^{*}=\left(20.929 \times 10^{3}\right) \eta\left(\frac{1000}{\mathrm{MT}}\right)^{1 / 2} \mathrm{v}^{2 / 3} \tag{6}
\end{equation*}
$$

where η has units of $\mathrm{Pa} \mathrm{s}, \mathrm{V}$ has units of $\mathrm{cm}^{3} / \mathrm{mol}, \mathrm{M}$ has units of $\mathrm{g} / \mathrm{mol}$, and T has units of K. The data obtained here have been fitted to eqs 3 and 4 by nonlinear leastsquares methods. In earlier work, the Dymond reduced viscosity η^{*} (eq 6) was fitted directly as a function of V and T. However, strictly speaking, this procedure is not correct, as η^{*} is computed using V and T , and this must bias the weightings of errors. To avoid this effect, here $\eta(\mathrm{V}, \mathrm{T})$ was fitted by minimizing its squared residuals rather than those of η^{*}. The coefficients of the fit are given in Table 3 together with those of the fit of η^{*} for comparison. Figures 2 and 3 are deviation plots for the two fitting procedures.

It is clear from these figures that, over the temperature range now available, eqs 3 and 4 are not entirely satisfactory over the whole density range. The fit of η * (Figure 2) appears to be very good at all but the highest densities ($V>93 \mathrm{~cm}^{3} / \mathrm{mol}$), but there is a systematic upswing in the residuals below this molar volume where the terms $\zeta_{2} \mathrm{~V}_{\mathrm{r}}$ / ($1+\zeta_{3} N_{r}$) and ζ_{1}, which are of opposite sign, approach one another in magnitude. The unbiased fit of η (Figure 3) reduces the upswing and the scatter between isotherms at

Figure 2. Residuals for the indirect fit of the viscosity of toluene to eqs 3 and 4 obtained by fitting the Dymond reduced viscosity $\left(\eta^{*}\right)$ as a function of reference molar volume, V_{r} : $(\boldsymbol{)} 255 \mathrm{~K}$; (ロ) 258 K ; (Δ) 268 K ; (∇) 278 K ; (+) 288 K ; ($(298 \mathrm{~K}$; ($(\mathrm{O}) 323 \mathrm{~K}$.
higher densities at the expense of the scatter at lower densities. Though the small range of the residuals is quite good, within $\pm 2 \%$, the precision is clearly better, and the lack of randomness in the residuals shows that eqs 3 and 4 are not truly satisfactory in reproducing the data for this system. This was an unresolved question in our earlier study. ${ }^{1}$

Some effort has been expended to find an alternative set of equations to fit the data. Attempts were made to employ eq 3 with different forms of V_{r} : for example, (a) $\mathrm{V}_{\mathrm{r}}=\mathrm{V} / \mathrm{N}_{0}$,

Figure 3. Residuals for the direct fit of the viscosity of toluene to eqs 3, 4, and 6 as a function of reference molar volume, V_{r} : symbols as in Figure 2.

Figure 4. Plot of the quantity $\sqrt{ } \mathrm{T} / \eta$ against molar volume, V . The isotherms shown, from top to bottom, are 323, 298, 278, and 258 K . Also shown is the curve linking the 0.1 MPa points for all the experimental isotherms.
$\mathrm{V}_{0}=\mathrm{L} \sigma^{3} / \sqrt{ } 2$, and $\sigma=\sigma_{0}+\sigma_{1} \sqrt{ } \mathrm{~T}+\sigma_{2} \mathrm{~T}$; and (b) $\mathrm{V}_{\mathrm{r}}=\mathrm{V} / \mathrm{N}_{0}$ and $\mathrm{V}_{0}=\mathrm{a}+\mathrm{b}\left(\mathrm{T}-\mathrm{T}_{\mathrm{r}}\right)+\mathrm{c}\left(\mathrm{T}-\mathrm{T}_{\mathrm{r}}\right)^{2}$. It was possible to obtain satisfyingly small residuals and standard deviations with these forms for V_{r}, but the errors in the fitted coefficients were large and the values obtained varied considerably depending on the initial estimates made. In other words, the minima in the n-dimensional parameter surface were very shallow. Therefore, a variant of an equation successfully used with self-diffusion coefficients was tried.

Figure 4 shows fluidity ($\phi=1 / \eta$) isotherms reduced by factoring out the primary kinetic theory $1 / \sqrt{ } T$ dependence. The isotherms are similar in the geometric sense, like those for the corresponding self-diffusion coefficient function $\mathrm{D} / \sqrt{ } \mathrm{T} .3,10$ Also shown is the curve linking the 0.1 MPa points for all the experimental isotherms: this is nonlinear. $(\sqrt{ } \mathrm{T} / \eta) /(\sqrt{ } \mathrm{K} /(\mathrm{mPa} \mathrm{s}))=457.963-11.6496\left(\mathrm{~V} /\left(\mathrm{cm}^{3} \mathrm{~mol}^{-1}\right)\right)+$ $\left(7.16053 \times 10^{-2}\right)\left(\mathrm{V} / \mathrm{cm}^{3} \mathrm{~mol}^{-1}\right)^{2}$ with a standard deviation of $\pm 1.0 \%$. For the complete data set, the best simple empirical function found was a Padé approximation combined with a simple mapping of the isotherms onto a single reference isotherm:

