Densities of Carbon Dioxide + Hydrogen Sulfide Mixtures from 220 K to 450 K at Pressures up to 25 MPa

Carl E. Stouffer, Scott J. Kellerman, Kenneth R. Hall, and James C. Holste*

Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122

Bruce E. Gammon[†] and Kenneth N. Marsh[‡]

Thermodynamics Research Center, Texas Engineering Experiment Station, College Station, Texas 77843-3111

This paper reports ~850 *pVT* measurements at temperatures between 220 K and 450 K at pressures up to 25 MPa for four gravimetrically prepared CO₂ (1) + H₂S (2) mixtures with $x_1 = 0.5011$, 0.7067, 0.9045, and 0.9393. The measurements utilized a Burnett isochoric technique designed to provide both vapor and liquid densities. A detailed error analysis indicates that the densities are accurate to better than 0.08% and 0.3% for the vapor and liquid phases, respectively. Mixture second and third virial coefficients derived from the measurements and correlations to represent them and 52 derived vapor—liquid saturation boundary conditions also are included.

Introduction

Although the volumetric and thermal properties of sour gas mixtures are essential for developing improved methods for producing and processing acid gases and for treating recycled gas in CO₂ flooding operations involving sour crudes, the literature contains very little information about such properties for mixtures containing hydrogen sulfide as a constituent. Measurements on binary mixtures provide insight into the interactions between unlike molecules, and knowledge of the individual pair interactions assists greatly in formulating accurate descriptions of the properties of multicomponent gas mixtures. Vapor-liquid equilibrium measurements have been reported previously by Bierlein and Kay¹ and Sobocinski and Kurata² for binary mixtures containing carbon dioxide and hydrogen sulfide, and singlephase *pVT* measurements have been reported for one mixture composition by Liu et al.³

This paper reports pVT measurements for four binary mixtures of carbon dioxide and hydrogen sulfide at temperatures between 220 K and 450 K and pressures from 0.1 MPa to 23 MPa, as well as densities, second and third virial coefficients, and saturation boundary states derived from the measurements. Enthalpies, entropies, and internal, Helmholtz, and Gibbs energies derived from the pVTmeasurements are reported elsewhere.^{4,5}

Experimental Section

Measurement Procedure. Because the two-phase vapor + liquid region extends through the middle of the p-T region covered in this work and because of the tendency for hydrogen sulfide to decompose at higher temperatures, accurate measurements for these mixtures required substantial modifications to the Burnett isochoric technique

* Corresponding author (e-mail j-holste@tamu.edu).

Figure 1. Experimental procedure for isochoric measurements. The solid lines denote molar isometrics, and the dashed lines denote expansions.

first described by Hall and Eubank.⁶ Figure 1 illustrates the experimental procedure using the measured values for the approximately equimolar mixture. The sample cell initially is filled to the conditions represented by point 1 in Figure 1. The filling pressure is above the cricondenbar, thus ensuring that all of the fluid, including that in the connecting lines and the supply cylinder, is in a single phase to avoid introducing inhomogeneities in composition during the filling procedure. The first "isochore", which really is a molar isometric (isomole 1), then is measured both in the single-phase region and in the liquid + vapor two-phase region. (The two-phase points are not shown.) At the completion of the first isomole, the liquid is expanded into a second volume, thereby changing the state

[†] Deceased.

[‡] Present address: Department of Chemical and Process Engineering, University of Canterbury, Private Bag 4800, Christchurch, New Zealand.

Table 1	l.	Sample	Compositions	for	CO_2	(1)	+	H ₂ S	(2)	Mixtures
---------	----	--------	--------------	-----	--------	-----	---	------------------	-----	----------

		sample 1	sample 2	sample 3	sample 4	sample 5	molar mass/kg·mol ⁻¹
<i>m</i> /kg:	CO_2	0.46652	0.392365	0.227848	0.296234	0.442005	0.04401
	H_2S	0.023377	0.019595	0.176357	0.095196	0.036137	0.03408
X.	CO_2	0.9392	0.9394	0.5001	0.7067	0.9045	
	H_2S	0.0608	0.0606	0.4999	0.2933	0.0955	

Figure 2. Schematic diagram of Burnett apparatus: A, vacuum vessel; B, radiation shields; C, isothermal shield; D, differential pressure transducer; E, isochoric cell; F, Burnett expansion cell; G, density reduction cell; H, guard plates; I, thin foil heaters; J, Nichrome wire heaters; K, recirculating cooling tube; L, sample inlet and exit; M, differential pressure transducer backpressure supply.

of the liquid from point 2 to point 3. After the completion of the second isomole, the liquid is expanded again (from point 4 to point 5). The experiment continues, mapping the single-phase states (shown in Figure 1) and the two-phase states (not shown), until the p-T surface is covered. In Figure 1, the solid lines denote isomoles 1-14 and the dashed lines indicate expansions. Both the initial and final states are in the single-phase region for all expansions, and all two-phase measurements are made along isomoles. A small expansion ratio ($\sim 8\%$ increase) is used between liquid isomoles, and a larger ratio (\sim 50% increase) is used between vapor isomoles. The densities of the isomoles coupled by expansions at 350 K are determined by analysis of a Burnett expansion isotherm, and the densities for isomoles coupled by small ratio expansions are calculated using expansion ratios determined by a separate experiment.

Our previous measurements^{3,7} indicated that hydrogen sulfide and its mixtures were stable for a period of days at temperatures of 350 K and below, but at higher temperatures, decomposition adversely affected *pVT* measurements in tens of hours. Because of our previous experiences, the gas vented during each expansion was analyzed for decomposition products using a gas chromatograph with a sensitivity to impurities of 0.0002 in mole fraction. Significant quantities of water and carbon disulfide were detected in an early experiment when the sample was at 400 K or higher for 18 h before beginning a Burnett isotherm at 450 K. As a result, the Burnett isochoric technique was not used above 350 K. Instead, several repetitions of conventional Burnett expansion series were performed at 400 K and 450 K. To avoid decomposition effects, these expansions were performed as rapidly as possible while the accuracy of the measurement was maintained. No decomposition products were detected in the exhausted gas when using this procedure. Minor amounts of argon were detected in the gases exhausted from the Burnett experiments (see Sample Preparation

Procedure) but not in the gases exhausted from the Burnett isochoric experiments.

Apparatus. A schematic diagram of the experimental apparatus used for these investigations appears in Figure 2. The sample chambers were constructed of type 316 stainless steel to resist corrosion by hydrogen sulfide. The main cell (E) in the apparatus serves both as the isochoric chamber and as the initial volume for the expansions. It contains a differential pressure transducer (DPT) built directly into the isochoric cell and a platinum resistance thermometer (PRT) housed in a copper block clamped to the isochoric cell. The Burnett expansion cell (F) effects large changes in the density of the sample in the isochoric cell. These expansions are made in the vapor and supercritical fluid regions. In the liquid region, we use a density reduction cell (G) capable of making small changes in the density of the sample.

Measurements were made at temperatures from 200 K to 450 K and at pressures to 23 MPa. Temperatures were measured with an oil-filled, capsule style PRT that has a long-term stability of ± 0.02 K and cycling stability of ± 0.01 K. The PRT was calibrated using a Rosemount transfer standard PRT traceable to the National Institute of Standards and Technology. Temperatures are calculated according to ITS-90. Finally, all temperatures within the apparatus were measured relative to the PRT using differential thermopiles. The thermopiles verified that the temperature gradients between the sample chambers were <0.01 K.

A DPT (D) built directly into the isochoric cell measured the difference between the pressure of an intermediate fluid and the sample fluid pressure. The sensing element of the DPT was a thin metal diaphragm, and a linear variable differential transformer (LVDT) with associated electronics measured its null position. The electronic circuitry and the measurement technique were similar to those described by Holste et al.⁸ except that the ratio transformer/lock-in amplifier arrangement has been replaced by an integrated circuit described by Stouffer.⁹ This arrangement is much less expensive, but provides approximately the same accuracy in differential pressure measurements. At the null position, the pressure of the intermediate fluid was the same as the sample fluid pressure. The pressure of the intermediate fluid was measured using a DH Instruments force balance piston pressure gauge, and the atmospheric pressure was determined using a Paroscientific digital barometer. An Ideal Aerosmith mercury manometer and a DH Instruments automatic dead-weight gauge with an accuracy of $\pm 0.005\%$ were used to confirm the accuracy of the piston pressure gauge and the digital barometer.

Sample Materials. The electronic grade hydrogen sulfide was specified by the supplier (Scott Specialty Gas Co.) to have $x(H_2S) \ge 0.9999$. It was used without further purification. The instrument grade carbon dioxide was specified by the supplier (Scott Specialty Gas Co.) to have $x(CO_2) \ge 0.9999$. It was purified further by repeating several freeze/thaw cycles while the vapor space over the frozen solid was evacuated to <0.01 Pa. The principal impurities in the carbon dioxide as supplied were oxygen (mass fraction $w = 2 \times 10^{-5}$) and nitrogen ($w = 7.5 \times 10^{-5}$).

