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Isothermal Vapor—Liquid Equilibrium in the Quaternary Water +
2-Propanol + Acetic Acid + Isopropyl Acetate System with Chemical

Reaction

Mariana Teodorescu,” Karel Aim, and Ivan Wichterle*

E. Hala Laboratory of Thermodynamics, Institute of Chemical Process Fundamentals, Academy of Sciences of

the Czech Republic, 165 02 Prague 6, Czech Republic

Vapor—liquid equilibrium accompanied with chemical reaction in the quaternary water + 2-propanol +
acetic acid + isopropyl acetate system was measured in a modified Dvorak and Boublik still. In total, 63
experimental points at 353.15 K and 16 points at 101.325 kPa were determined. The experimental data
were correlated by means of the maximum likelihood procedure by using the NRTL model. Binary model
parameters for the four nonreacting binary subsystems were obtained from available experimental vapor—
liquid equilibrium data by using either the Hayden—O'Connell or Marek—Standart correction as
appropriate, to account for the nonideality of the vapor phase. NRTL parameters for the water + isopropyl
acetate and 2-propanol + acetic acid systems were estimated from the global optimization based on the
quaternary data. The results obtained from the correlation show a good agreement of calculated and
experimental data. By using transformed composition variables, three-dimensional phase diagrams for
the quaternary system have been constructed and a possible location of a saddle reactive azeotrope was

found.

Introduction

In recent years the chemical industry has been increas-
ingly interested in the development of hybrid processes
combining reaction and separation mechanisms into a
single integrated operation. Such combined processes are
called reactive separation processes. The combination of
reaction and separation stages into a single unit brings
several important advantages such as energy and capital
cost reduction, increase of reaction yield, and overcoming
some thermodynamic restrictions, for example, for azeo-
tropes.

The esterification reaction is an example of such a
process. For a reliable design of a separation unit, accurate
experimental data on the vapor—liquid equilibrium (VLE)
determined simultaneously with chemical equilibrium data
are necessary.

The quaternary water (1) + 2-propanol (2) + acetic acid
(3) + isopropyl acetate (4) system was chosen as a model
system. A few isobaric data points at atmospheric pressure
have been measured by Nishii,! and Lee and Kuo.?2 The
shortcoming of the first study is that the experimental
vapor compositions at equilibrium were not presented. The
latter paper presents the equilibrium compositions; how-
ever, the phase diagrams are constructed erroneously.
Moreover, their experimental data are concentrated along
the main chemical equilibrium line and are not sufficient
to provide a clear description of the system behavior. In
both papers no reactive azeotrope was found. Since there
are azeotropes present in the three binaries consisting of
2-propanol, water, and isopropyl acetate (see ref 3), the
occurrence of a reactive azeotrope in the studied quaternary
system seems to be most likely.
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Experimental Section

Phase equilibrium in the title quaternary system is
rather complex, since the chemical equilibrium is super-
imposed on it. Before the start of VLE measurements on
the reactive system, we had to determine how the two types
of equilibria affect each other. Therefore, a preliminary
investigation of esterification dynamics was necessary. The
experiments were conducted by using the modified Dvorak
and Boublik recirculating still (see Teodorescu et al.)* with
a liquid-phase total volume of 150 mL.

Materials. The chemicals used in this work were
purchased from Fluka (Buchs, Switzerland) with respective
purity specifications as follows: 2-propanol, puriss. p.a.,
>99.5%; acetic acid, puriss. p.a., >99.8%; isopropyl acetate,
puriss. p.a., 299.5%; all of them were used as received.
p-Toluenesulfonic acid p.a. was purchased from Lachema
(Brno, Czech Republic). The water sample was twice
distilled.

Kinetics of Chemical Reaction. An equimolar mixture
of 2-propanol + acetic acid was charged into the still and
boiled at a constant temperature of 80 °C for 8 h. Samples
of both the vapor and liquid phases were collected every 2
h. It was found that the rate of esterification was very slow;
less than 2 mol % of isopropyl acetate was formed during
the whole period. To accelerate the reaction rate, 1.5 wt %
of p-toluenesulfonic acid as catalyst was added to the liquid
phase. After that, the boiling point of the mixture was
measured continuously for 13 h at constant pressure. It
was observed that, after 10 h, the boiling point of the
mixture attained a constant value, indicating that the state
of both chemical and phase equilibrium was reached. A
maximum amount of 29 mol % of isopropyl acetate was
formed. It was found that the time required to achieve both
chemical and phase equilibria is dependent on the initial
ratio of 2-propanol/acetic acid/water/isopropyl acetate in the
investigated mixture. Within the range of compositions
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explored in this study the time required to reach the
equilibrium was 3 to 5 h.

