Solubility of Carbon Dioxide and Nitrous Oxide in 50 mass % Methyldiethanolamine

Moon Ki Park[†] and Orville C. Sandall*

Department of Chemical Engineering, University of California, Santa Barbara, California 93106-5080

The partial pressure of carbon dioxide above a 50 mass % aqueous solution of methyldiethanolamine was measured as a function of the amount of carbon dioxide absorbed in the solution. Data were obtained over the temperature range 25 °C to 100 °C and for carbon dioxide loadings up to 0.5 mol CO_2 /mol amine. Data were also obtained for the solubility of nitrous oxide in these solutions over the temperature range 25 °C to 80 °C. It is found that the solubility of nitrous oxide decreases significantly as the carbon dioxide loading increases. The data obtained in this study may be used with the nitrous oxide analogy method to estimate the physical solubility of carbon dioxide in 50 mass % methyldiethanolamine solutions as a function of carbon dioxide loading and temperature.

Introduction

Aqueous solutions of methyldiethanolamine (MDEA) are widely used in the petroleum and natural gas industries for the treatment of natural or refinery gases containing CO2 and/or H2S. One of the most important parameters needed to model absorption rates of CO₂ into aqueous amine solutions is the physical solubility of CO₂ in the amine solution. Since CO₂ reacts in the amine solution, its physical solubility cannot be measured directly. It is common practice to use the nitrous oxide analogy method originally proposed by Clarke¹ to estimate the physical solubility of CO₂. Since N₂O is similar to CO₂ with respect to molecular configuration, electronic structure, molecular weight, and molar volume, the effect of the amine on the physical solubility of CO₂ can be inferred from measurements with N₂O. Laddha et al.² verified the appropriateness of this method by measuring the physical solubilities of CO2 and N2O in various organic solvents. Haimour and Sandall³ showed that predictions of physical solubility and diffusivity using the nitrous oxide analogy method can be used to predict absorption rates of CO2 into aqueous MDEA under conditions of very short contact times where the chemical reaction does not affect the absorption rates.

The objective of the work presented here is to measure the total solubility of CO_2 in 50 mass % MDEA solutions over a wide range in temperature and CO_2 partial pressure and to measure the physical solubility of N_2O in these solutions as a function of the CO_2 loading.

Experimental Apparatus and Procedure

The solubility measurements presented here were carried out in a modified Zipperclave reactor. The reactor consists of a 1 L stainless steel cylindrical tank with an air-driven magnetically coupled stirrer on the top. There are valves for inlet of gas and liquid, and a connection to a vacuum pump. A thermocouple inserted in the cell measures the temperature to an accuracy of 0.1 K. The pressure is measured by a pressure transducer with an accuracy of 0.14 kPa.

* To whom correspondence should be addressed.

[†] Department of Environmental Science and Engineering, Kyungsan University, South Korea.

Initially a weighed sample of approximately 500 g of liquid is sucked into the reactor. The temperature is then adjusted to the desired value through use of the external heating jackets. A vacuum is then pulled on the reactor so that the liquid exists under its own vapor pressure. This solution vapor pressure, P_{v} , is measured. A known quantity of CO₂, n_{CO_2} , is transferred to the reactor from a gas container of known volume

$$n_{\rm CO_2} = \frac{V_{\rm T}}{RT_{\rm a}} \left(\frac{P_1}{Z_1} - \frac{P_2}{Z_2} \right) \tag{1}$$

where $V_{\rm T}$ is the volume of the gas container, z_1 and z_2 are the compressibility factors corresponding to the initial pressure, P_1 , and the final pressure, P_2 , in the gas container before and after transferring the CO₂, and $T_{\rm a}$ is the ambient temperature. After transferring the CO₂ to the reactor, the stirrer is turned on and equilibrium is attained in about 20 min. This equilibrium pressure $P_{\rm CO_2}$ (= $P_{\rm T_1} - P_{\rm v}$) is measured, and the moles of CO₂ remaining in the gas phase are determined from

$$n_{\rm CO_2}^{\rm g} = \frac{V_{\rm g} P_{\rm CO_2}}{z_{\rm CO_2} R T}$$
(2)

The moles of CO_2 in the liquid are then determined from

$$n_{\rm CO_2}^{\rm l} = n_{\rm CO_2} - n_{\rm CO_2}^{\rm g}$$
 (3)