Table 2.	Experimental	<i>pVT</i> Results for	r CO ₂ (1) +	- H ₂ S (2) at x ₁	$= 0.9393^{a}$
			~ ~ ~		

<i>T</i> /K	<i>p</i> /MPa	ρ∕mol·m ⁻³	Ζ	<i>T</i> /K	p/MPa	ρ∕mol·m ^{−3}	Ζ	<i>T/</i> K	<i>p</i> /MPa	ρ∕mol·m ^{−3}	Z
	Isomolo	(Sample 2)		Isom	olo 7 (San	nla 1) (Conti	nuod)		Isomolo 1	(Sample 1)	
268 025	23 6888	23462	0 4531	310 007	8 1719	10723	0 2956	325 010	2 4945	1025 9	0 8998
260.025	14 9155	23478	0 2939	305 011	7 3268	10726	0.2694	310 030	2 3495	1026.6	0.8378
257 003	11 5848	23483	0.2309	299 992	6 5429	10729	0.2445	295 087	2 2023	1020.0	0.8737
249.972	3.7537	23496	0.07687	295.010	5.8381	10732	0.2218	279.927	2.0517	1028.1	0.8574
245.029	1.4979	23503	0.03128	289.955	5.1905	10734	0.2006	264.581	1.8935	1028.9	0.8366
239.931	1.2628	23509	0.02693	285.184	4.6279	10737	0.1818	247.970	1.6079	1029.8	0.7573
235.038	1.0654	23514	0.02318	285.047	4.6153	18541	0.1050	242.128	1.3434	1030.1	0.6478
230.044	0.8879	23520	0.01974	282.030	4.2848	18544	0.09854	239.218	1.2178	1030.2	0.5943
225.106	0.7344	23526	0.01668	278.990	3.9706	18547	0.09229	236.250	1.0964	1030.4	0.5417
220.540	0.6115	23531	0.01417	275.929	3.6727	18550	0.08630				
				273.133	3.4152	18552	0.08106		Isomole 14	4 (Sample 1)	
	Isomole	2 (Sample 2)						325.011	1.2089	469.3	0.9533
280.071	15.1808	21683	0.3007		Isomole	8 (Sample 1)		310.015	1.1469	469.6	0.9475
270.029	6.6642	21698	0.1368	325.012	9.4285	7247	0.4815	295.025	1.0847	470.0	0.9408
268.018	4.9672	21701	0.1027	319.916	8.8861	7249	0.4609	279.655	1.0210	470.3	0.9337
262.088	2.5243	21709	0.05336	315.009	8.3607	7251	0.4403	265.289	0.9596	470.7	0.9243
259.000	2.3078	21/12	0.04930	309.943	7.8037	7255	0.4170		Icomolo 1	F (Somple 1)	
252.909	2.1121	21710	0.04370	200 872	65110	7256	0.3942	225 006	11 2122	11562	0 25 80
232.993	1.3200	21713	0.04222	299.073	5 8352	7258	0.3333	323.000	16 2560	11547	0.3369
240.070	1.7505	21722	0.00001	289 979	5 1838	7260	0.2961	343.333	10.2500	11547	0.4000
	Isomole	3 (Sample 2)		284 986	4 6016	7262	0.2674		Isomole 10	6 (Sample 2)	
300.047	17,9325	20029	0.3589	201.000	1.0010	1202	0.2071	325,002	11.0903	11008	0.3728
290.062	11.3376	20042	0.2346		Isomole	9 (Sample 1)		350.002	15.5482	10995	0.4860
285.050	8.0384	20048	0.1692	325.012	7.9769	4902	0.6022				
280.051	4.7568	20055	0.1019	315.011	7.3255	4904	0.5703		Isomole 17	7 (Sample 1)	
275.007	3.5847	20060	0.07815	309.950	6.9886	4905	0.5528	350.000	10.9656	6094	0.6183
271.921	3.3048	20063	0.07286	304.709	6.6313	4907	0.5334	400.000	14.9650	6079	0.7402
268.919	3.0495	20067	0.06797	299.894	6.2966	4908	0.5145				
266.176	2.8269	20069	0.06365	295.512	5.8753	4909	0.4871		Isomole 18	8 (Sample 2)	
262.969	2.5857	20073	0.05892	287.976	4.9397	4911	0.4201	350.012	9.7055	4995	0.6677
	_			284.011	4.4881	4912	0.3869	400.002	12.7856	4983	0.7716
	Isomole	4 (Sample 2)		279.492	4.0125	4913	0.3514				
315.007	19.0797	18507	0.3936		T 1 /				Isotherm 1	l (Sample 1,	、 、
310.042	16.4308	18513	0.3443	005 000	Isomole	10 (Sample 1)	0 7004	1S0	mole Coupl	ing Expansio	ns)
305.028	13.7516	18519	0.2928	325.009	6.3462	3315	0.7084	325.012	14.3315	15840	0.3348
300.032	6 0204	18525	0.2403	315.012	5.9529	3317	0.6852	325.000	10.7492	10/15	0.3/13
292.013	0.9304	10534	0.1340	200.014	5 2442	2220	0.0595	225 012	9.4200	1247	0.4010
282 030	4.0133	18541	0.1030	205 010	5 1 2 2 0	3320	0.0434	325.012	6 3/61	4902	0.0022
278 990	3 9706	18547	0.0923	289 785	4 9103	3320	0.0303	325.009	4 8025	2242 5	0.7005
275 929	3 6727	18550	0.0525	283 125	4 3662	3322	0.5583	325 012	3 5041	1516 7	0.7525
273.133	3.4152	18552	0.0811	279.983	4.0399	3323	0.5223	325.010	2.4944	1025.9	0.8998
				275.103	3.5738	3324	0.4701	325.010	1.7459	693.9	0.9311
	Isomole	5 (Sample 2)		269.780	3.1106	3325	0.4171	325.011	1.2088	469.3	0.9532
325.004	18.6879	17107	0.4043	259.915	2.3606	3326	0.3284	325.012	0.8301	317.4	0.9678
320.014	16.4805	17112	0.3620	250.294	1.7660	3328	0.2550	325.010	0.5674	214.7	0.9780
315.007	14.3016	17118	0.3190	240.278	1.2702	3330	0.1910	325.010	0.3865	145.2	0.9850
305.009	9.9968	17128	0.2302	230.245	0.8858	3331	0.1389	325.009	0.2627	98.2	0.9900
300.016	7.8949	17133	0.1847		- 1			325.011	0.1783	66.4	0.9937
292.059	5.4532	17141	0.1310	00" 000	Isomole 1	(Sample 1)	0 700"	325.011	0.1209	44.9	0.9964
288.995	5.0729	17143	0.1232	325.009	4.8026	2242.5	0.7925		Taathanna	9 (Commle 9)	
203.904 283 020	4./1/3	17140 17140	U.1137 A 1000	313.212	4.303/ / 31/9	2243.0 2211 7	0.7700	325 014	1SULIERM 2	2056 1	0 8065
280 834	4.3314	17149 17151	0.1000	205.001	4.3142	2244.7	0.7379	325.014	4.4508	1380.2	0.0002
200.004	4.1505	17151	0.1050	286 304	3 8422	2246.8	0.7184	325 008	2 3022	938 5	0.0000
	Isomole	6 (Sample 1)		272.002	3.2743	2248.4	0.6439	325.009	1.6055	634.1	0.9370
330.002	15.9838	15836	0.3679	269.042	3.0330	2248.7	0.6030	325.017	1.1078	428.4	0.9569
325.012	14.3321	15840	0.3348	266.000	2.7950	2249.0	0.5619	325.013	0.7593	289.4	0.9709
320.008	12.6860	15845	0.3009	263.019	2.5731	2249.4	0.5231	325.012	0.5180	195.5	0.9805
310.010	9.4530	15854	0.2313	260.134	2.3656	2249.7	0.4862	325.010	0.3523	132.1	0.9869
305.013	7.8831	15858	0.1960					325.010	0.2390	89.2	0.9915
300.012	6.5534	15863	0.1656		Isomole 1	12 (Sample 1)		325.010	0.1620	60.2	0.9958
290.071	5.2036	15871	0.1360	325.012	3.5043	1516.8	0.8549	325.012	0.1097	40.7	0.9974
290.028	5.2036	15871	0.1360	315.008	3.3528	1517.5	0.8436		T .1		
279.986	4.0712	15879	0.1101	305.015	3.1999	1518.2	0.8311	050 000	Isotherm 3	3 (Sample 1)	0 4000
270.062	3.1441	15887	0.08814	295.023	3.0446	1519.0	0.8171	350.002	15.5482	10995	0.4860
200.0/3	2.3//1	15895	0.00910	280.017	2.9020	1519.7	0.8030	349.999	12.2845	/429	0.5683
230.104 210.270	1./013	13903	U.UJJZJ 0.04009	213.112	6.1610 9 5691	1520.5	0.7841	349.998 350 009	9.1313 7 1170	2019	0.0003
240.210 220 115	1.2/22	15911 15010	0.04002 N N902N	203.232 257 021	2.3031	1521.2 1591 Q	0.7040 0.6697	350.003	7.4470 5.5012	5591 9901 1	0.7347
200.440	U.0000	7 (Sample 1)	0.02930	251.031 251 025	2.1331 1 0700	1521.0 1599 1	0.0027	350.004	3.3013	2291.1 1517 0	0.0231
330.010	11.6158	10712	0.3952	250 949	1.7946	1522.3	0.5650	350.009	2.7857	1045.8	0.9153
325.010	10.7508	10715	0.3713	248.246	1.6482	1522.5	0.5245	350.007	1.9367	706.6	0.9418
319.873	9.8656	10717	0.3461					349.999	1.3342	477.4	0.9604