$$
\begin{gather*}
\sqrt{ } \mathrm{T} / \eta=\left(\zeta_{1}+\zeta_{2} \mathrm{~V}_{\mathrm{r}}^{\prime}+\zeta_{3} \mathrm{~V}_{\mathrm{r}}^{\prime 2}\right) /\left(1+\zeta_{4} \mathrm{~V}_{\mathrm{r}}^{\prime}\right) \tag{7}\\
\mathrm{V}_{\mathrm{r}}^{\prime}=\mathrm{V}-\xi_{1}\left(\mathrm{~T}-\mathrm{T}_{\mathrm{r}}\right)-\xi_{2}\left(\mathrm{~T}-\mathrm{T}_{\mathrm{r}}\right)^{2} \tag{8}
\end{gather*}
$$

The coefficients are also listed in Table 3, and the residual plot is shown as Figure 5. The residuals cluster about the axis and are now better distributed (though not perfectly randomly) within a range of $\pm 1.3 \%$ and a standard deviation of $\pm 0.5 \%$. Equations 7 and 8 therefore appear sufficient for the task in this case.

Figure 5. Residuals for the direct fit of the viscosity of toluene to eqs 7 and 8 as a function of reference molar volume, V_{r} ': symbols as in Figure 2.

Acknowledgment

I am grateful to other members of the IUPAC Division of Physical Chemistry, Commission 1.2, Subcommittee on Transport Properties, for helpful discussions. I particularly thank Prof. Marc Assael and Prof. J oãoF areleira as well as Prof. Akira Nagashima for his comment on the importance of checking Reynolds numbers when calibrating with low-viscosity fluids. Dr. Lawrie Woolf is thanked for criticism and advice. It is a pleasure to thank Mr. Shane Murtagh for assisting with the viscometer calibration and Messrs Kerry Richens and Ken Piper for electronics and mechanical workshop services, respectively.

Literature Cited

(1) Harris, K. R.; Malhotra, R.; Woolf, L. A. Temperature and Density Dependence of the Viscosity of Octane and Toluene. J. Chem. Eng. Data 1997, 42, 1254-1260.
(2) Assael, M. J.; Avelino, H. M. T.; Dalaouti, N. K.; Fareleira, J. M. N. A.; Harris, K. R. Standard Reference Data for the Viscosity of Toluene over a Wide Range of Temperatures and Pressures. Int. J.

Thermophys., submitted for publication.
(3) Harris, K. R.; Alexander, J . J .; Goscinska, T.; Malhotra, R.; Woolf, L. A.; Dymond, J. H. Temperature and Density Dependences of the Self-diffusion Coefficients of Liquid n-Octane and Toluene. Mol. Phys. 1993, 78, 235-248.
(4) Malhotra, R.; Price, W. E.; Woolf, L. A.; E asteal, A. J . Thermodynamic and Transport Properties of 1,2-Dichloroethane. Int. J. Thermophys. 1990, 11, 835-861.
(5) Nieto de Castro, C. A.; Dymond, J. H. Private communication, Sept. 1996.
(6) Isdale, J. D.; Spence, C. M. A Self-Centering Falling Body Viscometer for High Pressures. National Engineering Laboratory Report No. 592; Department of Industry, U.K., 1975.
(7) Isdale, J. D.; Easteal, A. J.; Woolf, L. A. Shear Viscosity of Methanol and Methanol + Water Mixtures Under Pressure. Int. J. Thermophys. 1985, 6, 439-450.
(8) Dymond, J. H.; Young, K. J.; Isdale, J. D. Transport Properties of Nonelectrolyte Liquid Mixtures. II. Viscosity Coefficients for n-Hexane + n-H exadecane System at Temperatures from 25 to $100{ }^{\circ} \mathrm{C}$ at Pressures up to the Freezing Pressure or 500 MPa . Int. J. Thermophys. 1980, 1, 345-373.
(9) Assael, M. J.; Dalaouti, N. K.; Dymond, J. H. The Viscosity of Toluene in the Temperature Range 210 to 370 K and at Pressures up to 30 MPa. Int. J. Thermophys. 1999, 20, 1367-1377.
(10) Harris, K. R. Temperature and Density Dependence of the Selfdiffusion Coefficients of n-Hexane from 223 to 333 K and up to 400 MPa. J. Chem. Soc., Faraday Trans. 1 1982, 78, 2265-2275.
(11) Dymond, J. H. The Interpretation of Transport Coefficients on the Basis of the van der Waals Model. I. Dense Fluids. Physica A 1974, 79, 100-114.
(12) Dymond, J. H.; Øye, H. A. Viscosity of Selected Liquid n-Alkanes. J. Phys. Chem. Ref. Data 1994, 23, 41-53.
(13) J ames, C. J.; Mulcahy, D. E.; Steel, B. J. J. Phys. D: Appl. Phys. 1984, 17, 225-230.

Received for review J anuary 24, 2000. Accepted J une 7, 2000. This work was supported in part by grants from the Australian Research Council and the University College.

J E000024L

[^0]: * To whom correspondence should be sent. E-mail: k.harris@ adfa.edu.au. Fax: 61262688017.