The CO₂ loading in the liquid phase is defined as

$$L_{\rm CO_2} = \frac{n_{\rm CO_2}^{\rm l}}{n_{\rm Am}} \tag{4}$$

where n_{Am} is the moles of MDEA in the liquid phase

$$n_{\rm Am} = \frac{m_{\rm MDEA} \rho \, V_{\rm l}}{M_{\rm MDEA}} \tag{5}$$

where m_{MDEA} is the mass fraction of MDEA in the aqueous

Table 1.	Solubility	of	CO ₂	in	50	mass	%	MDE A	١
----------	-------------------	----	-----------------	----	----	------	---	--------------	---

CO ₂ loading (mol CO ₂ /	$P_{\rm CO_2}$ (kPa)					
mol MDEA)	t = 25 °C	$t = 50 \ ^{\circ}\mathrm{C}$	<i>t</i> = 75 °C	$t = 100 \ ^{\circ}\text{C}$		
0.2574	8.27					
0.2988	10.34					
0.4923	19.72					
0.0150		0.78				
0.0442		2.47				
0.0740		4.87				
0.1315		11.67				
0.1916		17.36				
0.2420		24.46				
0.3190		38.75				
0.3854		53.04				
0.4529		70.92				
0.4884		76.19				
0.0162			3.62			
0.0334			7.92			
0.0420			9.72			
0.0537			13.72			
0.0770			21.31			
0.1010			31.11			
0.1330			45.39			
0.1656			61.88			
0.1946			78.87			
0.0087				5.00		
0.0164				11.40		
0.0261				20.29		
0.0350				30.38		
0.0476				45.27		
0.0656				68.45		
0.0827				95.83		
0.1080				140.40		

solution, ρ is the solution density, V_1 is the volume of liquid in the cell, and M_{MDEA} is the molecular weight of MDEA.

To measure the solubility of N₂O in the CO₂-loaded solutions, a known quantity of N₂O is transferred to the Zipperclave reactor containing the CO₂-loaded amine from a gas container. The mass of N₂O transferred is determined in the same manner as for CO₂ (see eq 1). After transferring N₂O to the reactor, the stirrer is turned on. An equilibrium is achieved after about 10 min, and the total pressure, P_{T_2} , is measured. The partial pressure of N₂O, P_{N_2O} , is calculated from

$$P_{\rm N_2O} = P_{\rm T_2} - P_{\rm CO_2} - P_{\rm v} \tag{6}$$

The moles of N_2O in the gas phase are determined from P_{N_2O} by

$$n_{\rm N_2O}^{\rm g} = \frac{P_{\rm N_2O}V_{\rm g}}{Z_{\rm N_1O}RT}$$
(7)

The moles of N₂O dissolved in the liquid are given by

$$n_{\rm N_2O}^{\rm I} = n_{\rm N_2O} - n_{\rm N_2O}^{\rm g}$$
 (8)

We define Henry's law as

$$P_{\rm N_2O} = H_{\rm N_2O} c_{\rm N_2O} \tag{9}$$

where c_{N_2O} is the concentration of N_2O in the liquid.

The Henry's law coefficient, H_{N_2O} , is calculated from eq 9 with c_{N_2O} given by

$$c_{\rm N_2O} = n_{\rm N_2O}^{\rm l} / V_{\rm l} \tag{10}$$

Experimental Results and Discussion

Table 1 gives the data for the partial pressure of CO2

Figure 1. Solubility of CO2 in 50 mass % MDEA solution.

Figure 2. Henry's constant for N₂O in 50 mass % MDEA as a function of CO₂ loading.

Figure 3. Comparison of the N_2O solubility measured in this work for no CO_2 loading with the correlation of Wang et al.

above CO_2 -loaded solutions. These data are shown plotted in Figure 1. Table 2 lists the data for the solubility of N_2O , and these data are shown in Figure 2. Figure 2 shows that the solubility of N_2O in these CO_2 -loaded MDEA solutions decreases significantly as the CO_2 -loading increases. The solubility data for no CO_2 loading are compared to the correlation of Wang et al.⁴ in Figure 3. The experimental Henry constants of this work are approximately 10% higher than those predicted from the correction of Wang et al.

In the analysis of the data for H_{N_2O} it has been assumed that, because of the low concentration of N₂O in the liquid phase, the CO₂ equilibrium is unchanged by the addition of N₂O. In another study in our laboratory with a different aqueous amine, we tested this hypothesis by varying c_{N_2O} at a constant CO₂ loading. We found that H_{N_2O} remained constant within experimental error.