Table	2.	(Continued)
-------	----	-------------

<i>T/</i> K	<i>p</i> /MPa	$ ho/mol \cdot m^{-3}$	Ζ	<i>T/</i> K	<i>p</i> /MPa	$ ho/mol \cdot m^{-3}$	Ζ	<i>T/</i> K	<i>p</i> /MPa	$ ho/mol \cdot m^{-3}$	Ζ
Isothe	erm 3 (Sam	ple 1) (Contin	ued)		Isotherm	5 (Sample 1)			Isotherm 6	(Continued)	
350.013	0.9133	322.5	0.9731	400.000	14.9649	6079	0.7402	400.007	1.0450	320.3	0.9810
350.005	0.6225	217.9	0.9817	400.002	10.9499	4107	0.8016	400.006	0.7103	216.4	0.9869
350.003	0.4230	147.2	0.9875	399.997	7.8951	2775	0.8554	400.005	0.4820	146.2	0.9913
350.005	0.2871	99.4	0.9925	400.008	5.5980	1875.1	0.8976	400.007	0.3266	98.8	0.9939
350.005	0.1945	67.2	0.9946	400.000	3.9127	1267.0	0.9286	400.015	0.2215	66.7	0.9985
350.006	0.1316	45.4	0.9961	400.013	2.7066	856.0	0.9507				
				400.005	1.8585	578.4	0.9661		Isotherm 7	7 (Sample 2)	
	Isotherm 4	4 (Sample 2)		400.004	1.2698	390.8	0.9770	450.044	10.1228	3030	0.8929
349.999	16.2564	11547	0.4838	400.010	0.8643	264.0	0.9844	450.041	7.0673	2047.2	0.9226
350.000	12.6226	7802	0.5560	400.006	0.5870	178.4	0.9893	450.044	4.8941	1383.3	0.9455
350.004	10.0332	5271	0.6540	399.999	0.3979	120.5	0.9929	450.043	3.3648	934.7	0.9621
350.007	7.7191	3562	0.7448	400.009	0.2695	81.4	0.9955	450.052	2.3015	631.6	0.9738
350.006	5.7234	2406.3	0.8173	400.004	0.1823	55.0	0.9966	450.047	1.5682	426.7	0.9822
350.005	4.1260	1625.8	0.8721	400.007	0.1233	37.2	0.9966	450.052	1.0656	288.3	0.9878
350.005	2.9134	1098.4	0.9114					450.043	0.7228	194.8	0.9916
350.013	2.0284	742.1	0.9392		Isotherm	6 (Sample 2)		450.046	0.4898	131.6	0.9947
350.010	1.3986	501.4	0.9585	400.002	12.7855	4983	0.7716	450.044	0.3316	88.9	0.9968
350.004	0.9579	338.7	0.9718	400.003	9.2938	3367	0.8300	450.049	0.2243	60.1	0.9974
350.007	0.6531	228.8	0.9809	400.007	6.6468	2275	0.8786	450.040	0.1517	40.6	0.9986
350.006	0.4440	154.6	0.9869	400.007	4.6753	1537.0	0.9146	450.046	0.1025	27.4	0.9997
350.010	0.3013	104.5	0.9908	400.006	3.2494	1038.4	0.9409				
350.006	0.2041	70.6	0.9934	400.003	2.2379	701.6	0.9591				
350.011	0.1381	47.7	0.9949	400.010	1.5326	474.0	0.9722				

^a Values in italics are global values for two-phase vapor + liquid states.

Sample Preparation Procedure. A mixture synthesis manifold described by Hwang¹⁰ and Stouffer⁹ was used to introduce the hydrogen sulfide and carbon dioxide into evacuated, floating piston, sampling cylinders equipped with Kalrez O-rings and internal gravity-driven mixers. During the introduction of each substance, the sample container was placed on a Mettler force balance with a load capacity of 24 kg and a sensitivity of 0.1 g. The real-time mass measurements provided by the force balance made it easier to obtain the desired compositions. After each substance was added, the mass of that substance in the mixture was determined more precisely by weighing the container using a Voland double-pan balance having a 25 kg capacity and 2.5 mg sensitivity. Hydrogen sulfide was added first, followed by carbon dioxide. The sample container then was pressurized to 11 MPa by adding argon gas as a back-pressure fluid in the other chamber. Argon was used as the back-pressure fluid because it could be detected more easily as a contaminant following leakage past the piston seals. The sample then was mixed thoroughly by repeated inversions to activate the gravity-driven mixer. The sample for the isochoric experiments was charged into the apparatus as soon as the mixing was completed. The remainder of the sample was kept in the sampling cylinder for the duration of the Burnett isochoric experiments, which generally was 4-6 weeks. During this time, some argon leaked into the sample, so that the sample charges used for the Burnett expansions were contaminated with argon, with mole fractions of argon up to 0.007 for the 450 K isotherm for the equimolar mixture but usually of <0.003.

Table 1 shows the measured masses of each substance in each mixture, and the molar masses used to calculate the mole fractions. Five mixture samples were prepared, two of which had essentially the same composition.

Accuracy and Precision of Measured Values. The measured variables are the masses of each substance, the temperature, and the pressure; therefore, we have taken special care to measure them both precisely and accurately. The reported temperatures are accurate to ± 0.01 K and precise to ± 1 mK. The reported pressures are accurate to better than $\pm 0.01\%$ for pressures >0.5 MPa and to $\pm 0.1\%$

for pressures <0.5 MPa and are precise to $\pm 0.015\%$ for all pressures. The mass fractions of material added are determined to better than ± 0.00001 , but impurities in the constituents limit the accuracies of the mole fractions to ± 0.0001 .

Results and Conclusions

Apparatus Calibration and Performance Tests. Measurements on pure carbon dioxide were used to verify the capabilities of the apparatus. Nine vapor pressures measured between 260 and 300 K showed a bias of +0.03% and a standard deviation about the bias of 0.04% when compared with the correlation of Ely et al.¹¹ A Burnett isotherm at 350 K yielded values of $-84.00 \text{ cm}^3 \cdot \text{mol}^{-1}$ and 3637 cm⁶·mol⁻² for the second and third virial coefficients, respectively. These values differ by $0.09 \text{ cm}^3 \cdot \text{mol}^{-1}$ and $-22 \text{ cm}^6 \cdot \text{mol}^{-2}$ from the correlations developed by Holste et al.¹² from their experimental values. Both deviations are well within the combined uncertainty estimates.

The properties of type 316 stainless steel were used to develop a correction for volume distortions with changing temperature and pressure

$$\frac{V(T, P)}{V(T_0, P_0)} = 1 + \gamma (P - P_0) + \beta (T - T_0)$$
(1)

where $\gamma = 2.53 \times 10^{-5} \ \rm MPa^{-1}$ and $\beta = 4.86 \times 10^{-5} \ \rm K^{-1}$. This relationship was verified by measuring two isomoles for CO₂ at nominal densities of 2600 mol·m⁻³ and 6600 mol·m⁻³ and temperatures ranging from 300 K to 450 K. Fourteen measurements had a bias of -0.012% and a standard deviation of 0.037% in density when compared with the correlation of Ely et al.¹¹

The expansion ratio for the density reduction cell was measured by expanding helium gas from the isochoric cell to the density reduction cell. Nine determinations at 300 K yielded a value of $N_{DR} = 1.08119$ with a standard deviation of 0.00004. This value was used to calculate density ratios for the liquid expansions during the mixture experiment. Helium gas expansions at 300 K from the isochoric cell to the Burnett expansion cell were used to

Table 3. Experimental pVT Results for CO ₂ (1) + H ₂ S (2) at	: x ₁ = 0.9045 ^a
---	---