Vapor—Liquid Equilibrium Measurements. For the
title system, 63 experimental points at isothermal (343.15
K) conditions and 16 points at isobaric (101.325 kPa)
conditions were determined. To cover a meaningful com-
position range for the quaternary reactive mixture, a set
of experimental runs has been carried out, with each
starting with different ratios of reactants to products, and
then adding successively one of the reactants. The VLE
variables were determined after chemical equilibrium was
reached and after temperature and pressure reached
constant values. Temperature was measured by using the
F250 Precision Thermometer (AZA Automatic Systems
Laboratories) calibrated against a platinum resistance
thermometer with accuracy better than £0.02 K on the
ITS-90 scale. Pressure was controlled by the Precision
Pressure Controller PPC 159 (Texas Instruments) and
determined indirectly from the boiling point of water in
an ebulliometer connected in parallel to the equilibrium
still with overall accuracy of 0.1% of the measured value.
Compositions of the quaternary mixture were determined
with the gas chromatograph HP5890 (Hewlett-Packard)
with a thermal conductivity detector calibrated by three
binary subsystems of 2-propanol with acetic acid, water,
or isopropyl acetate. Calibration curves were obtained by
producing chromatograms for a set of solutions of known
composition; and then the peak area of each component
was correlated with the corresponding mass. The stainless
steel column was 2 m long, had a 3 mm o.d., and was filled
with 80/100 Porapak Q. The optimum operational condi-
tions were as follows: injector temperature 200 °C; oven
temperature 170 °C; detector temperature 200 °C; helium
carrier gas with a flow rate of 30 mL-min~1. The estimated
uncertainty in phase compositions so determined was 0.005
and 0.01 in mole fraction of the liquid and vapor phases,
respectively.

Phase Equilibrium with Chemical Reaction
Equilibrium Computation

The temperature, pressure, and composition of phases
in equilibrium can be calculated by simultaneous solution
of the equations describing phase and chemical reaction
equilibria. For phase equilibrium at constant pressure and
temperature, the chemical potential of each component
must be equal in both phases, namely

m=u', i=1,..,c 1)

For chemical equilibrium (assuming one reaction only)
there is an additional constraint

ivw! =0 @)

where the stoichiometric coefficients, v;, of reactants and
products are negative and positive, respectively.

Since the concentration of nonvolatile p-toluenesulfonic
acid (used as catalyst) was negligible in the condensed
vapor phase, it is assumed throughout this study that
chemical reaction does not take place in the vapor phase.
(Also, the temperature of the cold vapor condensate was
always much lower than that of the circulating liquid
phase.)

The chemical equilibrium constant, K., is related to the
standard Gibbs energy of reaction by

c

—RTInK, = Zvie;’z AG® (3)
&

and can be expressed in terms of activity coefficients, v;,
of reactants and products as

K, = [0 (4)

Equation 1 can be rewritten in terms of measurable
variables as

YieiP = XiyiPy (%)

where the activity coefficients may be represented by a
suitable model and the fugacity coefficients, ¢j, can be
calculated from an equation of state

_ 1 ffov)  _RT
In (/7| - RT'/; ’(ani)'rvpynji P (6)

For this purpose, the virial equation of state is frequently
used at low and medium pressures. However, for systems
containing polar compounds with strong molecular associa-
tion in the vapor phase such as acetic acid, the association
effect must not be neglected in a vapor—liquid equilibrium
computation. In a general method for prediction of the
second virial coefficients, Hayden and O’'Connell® (H—C)
took into account these effects by using a chemical theory.
Marek and Standart® (M—S) handled the problem by
treating the association of molecules as a chemical reaction.
Considering the dimerization of acetic acid in the vapor
phase and assuming otherwise a perfect gas-phase behav-
ior, they introduced a correction factor (Z;)

YiZiP = XiyiP} )

where

1+ /(1 + 4K,Ps
Z,= ST ®
1+ /14 4KPyA(2 — y,)

for an associating component A, and

_ 21— ya+ 1+ AKPY,R2 — y)]
(2 = Y[l + AKPYA(2 = yA)]

for a nonassociating component N. In eqs 8 and 9 K, is
the dimerization equilibrium constant of pure component
A, and K is the dimerization equilibrium constant of
component A in the mixture. As discussed by Marek,” it is
a good assumption to set K = K. Expressions for evaluat-
ing K were taken from ref 8.

z

9)

Results and Discussion

All 79 experimental points P, T, x, and y (i.e. the
isothermal and isobaric sets together) were correlated by
using the NRTL model.