	p			002(1)	-20 (1) 40						
<i>T/</i> K	<i>p</i> /MPa	$ ho/mol \cdot m^{-3}$	Z	T/K	<i>p</i> /MPa	$ ho/mol \cdot m^{-3}$	Z	<i>T/</i> K	<i>p</i> /MPa	$ ho/mol \cdot m^{-3}$	Ζ
	Iso	molo 1			Isor	mala 8			Isomolo 13	(Continued)	
282 971	21 1211	21787	0 4120	3/9 99/	17 3759	12564	0 4752	325 002	3 9935	1779 0	0 8307
275 992	1/ 9738	21707	0.9120	343.334	16 2109	12568	0.4792	315 005	3 8104	1779.8	0.0307
269 996	9 5981	21808	0.1961	340.010	15 0421	12571	0.4437	295 505	3 4493	1781 5	0.0174
264 019	4 2658	21817	0.08907	334 995	13 8835	12575	0.3964	278 581	3 1173	1783.0	0.7548
251 016	1 7917	21832	0.00007	397 995	12 2758	12579	0.3578	265 033	2 6376	1781 2	0.7340
201.010	1 5806	21836	0.03524	310 992	10/1373	12585	0.3370	260.003	2 3188	1784.2	0.0700
241.043	1 3/00	21842	0.03024	317 987	9 989/	12586	0.3117	255 001	2.0160	1785 1	0.0010
236 000	1.0400	21042	0.03043	208 002	6 1733	12600	0.3002	233.001	2.0003	1785.8	0.3302
230.003	0.8732	21855	0.02000	200.002	5 1 3 6 2	12606	0.1377	247.002	1.3000	1786 5	0.4275
200.007	0.0752	21000	0.02000	270.015	3 1034	12618	0.1000	240.040	1.2402	1700.0	0.0402
	Iso	molo 9		250.016	1 7373	12631	0.1030		Isom	olo 14	
207 015	17 8026	20133	0 3500	230.010	0.8735	12613	0.00017	350 000	3 1533	1201 0	0 0023
296.005	17 1850	20133	0.3355	211 985	1 3368	17971	0.03011	333,000	2 9693	1201.0	0.3023
203 307	15 3474	20138	0.3124	251 995	1 8477	17262	0.0510	318 007	2 7878	1201.0	0.0000
284 991	9 61 52	20100	0 20124	201.000	1.0477	17202	0.0010	301.000	2 5870	1202.0	0.8587
279 998	6 1266	20145	0.1306		Iso	nolo 9		295 908	2 5254	1203.0	0.8524
265 022	2 7046	20133	0.1500	3/9 997	13 1/65	8/91	0 5320	271 025	2 22/0	1205.6	0.0024
260.022	2 3119	20172	0.00000	344.084	12 5080	8/03	0.5320	250 006	1 6031	1205.0	0.0100
250.031	1 7385	20177	0.03374	330.006	11 8674	8406	0.0104	245 005	1.0551	1200.0	0.0743
240.022	1 2532	20107	0.04145	334 008	11 9935	8/08	0.4342	240.000	1 2261	1207.2	0.5527
230 130	0.8752	20137	0.03103	320 006	10 5707	8500	0.4742	235 008	1.2301	1207.5	0.3130
230.130	0.0752	20207	0.02204	325.000	0 0051	8502	0.4333	230.000	1.0500	1207.0	0.4402
	Iso	molo 3		321.000	9.3031	8502	0.4511	230.040	0.0003	1200.1	0.3732
300 007	17 6580	18606	0 3682	317 004	9.4550 8 0750	8505	0.4172		Isoth	orm 1	
303.337	1/ 8300	18612	0.3082	317.334	6 1303	8513	0.3332		(Coupling)	Ermin 1 Evnansions)	
304.997	12 7504	19614	0.3144	200.000	5 1926	0515	0.3032	240.007	12 1465	2401	0 5220
302.995	13.7304	10014	0.2932	290.011	3.1230	0310	0.2495	349.997	10 5999	6491 5799	0.3320
299.990	6 6 9 2 2	18620	0.2010	279.999	4.0203	0J22 0527	0.2030	250 001	9 1904	3738	0.0302
290.000	0.0233	10029	0.1473	209.321	3.0723	0327	0.1000	240.001	0.1004	00/0 9690 9	0.7249
270.005	2 1020	10041	0.00009	240.037	1.2307	6559	0.07556	249.999	0.1241	2020.2	0.0007
270.003	3.1020	10049	0.07411		Icon	aala 10		250 000	4.4433	1770.0	0.0094
200.012	2.3447	10030	0.03613	240.000	10 5 9 2 2	5720	0 6202	250.000	3.1333	1201.0 911 4	0.9023
230.001	1.7342	10000	0.04409	349.999	10.3233	5738	0.0302	330.002	2.2023	811.4 549.4	0.9327
239.970	1.2470	10077	0.03340	228 000	0.67491	5740	0.0102	250 000	1.5223	270.6	0.5540
	Ico	molo 4		222 002	9.0740	5742	0.5979	240.000	1.0440	370.0	0.9000
210.002	17 1517	17100	0 2749	225 006	9.1333	5744	0.5702	250 000	0.7131	20.4	0.9767
212.000	17.1317	17130	0.3740	217 000	0.3000	5740	0.5550	240.000	0.4651	109.1	0.9000
207 000	14.0001	17205	0.3127	200 000	6.0100	5759	0.3273	249.999	0.3293	114.3	0.9902
307.998	0.5120	17216	0.2000	200.009	0.4090 5 1009	5756	0.4407	349.999	0.2230	77.2 59.1	0.9933
302.991	9.0129	17210	0.2195	290.014	J.1092 4.0917	5750	0.3001	549.994	0.1509	52.1	0.9955
291.993	1.3022	17922	0.1711	200.007	4.0217	5769	0.3000		Icoth	orm 9	
203.032	4.3001	17233	0.1110	270.000	2 2 1 0 2 2	5765	0.2330	250.000	0.0500	4509	0.6016
271.909	2 7061	17245	0.00333	200.004	2.3432	5705	0.1005	240.000	9.0399	4302	0.0310
203.047	2.7001	17231	0.07110		Icon	aala 11		349.999	0.0774	3030 2067 6	0.7734
	Ico	molo 5		250 001	0 1 9 0 4	2070	0 7940	349.990	2 6000	2007.0	0.030/
220.004	17 4020	15909	0.4010	220 000	0.1004 7 7199	2880	0.7249	249.990	2 5255	044.9	0.0073
329.994	15 6991	15002	0.4010	220.015	7 9 1 1 9	2000	0.7037	249.998	2.3333	629 /	0.9222
325.000	19 9779	15010	0.3037	210 009	6 7626	3002	0.6545	249.998	1.7387	421 4	0.9400
212 001	12.2772	15012	0.2937	210.004	6 2747	2004	0.0345	250 000	1.2037	431.4	0.9030
202 005	7 0944	15022	0.2700	200.004	5 7620	2000	0.0203	250.000	0.6272	106.0	0.8732
288 01 A	1.3044	15025	0.1384	200.002	5.7025	3800	0.5345	340.000	0.3033	130.5	0.3032
275 000	3 5110	150/R	0.1204	270.020	3 0050	2802	0.0400	349.997	0.3023	20.0 80.8	0.0000
261 999	2 1861	15956	0.03720	268 007	2 9273	3891	0.3371	349.999	0.2355	60.6	0.3323
250 007	1 7373	15066	0.07133	252 002	1 8466	3807	0.2261	340.002	0.1186	40.0	0.0040
230.007	1.7575	15071	0.03233	210 016	1.0400	3000	0.2201	343.333	0.1100	40.5	0.3304
200.001	1.2010	15574	0.03320	240.010	1.2431	5500	0.1005		Isoth	orm 3	
	Iso	molo 6			Ison	aala 19		350 007	8 6567	1999	0 7045
337 003	17 6720	14607	0 4270	340 000	6 19/1	2628.2	0 8007	350.007	6 5222	2852 0	0.7045
334 013	16 3700	14007	0.4275	336 008	5 7460	2620.8	0.0007	350.001	4 7585	1026.8	0.7050
331.013	15 1997	14704	0.3750	395 017	5 1022	2623.0	0 7500	3/0 009	3 3886	1201 /	0.0407
32/ 005	13.1207	14709	0.3730	319 005	5 0910	2622 1	0.7359	350 001	9 2792	870 1	0.0340
310 001	12.0042	14719	0.3413	300 01/	1 6561	263.1	0.7085	350.001	2.3120 1 6199	502 8	0.3213
31/ 007	10 5020	14716	0.0000	202 262	1.0301 1 ///16	2634.7	0.7000	350.000	1 1976	/01 0	0.0004
300 008	8 0808	14790	0.2260	270 N10	7.7700 <i>3 8190</i>	2627 A	0.0310	350.001	0 7700	270 Q	0.0002
202.330 208 NN2	6 1720	14720	0.2303	≈13.010 979 ∩∩1	3.0420	2007.4 2628 1	0.0200	3/0 001	0.7700	۵،۲۵.۵ ۱ ۵ ۶ ۵	0.02//1
230.002 986 N91	0.1730 1 RRA2	14720	0.1032	266 004	9.2431 9.7650	2030.4 9620 9	0.3430	349.999	0.32.33	192 5	0.0044
279 021	3 9799	14750	0.1000	258 NN2	2.7000 2.2010	2633.2 2610 9	0.4737	3/0 000	0.3333	22.J	0.0000
258 N71	J.2122 2 2150	14730 14760	0.03000	250.003	2.2049 1 7950	2040.2 9611 2	0.3033	343.333	0.2400	00.4 56 9	0.3323
200.071	2.2130	14700	0.00334	200.003	1.1230	2041.3	0.3143	349.999 350 009	0.1029	30.2 27 0	0.9932
	Ico	mole 7			Icon	nole 19		550.002	0.1100	37.3	0.3307
344 998	17 7094	13588	0 4549	349 999	4 4435	1776.8	0 8594				
337 007	15 8976	13503	0 4142	340 000	4 2666	1777 6	0.8490				
	10.0010	10000		5 10.000		211110	0.0100				

Table 3. (Continued)

<i>T/</i> K	<i>p</i> /MPa	$ ho/mol \cdot m^{-3}$	Ζ	<i>T/</i> K	<i>p</i> /MPa	$\rho/\mathrm{mol}\cdot\mathrm{m}^{-3}$	Ζ	<i>T/</i> K	<i>p</i> /MPa	$ ho/mol \cdot m^{-3}$	Ζ	
	Isot	herm 4			Isot	herm 5		Isotherm 6				
399.998	11.4463	4385	0.7848	399.997	8.7259	3148	0.8333	450.001	8.8631	2637.3	0.8982	
400.002	8.2892	2962.0	0.8415	399.999	6.2231	2123.4	0.8812	449.999	6.1820	1782.0	0.9272	
399.999	5.8993	2000.5	0.8867	400.003	4.3709	1434.1	0.9164	450.008	4.2748	1204.1	0.9489	
400.001	4.1367	1351.1	0.9206	399.996	3.0343	968.5	0.9420	449.996	2.9362	813.5	0.9646	
400.000	2.8684	912.5	0.9452	399.998	2.0887	654.1	0.9601	450.003	2.0067	549.7	0.9757	
400.001	1.9725	616.3	0.9624	400.001	1.4293	441.8	0.9729	449.999	1.3666	371.4	0.9835	
400.001	1.3491	416.2	0.9747	399.998	0.9737	298.3	0.9814	450.004	0.9282	250.9	0.9886	
399.997	0.9190	281.1	0.9831	399.999	0.6616	201.5	0.9873	449.999	0.6295	169.5	0.9923	
399.998	0.6243	189.8	0.9889	400.000	0.4485	136.1	0.9911	450.000	0.4264	114.6	0.9950	
400.001	0.4232	128.2	0.9926	399.999	0.3037	91.9	0.9939	449.999	0.2886	77.4	0.9966	
400.001	0.2865	86.6	0.9949	400.004	0.2054	62.1	0.9949	450.000	0.1951	52.3	0.9974	
400.000	0.1936	58.5	0.9958	399.998	0.1387	41.9	0.9952	450.001	0.1319	35.3	0.9981	
400.000	0.1307	39.4	0.9975									

^a Values in italics are global values for two phase vapor + liquid states.

provide a comparison value for the Burnett expansion ratios determined in the analyses of the experimental isotherms.

PVT Results. The experimental temperatures and pressures for the CO₂ (1) + H₂S (2) at $x_1 = 0.9393$ appear in Table 2. There are 18 isomoles coupled by expansions, 2 Burnett isotherms at 350 K, 2 Burnett isotherms at 400 K, and 1 Burnett isotherm at 450 K. The experimental temperatures and pressures for the mixture with $x_1 =$ 0.9045 appear in Table 3. There are 14 isomoles coupled by expansions, 2 Burnett isotherms at 350 K, 2 Burnett isotherms at 400 K, and 1 Burnett isotherm at 450 K. The experimental temperatures and pressures for the mixture with $x_1 = 0.7067$ appear in Table 4. There are 14 isomoles coupled by expansions, 1 Burnett isotherm at 350 K, and 1 Burnett isotherm at 400 K. The experimental temperatures and pressures for the mixture with $x_1 = 0.5001$ appear in Table 5. There are 14 isomoles coupled by expansions, 2 Burnett isotherms at 350 K, 2 Burnett isotherms at 400 K, and 1 Burnett isotherm at 450 K.

The densities were determined by first analyzing the Burnett isotherms using a maximum likelihood approach described in detail elsewhere^{13,14} to obtain a derived density at the isotherm temperature for each isomole connected by Burnett expansions. For isomoles connected by expansions using the volume reduction cell, the densities at the expansion temperatures were calculated using the expansion ratio determined by the helium experiments and one known isomole density. The starting density for this procedure is that of the highest density isomole connected by Burnett expansions, which is provided by the Burnett analysis. The remaining isomoles then are treated in order of increasing density. For all isomoles, the densities at temperatures other than the expansion temperature were calculated using eq 1 and the density at the expansion temperature.

Phase Boundaries. The vapor-liquid phase boundary conditions were determined by locating the deviations from smooth (p, T) behavior, which occur when the phase boundary is crossed. The boundary states were determined as follows. First, a low-order (quadratic or cubic) polynomial in temperature was fit to the single-phase pressures. Second, another polynomial in temperature was fit to the deviations of the pressures in the two-phase region from the first polynomial. The phase boundary occurs at the state where the deviation calculated with the second polynomial has a zero value. Table 6 gives the phase boundary states determined using this procedure.

Virial Coefficients. The second and third virial coefficients and the apparatus constant, N_{BE} , obtained from

analyses of the Burnett isotherms appear in Table 7. Details of the analysis procedure, including the objective function, are provided elsewhere.^{13,14} The root-mean-square deviations in pressure for the isotherm fits range from 0.01% to 0.02%. Using the apparatus constant as an adjustable parameter for each fit provides a stringent internal consistency test, because incorrect data cause significant variations in $N_{\rm BE}$. Table 7 shows that there is no significant temperature dependence of $N_{\rm BE}$, and the values are consistent with the value of 1.4808 obtained using helium expansions at 300 K. The argon impurities present in the Burnett isotherms alter the mixture second and third virial coefficients by less than 1 cm³·mol⁻¹ and 60 cm⁶·mol⁻², respectively.

Stouffer⁹ concluded that the correlation of Tsonopoulos¹⁵ with the polar correction as it appears in Reid et al.¹⁶ describes the experimental second virial coefficients of pure H_2S within the accuracy of the measurements. This correlation also works well for pure carbon dioxide as shown by comparisons with the results of Holste et al.,¹² which are shown in Table 7. The second virial coefficient for a mixture, B_m , is given by

$$B_{\rm m} = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i x_j B_{ij}$$
(2)

in which the x_i are mole fractions, n is the total number of components, and the B_{ij} are the cross second virial coefficients. We have used the mixing rules suggested for the correlation by Tsonopoulos¹⁵

$$T_{c,ij} = (T_{c,i}T_{c,j})^{1/2}(1-k_{jj})$$
(3)

$$P_{c,ij} = \frac{4 T_{c,ij} (P_{c,i} V_{c,j} T_{c,i} + P_{c,i} V_{c,j} T_{c,i})}{(V_{c,i}^{1/3} + V_{c,j}^{1/3})^3}$$
(4)

$$\omega_{ij} = (\omega_i + \omega_j)/2 \tag{5}$$

The optimal value of the interaction parameter, $k_{ij} = 0.08$, was obtained by minimizing the sum of the deviations of the experimental $B_{\rm m}$ from the correlation. Table 7 shows the deviations for the current measurements as well as those reported by Liu⁷ for a mixture with $x_1 = 0.4859$. The standard deviation for all mixture second virial coefficients is $0.74 \text{ cm}^3 \cdot \text{mol}^{-1}$. Table 8 gives the pure and cross second virial coefficient values used to calculate the deviations in Table 7.

Holste et al.¹² found that the correlation of Orbey and Vera¹⁷ describes the third virial coefficients of carbon

Table 4	l. Ex	perimental	nV7	'Results	for	CO ₂	(1) -	+ H ₂ S	(2)	at x	$a = 0.7067^{a}$
I GENERAL CONTRACT		permitted	~ ~ ~	recourtes		002	· • /	· ••∠~	~ ~ /		1 011001

<i>T</i> /K	<i>p</i> /MPa	ρ/mol·m ^{−3}	Ζ	<i>T/</i> K	p/MPa	ρ/mol⋅m ^{−3}	Ζ	<i>T</i> /K	<i>p</i> /MPa	ρ/mol⋅m ^{−3}	Z
	Isor	, nolo 1			Isomol	, o 7			Ison		
285 010	24 2162	21911	0 4664	350,000	17 4702	13662	0 4394	349 999	4 4014	1782.0	0 8487
274 978	14 9350	21926	0.4004	342 001	15 3025	13668	0.4004	337 993	4 1868	1783 1	0.8355
269 985	10 3379	21934	0.2100	012.001	10.0020	10000	0.0001	325 998	3 9682	1784 1	0.8206
264.985	5.6423	21942	0.1167		Isomole	e 8		314.006	3.7461	1785.2	0.8038
262.013	2.8944	21947	0.06054	350.000	15.8358	12636	0.4306	290.002	3.2895	1787.3	0.7633
256.020	1.9210	21954	0.04111	345.000	14.6819	12640	0.4049	272.032	2.6955	1788.9	0.6662
250.044	1.6017	21960	0.03508	340.000	13.5423	12643	0.3789	264.988	2.2770	1789.5	0.5775
244.991	1.3645	21966	0.03050	334.999	12.4121	12647	0.3524	257.996	1.9100	1790.1	0.4974
240.020	1.1568	21971	0.02638	329.999	11.2799	12650	0.3250	252.000	1.6146	1790.7	0.4304
230.113	0.8114	21982	0.01929	324.999	10.1640	12654	0.2973	244.973	1.3077	1791.3	0.3584
				320.000	9.0576	12657	0.2690				
	Isor	nole 2		301.997	6.0436	12669	0.1900		Ison	nole 14	
299.001	19.2078	20246	0.3816	293.004	4.9492	12675	0.1603	349.992	3.1354	1203.7	0.8951
295.054	16.3447	20252	0.3290	284.996	4.1113	12680	0.1368	329.999	2.9065	1204.9	0.8792
290.013	12.7528	20258	0.2611	276.999	3.3967	12685	0.1163	315.043	2.7323	1205.8	0.8651
285.034	9.1681	20265	0.1909	268.982	2.7601	12690	0.09725	300.002	2.5567	1206.7	0.8494
279.986	5.4376	20272	0.1152					285.015	2.3743	1207.5	0.8297
273.015	3.0704	20280	0.06669		Isomole	e 9		244.993	1.2689	1209.9	0.5149
266.986	2.6130	20286	0.05802	349.994	12.3384	8539	0.4966	240.002	1.0832	1210.2	0.4485
260.052	2.1541	20293	0.04909	344.999	11.6905	8541	0.4772	235.039	0.9230	1210.5	0.3901
252.983	1.7478	20301	0.04093	340.000	11.0515	8543	0.4576	229.988	0.7733	1210.8	0.3340
245.858	1.3977	20308	0.03367	335.000	10.3987	8545	0.4369				
				330.002	9.7404	8547	0.4153		Isotl	herm 1	
	Isor	nole 3		324.998	9.0778	8550	0.3929	(Coupling	Expansions)
312.000	17.4304	18711	0.3591	310.000	7.0254	8556	0.3186	350.001	8.9858	4722	0.6539
307.000	14.5555	18717	0.3047	298.997	5.6211	8561	0.2641	349.997	6.9326	3191	0.7466
303.007	12.2567	18721	0.2599	292.995	4.9338	8564	0.2365	350.006	5.1441	2156.2	0.8198
297.999	9.3903	18727	0.2024	277.999	3.4717	8570	0.1753	350.005	3.7063	1457.0	0.8741
293.011	6.6323	18733	0.1453	269.996	2.8232	8574	0.1467	350.001	2.6159	984.6	0.9130
282.024	3.8455	18744	0.08749					349.990	1.8208	665.3	0.9405
274.978	3.2256	18751	0.07524		Isomole	10		350.000	1.2554	449.5	0.9596
268.008	2.6892	18758	0.06434	349.996	10.0939	5770	0.6012	350.005	0.8595	303.8	0.9723
260.043	2.1563	18765	0.05315	342.004	9.4846	5772	0.5779	350.000	0.5862	205.3	0.9814
250.000	1.5964	18775	0.04091	334.004	8.8516	5774	0.5520	350.001	0.3982	138.7	0.9867
				326.007	8.2086	5777	0.5242	350.000	0.2701	93.7	0.9906
	Isor	nole 4		317.998	7.5442	5779	0.4938	350.000	0.1832	63.3	0.9942
324.002	17.3877	17293	0.3732	302.184	5.8631	5784	0.4035	350.001	0.1242	42.8	0.9973
316.996	14.1376	17300	0.3101	295.000	5.0418	5786	0.3553				
308.997	10.4376	17309	0.2347	289.993	4.5182	5787	0.3238		Isotl	nerm 2	
305.006	8.6058	17313	0.1960	275.037	3.1898	5792	0.2408	349.998	9.1961	4878	0.6478
300.996	6.7965	17317	0.1568	266.913	2.5914	5794	0.2015	350.002	7.1124	3297	0.7413
288.003	4.4320	17329	0.1068	260.040	2.1382	5796	0.1706	350.000	5.2894	2228.4	0.8157
279.029	3.5684	17337	0.08872					350.000	3.8180	1506.1	0.8712
270.022	2.8361	17345	0.07283		Isomole 1	1		350.000	2.6985	1017.9	0.9110
262.014	2.2770	17352	0.06024	349.996	7.9670	3899	0.7023	350.002	1.8794	687.9	0.9388
252.991	1.7513	17360	0.04796	336.999	7.3618	3901	0.6735	350.002	1.2963	464.9	0.9582
	-			329.999	7.0268	3902	0.6563	350.002	0.8885	314.2	0.9717
	Isor	nole 5	0.0004	322.003	6.6368	3904	0.6350	350.000	0.6059	212.3	0.9805
332.994	16.9574	15986	0.3831	314.999	6.2884	3905	0.6148	350.000	0.4122	143.5	0.9870
325.996	14.2562	15993	0.3289	297.998	5.2041	3909	0.5374	350.000	0.2798	97.0	0.9914
323.995	13.5322	15994	0.3141	287.994	4.2187	3911	0.4505	350.002	0.1896	65.5	0.9942
322.029	12.7964	15996	0.2988	278.030	3.3630	3913	0.3720	350.000	0.1284	44.3	0.9958
318.002	11.2999	10000	0.2071	201.990	2.2209	3910	0.2011		T 41	h	
311.990	9.0030	16016	0.2183	247.983	1.4813	3919	0.1834	200.000	7 5 7 70	1erm 3	0.0407
200.003	J.6070	16025	0.1434		Icomolo	19		200 007	5 2002	2700.7	0.0437
290.010	4.0403	10023	0.1201	240.000	1S011101e	9696.0	0 7059	399.997	0.0090	1024.4	0.0000
260.017	2 7061	16033	0.09790	349.990	5 0000	2030.9	0.7633	400.001	3.770U 9.6104	1232.3	0.9210
209.331	2.7901	16041	0.07770	344.997	5.0023	2037.0	0.7775	400.000	2.0104 1 0004	032.4 569.2	0.9400
240.050	2.1333	16043	0.00212	225 005	5 2005	2030.9	0.7010	400 001	1.0004	270.0	0.3020
249.909	1.3342	10037	0.04777	214 000	5 0011	2040.2	0.7420	400.001	1.2309	256 5	0.9744
	Icor	nole 6		314.555	1 6072	2642.9	0.7229	300.000	0.0000	172 2	0.9031
341 002	17 3905	14778	0 4194	987 900	3 0602	2615 1	0.7010	300.000	0.3869	1171	0.0004
332 998	14 4096	14786	0.3520	280 012	3 4046	2646 1	0.5526	400 000	0 2615	79.1	0.9941
325.012	11.9147	14792	0.2981	264 990	2 3720	2648 1	0.4066	400.000	0.1768	53.4	0.9957
319 997	10.3429	14797	0.2627	259 032	2.0198	2648.9	0.3540	100.000		00.1	0.0001
316.012	9.1444	14800	0.2352	248.003	1.4605	2650.4	0.2672				
302.004	6.0597	14811	0.1629	~ 10.000	1.1000	2000.1	0.2012				
294.006	5.0772	14817	0.1402								
286.005	4.2217	14823	0.1198								
278.003	3.4815	14829	0.1016								
269.002	2.7618	14836	0.08323								