For this purpose, first the binary model parameters for
the four nonreacting subsystems have been obtained from
correlation of literature data. To take into account the
nonideal behavior of the vapor phase, the M—S theory was
used for binary mixtures containing acetic acid while the
H—C method was used in all other cases. The regression
was performed by means of the maximum likelihood
method with use of the program described by Hala et al.,°
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Table 1. NRTL Parameters for Binary Subsystems of the
Water (1) + 2-Propanol (2) + Acetic Acid (3) + Isopropyl
Acetate (4) System

sub- Gij — ij Gji — Gii

system J-mol~1 J-mol—t o ref

(1)—(2) 856.202 2267.62 —1.5340 10

(1)—(3) 677.214 743.748 —5.5263 11

(1)—(4) 121.074 3984.12 1.2604 optimized in this work
(2)—(3) 1488.22 —1667.20 —2.0528 optimized in this work
(2)—(4) —200.941 1793.08 0.0811 12

(3)—(4) 1325.37 6802.98 1.3453 13

which was further modified to incorporate the M—S theory
for mixtures containing acetic acid. This type of correlation
has been carried out for all binary subsystems except for
the two mutually reacting mixtures. The obtained NRTL
parameters are listed in Table 1 along with the references
to binary data literature sources.

The remaining two triads of parameters for the water +
isopropyl acetate and 2-propanol + acetic acid binaries
were then estimated by means of global optimization based
on the complete set of experimental points consisting of
the isothermal and isobaric quaternary data. A simplified
maximum likelihood procedure based on minimizing the
objective function

s= Z[Z[(x?*" = x40 + (6

(Texp _ TcaI)Z/Ogr + (PEXP _ Pcal)2/0|2:] (10)

- Yical)zl 05.] +

was used, where the index j runs over all 79 experimental
observations (and is skipped in designating the individual
variables within the summation over j) and the index i runs
over 3 components (whose molar fractions are independent
in a quaternary system). On the basis of the measurement
procedure and equipment, the standard deviation estimates
were adopted (for all observations and components) as
follows: oy, = 0.005, oy, = 0.01, o1 = 0.05K, and op = 0.001P.
Vapor-phase imperfection and association of acetic acid
were both again taken into account during this evaluation
by employing the (H—C) and (M—S) methods, respectively.
The six resulting NRTL parameters optimized in this work
for the two reacting binaries are also listed in Table 1. All
the experimental values and calculated deviations in liquid
and vapor compositions, temperature, and pressure, to-
gether with the chemical equilibrium constant calculated
from eq 4, are summarized in Table 2, where also the mean
absolute deviations in the single variables are reported. The
average value of the chemical equilibrium constant is
K = 4.7; four denoted points were eliminated in averaging,
since the calculated values were obviously outside the
realistic range.

The VLE in binary and ternary mixtures can be explicitly
described by a two- or three-dimensional phase diagram.
For a graphical representation of a quaternary mixture,
the number of variables must be reduced. Therefore,
Barbosa and Doherty?® introduced transformed composition
variables for reactive systems as follows:

{Xlle—x4;X2=x2+x4;x3=x3+x4;X4=x4—x4=0
Yi=Y1 =Y Yo = Yot Ya Y3 =Y+ Yu Yo=Y, — ¥, =0
11)

which fulfill the conditions X; + X, + X3 =1 and Y; +
Y, + Yz = 1. This transformation is very useful for
graphical representation; however, some information is lost
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Figure 1. Isotherms of bubble point surface at 101.325 kPa
(projection on modified composition coordinates): O, experimental
points; O, location of saddle reactive azeotrope; —, distillation
lines.
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Figure 2. Isotherms of dew point surface at 101.325 kPa
(projection on modified composition coordinates): O, experimental
points; O, location of saddle reactive azeotrope; —, distillation
lines.

(e.g. some nonreactive azeotropes may not be visible). In
general, it can be stated that this is a purely mathematical
reformulation of the concentrations, providing a tool which
describes reactive distillation in a way that is analogous
to conventional distillation.

By using the transformed composition coordinates, ex-
perimental bubble and dew point surfaces corresponding
to chemical equilibrium at isobaric conditions of 101.325
kPa are shown in Figures 1 and 2, respectively. In addition
to our quaternary data, the data of the four nonreacting
binary subsystems and the quaternary data of Lee and
Kuo? are also displayed. All these data were used as a basis
for drawing the best statistically fitted surface so that
isotherms could be plotted. The curves with arrow points
indicate the estimated shape of distillation lines.

Similar plots could have been obtained also for isother-
mal data. However, the necessary related binary data for
the same isotherm have not yet been measured.
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Conclusions

As can be observed from Figures 1 and 2, the new
experimental data agree well with those from the literature
(binaries and quaternary system), thus providing evidence
for proper functioning of the experimental setup. The
possible location of the saddle reactive azeotrope is also
obvious. It corresponds to a minimum boiling temperature
of the quaternary system at 101.325 kPa; its existence has
also been confirmed by isothermal data.

The mean absolute deviations between experimental
data and the data correlated by using the NRTL equation
are 0.01 mole fraction in the liquid phase and 0.02 mole
fraction in the vapor phase; the mean absolute deviations
of 0.07 K and 0.08% were found for temperature and
pressure, respectively. Deviations for some individual
points are somewhat greater than expected, which is likely
a combined effect of both the imperfection of the model and
the relatively large analytical error in the boundary
concentration regions.
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