 $^{\it a}$ Values in italics are global values for two phase vapor + liquid states.

Table 5.	Experimental	nVT Results	for CO ₂	$(1) + H_{0}S$	(2) at $x_1 = 0.5001^a$
I GIDIC OI	Linpermittat	pri incourto	101 002	(1) 1120	(*) "

	-										
<i>T</i> /K	<i>p</i> /MPa	$\rho/\text{mol}\cdot\text{m}^{-3}$	Ζ	<i>T</i> /K	<i>p</i> /MPa	$\rho/\mathrm{mol}\cdot\mathrm{m}^{-3}$	Ζ	<i>T</i> /K	<i>p</i> /MPa	$\rho/\text{mol}\cdot\text{m}^{-3}$	Ζ
	Isomole 1				Isor	nole 8			Isom	ole 13	
281.031	22,4272	23455	0.4092	349,995	11.5407	9906	0.4003	350.003	3.5342	1403.9	0.8651
275.039	16.4965	23465	0.3074	345.000	10.7745	9909	0.3791	340.003	3.3978	1404.6	0.8557
270.066	11.5600	23474	0.2193	340.005	10.0078	9911	0.3572	325.004	3.1898	1405.6	0.8398
270.018	11.5117	23474	0.2184	335.004	9.2451	9914	0.3348	310.039	2.9783	1406.6	0.8214
265.022	6.5019	23483	0.1257	323.010	7.5305	9920	0.2827	300.016	2.8347	1407.3	0.8075
255.057	1.6392	23497	0.03290	320.005	7.1367	9922	0.2704	290.031	2.6683	1408.0	0.7859
250.052	1.4115	23503	0.02889	315.010	6.5155	9924	0.2507	274.976	2.1891	1409.1	0.6795
240.030	1.0239	23515	0.02182	310.029	5.9327	9927	0.2319	272.030	2.0654	1409.3	0.6480
230.032	0.7205	23526	0.01601	300.022	4.8633	<i>9932</i>	0.1963	269.990	1.9778	1409.4	0.6251
220.204	0.4927	23538	0.01143	290.035	3.9425	9937	0.1645	266.036	1.8137	1409.7	0.5817
				279.986	3.1325	<i>9942</i>	0.1354	262.987	1.6959	1409.9	0.5501
	Iso	mole 2		270.020	2.4486	9947	0.1097		Isom	ole 14	
300.011	18.4405	21666	0.3412	260.173	1.8748	<i>9952</i>	0.08709	350.003	2.5078	949.7	0.9074
295.010	14.5908	21673	0.2745	259.993	1.8723	<i>9952</i>	0.08703	335.005	2.3756	950.4	0.8974
290.030	10.7695	21681	0.2060	250.012	1.3975	9957	0.06752	320.197	2.2438	951.1	0.8861
290.020	10.7809	21681	0.2062	240.026	1.0167	<i>9962</i>	0.05114	305.004	2.1063	951.8	0.8726
281.028	3.8799	21694	0.07654	229.987	0.7124	9967	0.03738	289.010	1.9589	952.6	0.8558
275.031	2.8190	21701	0.05681	220.912	0.5010	9971	0.02735	265.166	1.5959	953.7	0.7590
270.032	2.4811	21706	0.05091					259.983	1.4208	953.9	0.6891
265.087	2.1761	21712	0.04547		Isor	nole 9		256.023	1.3055	954.1	0.6428
260.033	1.8929	21717	0.04031	350.005	9.9343	6702	0.5094	252.044	1.1946	954.3	0.5973
250.255	1.4195	21728	0.03140	345.001	9.4660	6703	0.4923	248.886	1.1098	954.5	0.5619
	-	1.0		340.008	8.9925	6705	0.4744	244.608	0.9944	954.7	0.5121
	Iso	mole 3		335.006	8.5122	6707	0.4557		1		
315.008	16.7449	20050	0.3189	325.045	7.4541	6710	0.4110		Isoth	erm 1	
310.007	13.6830	20056	0.2647	320.026	6.8603	6712	0.3841	0.40.000	(Coupling)	Expansions)	0.0504
305.015	10.6577	20062	0.2095	315.013	6.2814	6714	0.3572	349.999	15.0580	14642	0.3534
300.016	7.6228	20069	0.1523	310.014	5.7369	6/16	0.3314	349.998	11.5282	9906	0.3999
300.008	7.6130	20069	0.1521	305.019	5.2203	6/1/	0.3064	350.005	9.9351	6702	0.5094
297.110	5.8576	20073	0.1181	299.998	4.7333	6719	0.2826	350.006	8.2007	4534	0.0237
290.074	4.0233	20080	0.08308		Taom	ala 10		350.000	0.4800	3007	0.7200
200.003	2 2 2 2 2 5	20084	0.07080	250 002	8 2556	1010 10	0 6257	250.004	4.0000	2073.1	0.0002
201.940	2.2220	20009	0.07077	330.002	7 0702	4334	0.0237	350.011	3.3340 9.5077	1403.0	0.0052
270.043	2 7545	20093	0.00343	344.995	7 6822	4536	0.0127	340 000	2.3077	545.7 642.5	0.9074
274.100	2.7040	20037	0.00015	330.000	7 1014	4538	0.5351	350 006	1.7511	1316	0.9300
	Iso	mole 1		325 008	6 79/0	4540	0.5701	350.000	0.8306	294.0	0.3370
330.016	17 3900	18527	0 3421	318 011	6 2384	4541	0.5556	350.004	0.5674	198.9	0.9803
325 007	14 9240	18533	0.2980	315.004	5 9332	4542	0.0100	350.002	0 3863	134.5	0.0000
320.008	12.4788	18538	0.2530	310.009	5.4470	4543	0.4652	350.005	0.2625	91.0	0.9912
315.014	10.0438	18544	0.2068	307.011	5.1644	4544	0.4453	350.006	0.1782	61.5	0.9957
315.003	10.0382	18544	0.2067	304.012	4.8899	4544	0.4257	350.005	0.1207	41.6	0.9970
310.098	7.6698	18550	0.1604								
300.007	4.9833	18560	0.1076		Ison	nole 11			Isoth	erm 2	
294.928	4.4709	18565	0.09821	350.002	6.4851	3067	0.7265	350.005	10.0874	6799	0.5098
290.008	4.0097	18569	0.08955	344.967	6.3103	3068	0.7171	350.005	8.3689	4594	0.6260
284.927	3.5693	18574	0.08112	340.005	6.1368	3069	0.7074	349.999	6.5704	3105	0.7373
280.230	3.1924	18579	0.07375	335.002	5.9594	3070	0.6970	350.003	4.9258	2097.9	0.8068
				325.009	5.6000	3071	0.6748	350.004	3.5703	1417.7	0.8654
	Iso	mole 5		320.003	5.4163	3072	0.6627	350.004	2.5293	958.0	0.9073
339.996	16.8459	17126	0.3480	314.017	5.1934	3073	0.6473	350.006	1.7641	647.3	0.9465
330.003	12.8600	17136	0.2735	305.016	4.6377	3074	0.5949	350.005	1.2178	437.4	0.9567
325.003	10.8788	17141	0.2349	300.015	4.2476	3075	0.5538	350.005	0.8350	295.5	0.9710
320.005	8.9261	17146	0.1957	290.050	3.5188	3077	0.4743	350.005	0.5697	199.7	0.9804
310.036	6.1012	17155	0.1380	280.102	2.8708	3078	0.4005	350.006	0.3875	134.9	0.9871
305.072	5.5217	17160	0.1269	270.054	2.2823	3080	0.3301	350.003	0.2630	91.2	0.9910
300.138	4.9858	17164	0.1164	260.049	1.7792	3081	0.2671	350.005	0.1782	61.6	0.9941
295.212	4.4837	17168	0.1064	250.017	1.3473	3083	0.2103	350.006	0.1206	41.6	0.9962
290.010	4.0937	17173	0.09886	240.046	0.9912	3084	0.1610		1		
				229.959	0.7016	3086	0.1189	050 005	Isoth	erm 3	0 4 4 4 0
040.000	17 0000	mole 6	0.0700	220.555	0.4902	3087	0.08659	350.005	11.0524	8550	0.4442
349.999	17.2208	15831	0.3738		τ			350.007	9.4003	5775	0.5504
339.992	13.8878	15840	0.3102	050.004		101e 12	0.0057	349.999	7.6162	3901	0.6/10
	Ico	mala 7		330.004	4.8033	2073.1	0.8037	350.002	0.8010	2034.8	0.7032
350 000	15 0506	1/6/9	0 2524	340.000 395 AAQ	4.0400 / 21/0	2070.1 2077 7	0.7920	350.003	4.3101 3.0027	1909 0	0.0334
340.000	19 9600	14042	0.3334	323.000	4.3140	2071.7	0.7004	350.004	5.0337 9.1740	1202.U Q11 0	0.0044
340.000	10 8028	14050	0.2302	305 016	4.0073 3 8578	2070.7	0.731/	350.004	2.1/4J	5/19/	0.3203
330.003	9 5/67	14658	0 2374	290 021	3 2222	2081 1	0.6449	350.007	1 0380	370 /	0.0407
320.043	7.3434	14666	0.1882	280 070	2.6700	2082.3	0.5506	350 007	0.7098	250 1	0.9753
315.003	6.6704	14670	0.1736	270.083	2 1608	2083 4	0.4619	350.004	0.4834	168.9	0.9835
310.012	6.0550	14674	0.1601	260.035	1.7045	2084.4	0.3782	350.006	0.3284	114.1	0.9890
305.010	5.4802	14678	0.1472					350.005	0.2226	77.0	0.9934
302.012	5.1542	14680	0.1398					350.005	0.1508	52.0	0.9965

Table 5. (Continued)

<i>T</i> /K	<i>p</i> /MPa	$ ho/{ m mol}{\cdot}{ m m}^{-3}$	Ζ	<i>T</i> /K	<i>p</i> /MPa	$ ho/{ m mol}{\cdot}{ m m}^{-3}$	Ζ	T/\mathbf{K}	<i>p</i> /MPa	$ ho/mol \cdot m^{-3}$	Ζ
Isotherm 4				Isotherm 5				Isotherm 6			
399.998	8.3161	3114	0.8031	400.002	10.5288	4234	0.7477	450.050	10.6768	3354	0.8508
400.004	6.0141	2103.1	0.8598	400.003	7.7592	2859.9	0.8158	450.045	7.5660	2265.6	0.8925
400.004	4.2586	1420.5	0.9014	400.004	5.5849	1931.7	0.8693	450.044	5.2940	1530.5	0.9244
400.004	2.9735	959.5	0.9318	400.003	3.9439	1304.8	0.9088	450.044	3.6655	1033.9	0.9475
400.007	2.0544	648.0	0.9533	400.004	2.7466	881.3	0.9371	450.051	2.5191	698.4	0.9639
400.003	1.4092	437.7	0.9681	400.004	1.8946	595.2	0.9571	450.050	1.7219	471.8	0.9753
400.008	0.9619	295.6	0.9784	400.008	1.2979	402.0	0.9708	450.047	1.1725	318.7	0.9832
400.005	0.6543	199.6	0.9856	400.007	0.8853	271.5	0.9804	450.045	0.7992	216.0	0.9888
400.007	0.4442	134.8	0.9908	400.006	0.6019	183.4	0.9868	450.044	0.5419	145.9	0.9926
400.005	0.3009	91.1	0.9931	400.002	0.4084	123.8	0.9919	450.044	0.3669	98.5	0.9955
400.005	0.2037	61.5	0.9959					450.044	0.2483	66.6	0.9964
400.010	0.1378	41.5	0.9984					450.041	0.1680	44.9	0.9999
								450.044	0.1136	30.3	1.0000

 a Values in italics are global values for two phase vapor + liquid states.

Table 6. Phase Boundary Conditions for CO_2 (1) + H₂S (2) Mixtures

<i>T</i> /K	<i>p</i> /MPa	$ ho/{ m mol}{\cdot}{ m m}^{-3}$	Ζ	<i>T</i> /K	<i>p</i> /MPa	$ ho/mol \cdot m^{-3}$	Ζ	<i>T</i> /K	<i>p</i> /MPa	$ ho/{ m mol}{\cdot}{ m m}^{-3}$	Ζ
$x_1 = 0.9394$				$x_1 = 0.9045$ (Continued)				$x_1 = 0.7067$ (Continued)			
248.09	1.648	23499	0.0340	294.39	5.704	17225	0.1353	309.90	6.856	5781	0.4603
265.43	2.772	21705	0.0579	299.01	6.307	15926	0.1593	301.89	5.620	3908	0.5729
278.83	3.953	20056	0.0850	302.82	6.873	14726	0.1854	290.88	4.262	2645	0.6664
288.26	4.985	18538	0.1122	307.16	7.539	12594	0.2344	277.41	3.044	1788	0.7379
295.13	5.854	17137	0.1392	306.07	7.351	8511	0.3394	263.46	2.111	1209	0.7972
				302.18	6.721	5752	0.4650				
$x_1 = 0.9392$			292.54	5.371	3889	0.5678		$x_1 =$	0.5001		
301.44	6.762	15861	0.1701	281.04	4.026	2637	0.6533	260.46	1.913	23491	0.0376
303.70	7.103	10727	0.2622	269.54	2.934	1784	0.7339	280.13	3.197	21695	0.0633
304.06	7.143	7256	0.3894	257.21	2.053	1206	0.7957	294.84	4.489	20075	0.0912
297.32	6.116	4909	0.5040					305.84	5.620	18554	0.1191
287.05	4.793	3322	0.6046		$x_1 =$	0.7067		313.99	6.588	17152	0.1471
275.35	3.558	2248	0.6913	261.32	2.242	21948	0.0470	323.62	7.846	14663	0.1989
262.52	2.521	1521	0.7592	277.38	3.436	20276	0.0735	332.45	8.856	9915	0.3231
250.99	1.752	1030	0.8154	289.07	4.548	18738	0.1010	328.63	7.891	6709	0.4305
				298.31	5.598	17320	0.1303	321.00	6.552	4541	0.5406
$x_1 = 0.9045$			304.72	6.428	16012	0.1585	309.81	5.036	3073	0.6361	
261.97	2.466	21820	0.0519	308.94	7.029	14806	0.1848	297.24	3.677	2081	0.7150
276.70	3.709	20160	0.0800	315.86	8.146	12660	0.2450	284.10	2.603	1408	0.7824
286.81	4.771	18633	0.1074	315.51	7.808	8554	0.3480	269.79	1.778	954	0.8312

Table 7. Derived Virial Coefficients for CO_2 (1) + H₂S (2) Mixtures

		В	δB^{a}	С	δC^b	
<i>T</i> /K	<i>X</i> ₁	cm ³ ⋅mol ⁻¹	cm ³ ⋅mol ⁻¹	cm ⁶ ⋅mol ⁻²	cm ⁶ ⋅mol ⁻²	$N_{\rm BE}$
325	1.0000	-100.6 ^c	-0.5	4163 ^c	-173.5	
	0.9393	-102.1	0.1	4277	-134.0	1.4802
	0.4859	-119.8^{d}	-0.8	4550^{d}	-258.3	
350	1.0000	-84.0	-0.6	3615	-152.7	
	0.9393	-84.7	-0.7	3643	-206.2	1.4802
	0.9045	-86.1	0.1	3899	3.8	1.4797
	0.7067	-92.0	0.4	4017	-126.8	1.4799
	0.5001	-101.2	0.1	4320	-56.8	1.4802
	0.4859	-101.4^{d}	-0.5	4063^{d}	-328.7	
400	1.0000	-59.8°	-0.4	2901 ^c	-11.6	
	0.9393	-59.9	-1.0	2831	-156.5	1.4801
	0.9045	-62.3	0.8	3076	45.7	1.4803
	0.7067	-68.2	2.4	3838	566.0	1.4805
	0.5001	-74.4	0.5	3507	-13.3	1.4806
	0.4859	-75.3^{d}	0.8	3537^{d}	-0.2	
450	1.0000	-43.0°	0.0	2429 ^c	75.9	
	0.9393	-42.8	-0.9	2482	63.6	1.4800
	0.9045	-45.2	1.0	2177	-278.7	1.4800
	0.5001	-53.6	-1.2	2718	-172.9	1.4804
	0.4859	-55.7^{d}	0.3	2562^{d}	-344.2	

 $^a\,\delta B_{\rm m}=B_{\rm m}^{\rm exp}-B_{\rm m}^{\rm corr}.~^b\,\delta C_{\rm m}=C_{\rm m}^{\rm exp}-C_{\rm m}^{\rm corr}.~^c$ From Holste et al.¹² d From Liu.⁷

dioxide quite well, as shown in Table 7. This correlation also describes the third virial coefficients for these mixtures within the accuracy of the measurements using the mixing rules described below. The expression for the third virial coefficient of a mixture, $C_{\rm m}$, is

$$C_{\rm m} = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} x_i x_j x_k C_{ijk}$$
(6)

where the C_{ijk} are cross third virial coefficients. The mixing rules that describe these mixtures well are

$$T_{c,ijk} = (T_{c,i}T_{c,j}T_{c,k})^{1/3}$$
(7)

$$P_{c,ijk} = \frac{9T_{c,ijk}(P_{c,i}V_{c,i}/T_{c,i} + P_{c,j}V_{c,j}/T_{c,j} + P_{c,k}V_{c,k}/T_{c,k})}{(V_{c,i}^{1/3} + V_{c,j}^{1/3} + V_{c,j}^{1/3})^3}$$
(8)

$$\omega_{iik} = (\omega_i + \omega_i + \omega_k)/3 \tag{9}$$

To our knowledge, this work represents the first use of these rules. The differences between the values calculated from the correlation and the experimental values from this work and those reported by Liu⁷ are shown in Table 7. The standard deviation of these differences is $186 \text{ cm}^{6} \cdot \text{mol}^{-2}$, which is within the experimental accuracy. Table 8 gives the values of the pure and cross third virials used to calculate the deviations in Table 7. Figure 3 shows the temperature dependence of the Orbey and Vera¹⁷ correlation and selected experimental values.

Accuracy of Derived Values. The error analysis detailed by Hwang et al.¹⁴ indicates that, for these measurements, the densities and compressibility factors derived

Table 8. Values of Pure and Cross Second and ThirdVirial Coefficients Used To Calculate Deviations Shownin Table 7^a

	325 K	350 K	400 K	450 K
$B_{\rm CO_2}/{\rm cm^3 \cdot mol^{-1}}$	-101.2	-84.6	-60.1	-43.0
$B_{\rm CO_2-H_2S}/\rm cm^3\cdot mol^{-1}$	-106.3	-89.9	-65.4	-48.1
$B_{\rm H_2S}/\rm cm^3\cdot mol^{-1}$	-165.1	-140.1	-104.5	-80.2
$C_{\rm CO_2}/\rm cm^6\cdot mol^{-2}$	4337	3768	2913	2354
$C_{\rm CO_2-CO_2-H_2S}/\rm cm^6 \cdot mol^{-2}$	4757	4220	3234	2710
$C_{\rm CO_2-H_2S-H_2S}/\rm cm^6\cdot mol^{-2}$	4993	4598	3729	3072
$C_{\rm H_{2}S}/\rm{cm^{6}\cdot mol^{-2}}$	4822	4794	4094	3428

^{*a*} These values were calculated using correlations and mixing rules described in the text and a binary interaction parameter, $k_{ij} = 0.08$.

Figure 3. Comparison of the temperature dependence of the Orbey and Vera¹⁷ correlation for third virial coefficients with selected experimental results for CO_2 , H_2S , and an equimolar mixture.

from the Burnett analyses are accurate to $\pm 0.08\%$. The error in the expansion ratio accumulates in the calculation of densities for the isomoles connected by expansions into the density reduction cell; therefore, the errors for those isomoles increase from $\pm 0.08\%$ to $\pm 0.3\%$ as the density increases. The phase boundary temperatures and pressures are accurate to ± 0.05 K and ± 0.01 MPa, respectively. All values given in this section represent 95% confidence limits.

Summary

Despite the experimental challenges posed by the presence of H_2S , the results presented here have excellent internal consistency. The combination of correlations for second and third virial coefficients provides a reliable representation of the temperature, density, and composition dependence of these measurements; therefore, it provides a reliable method for computing the volumetric behavior of mixtures of carbon dioxide and hydrogen sulfide at densities for which the virial equation truncated after the third term is appropriate.

Literature Cited

- Bierlein, J. A.; Kay, W. B. Phase equilibrium properties of the system: carbon dioxide + hydrogen sulfide. *Ind. Eng. Chem.* 1953, 45, 618–624.
- (2) Sobocinski, D. P.; Kurata, F. Heterogeneous phase equilibria of the hydrogen sulfide-carbon dioxide system. AIChE J. 1959, 5, 545-551.
- (3) Liu, C. H.; Bailey, D. M.; Holste, J. C.; Marsh, K. N.; Hall, K. R. Thermodynamic properties of pure hydrogen sulfide and mixtures containing hydrogen sulfide with methane, carbon dioxide, methylcyclohexane and toluene. *GPA Research Report 107*; Gas Processors Association: Tulsa, OK, 1987.
- (4) Kellerman, S. J. Determination of thermodynamic properties of natural gas mixtures by direct and indirect methods. Ph.D. Dissertation, Texas A&M University, College Station, TX, 1994.
 (5) Kellerman, S. J.; Stouffer, C. E.; Eubank, P. T.; Holste, J. C.; Hall,
- (5) Kellerman, S. J.; Stouffer, C. E.; Eubank, P. T.; Holste, J. C.; Hall, K. R.; Gammon, B. E.; Marsh, K. N. Thermodynamic properties of CO₂ + H₂S mixtures, *GPA Research Report 141*; Gas Processors Association: Tulsa, OK, 1995.
- (6) Hall, K. R.; Eubank, P. T. Burnett-isochoric coupled data with application to adsorbing systems. *Physica* 1972, 61, 346–354.
- (7) Liu, C. H. Experimental densities, entropies and energies for pure H₂S and equimolar mixtures of H₂S/CH₄ and H₂S/CO₂ between 300 and 500 K. M.S. Thesis, Texas A&M University, College Station, TX, 1985.
- (8) Holste, J. C.; Hall, K. R.; Eubank, P. T. Optimum use of a differential pressure transducer for high-precision measurements. *Ind. Eng. Chem. Fundam.* **1977**, *16*, 378–380.
- (9) Stouffer, C. E. Densities of mixtures of carbon dioxide and hydrogen sulfide from 200 to 450 K to 23 MPa by the Burnettisochoric method. Ph.D. Dissertation, Texas A&M University, College Station, TX, 1992.
 (10) Hwang, C.-A. *PVT* measurements of carbon dioxide and methane
- (10) Hwang, C.-A. *PVT* measurements of carbon dioxide and methane mixtures and an equation of state development. Ph.D. Dissertation, Texas A&M University, College Station, TX, 1989.
- (11) Ely, J. F.; Haynes, W. M.; Bain, B. C. Isochoric (*p*, V_m, *T*) measurements on CO₂ and on (0.982 CO₂ + 0.018 N₂) from 250 to 330 K at pressures to 35 MPa. *J. Chem. Thermodyn.* **1989**, *21*, 879–894.
- (12) Holste, J. C.; Hall, K. R.; Eubank, P. T.; Esper, G.; Watson, M. Q.; Warowny, W.; Bailey, D. M.; Young, J. G.; Bellomy, M. T. Experimental (*p*, V_m, T) for pure CO₂ between 220 and 450 K. J. Chem. Thermodyn. **1987**, 19, 1233–1250.
- (13) Holste, J. C.; Watson, M. Q.; Bellomy, M. T.; Eubank, P. T.; Hall, K. R. Determination of interaction second virial coefficients: He– CO₂ system. *AIChE J.* **1980**, *26*, 954 -.
- (14) Hwang, C.-A.; Simon, P. P.; Hou, H.; Hall, K. R.; Holste, J. C. Burnett and pycnometric (*p*, V_m, *T*) measurements for natural gas mixtures. *J. Chem. Thermodyn.* **1997**, *29*, 1455–1472.
- gas mixtures. J. Chem. Thermodyn. 1997, 29, 1455–1472.
 (15) Tsonopoulos, C. An empirical correlation of second virial coefficients. AIChE J. 1974, 20, 263–272.
- (16) Reid, R. C.; Prausnitz, J. M.; Poling, B. E. *The Properties of Gases and Liquids*, 4th ed.; McGraw-Hill: New York, 1987; p 41.
- (17) Orbey, H.; Vera, J. H. Correlation of the third virial coefficient using T_o P_c and ω as parameters. AIChE J. **1983**, 29, 107–113.

Received for review June 19, 2000. Accepted June 11, 2001. We gratefully acknowledge financial support from the Gas Processors Association and the Texas Engineering Experiment Station.

JE000182C