Jou et al.⁵ measured the total solubility of CO_2 in aqueous MDEA solutions. Their data are compared to the

Figure 4. Comparison of the CO_2 solubility measurements of this work with the results of Jou et al. and Chakma and Meisen.

Figure 5. Comparison of N_2O solubility with data of Browning and Weiland at 25 °C.

results of this work in Figure 4 for temperatures of 25 °C and 100 °C, where the data overlap. The partial pressure deviations between the measurements of Jou et al. and this work are larger at the lower CO_2 loadings, but the agreement becomes closer at higher CO_2 loadings. Figure 4 also shows the data of Chakma and Meisen⁶ for 50 mass % MDEA at 100 °C. The Chakma and Meisen data appear to lie between the results of this work extrapolated to higher CO_2 loadings and the data of Jou et al. The pressure transducers used in this work had an accuracy of 0.14 kPa. Since the CO_2 partial pressure is obtained as a difference between two pressure measurements, the estimated error in the CO_2 partial pressures reported here is ± 0.28 kPa.

Figure 5 compares the N₂O solubility measurements for 25 °C with the results obtained by Browning and Weiland.⁷ There is good agreement at the lower CO₂ loadings up to 0.1 mol CO₂/mol MDEA, but we find a higher N₂O solubility (lower H_{N2O}) at the higher loadings. The N₂O partial pressures measured in this work were approximately 100 kPa, and the estimated maximum error in the reported values of H_{N_2O} is less than 10%.

Table 2. Physical Solubility of N_2O in 50 mass % MDEA As a Function of CO_2 Loading

CO ₂ loading (mol CO ₂ /	$H_{ m N_{2}O}~(m kPa~m^3~mol^{-1} imes~10^{-3})$						
mol MDEA)	t = 25 °C	$t = 40 \ ^{\circ}\mathrm{C}$	t = 50 °C	t = 60 °C	$t = 80 \ ^{\circ}\mathrm{C}$		
0.0000	5549	6979	7933	8713	10273		
0.0983	6288						
0.2597	6597						
0.2988	6955						
0.4923	7215						
0.0991		7803					
0.2960		8806					
0.5377		9670					
0.2566			9582				
0.4884			10977				
0.1465				9963			
0.2516				10556			
0.4631				13173			
0.0933					10992		
0.2499					13865		
0.5065					15346		

Conclusions

In this investigation, we have measured the total solubility of CO_2 as a function of partial pressure of CO_2 in 50 mass % MDEA solutions over a wide temperature range. These data should be useful for the design of absorption columns using MDEA to remove CO_2 . The nitrous oxide analogy method may be used with the H_{N_2O} data presented here to estimate the physical solubility of CO_2 as a function of temperature and CO_2 loading. The physical solubility of CO_2 is the key physicochemical property needed to predict CO_2 mass transfer rates.

Literature Cited

- Clarke, J. K. A. Kinetics of absorption of carbon dioxide in monoethanolamine solutions at short contact times. *Ind. Eng. Chem. Fundam.* **1964** *3*, 239–245.
- (2) Laddha, S. S.; Diaz, J. M.; Danckwerts, P. V. The N₂O analogy: the solubilities of CO₂ and N₂O in aqueous solutions of organic compounds. *Chem. Eng. Sci.* **1981**, *36*, 228–229.
- (3) Haimour, N.; Sandall, O. C. Absorption of Carbon dioxide into aqueous methyldiethanolamine. *Chem. Eng. Sci.* 1984, *39*, 1791– 1796.
- (4) Wang, Y. W.; Xu, S.; Otto, F. D.; Mather, A. E. Solubility of N₂O in alkanolamines and in mixed solvents. *Chem. Eng. J.* **1192**, 48, 31–40.
- (5) Jou, F.-Y.; Mather, A. E.; Otto, F. D. Solubility of H₂S and CO₂ in Aqueous Methyldiethanolamine Solutions. *Ind. Eng. Chem. Process Des. Dev.* **1982**, *21*, 539–544.
- (6) Chakma, A.; Meisen, A. Solubility of CO₂ in aqueous methyldiethanolamine and N,N-Bis(hydroxyethyl)piperazine solutions. *Ind. Eng. Chem. Res.* **1987**, *26*, 2461–2466.
- (7) Browning, G. J.; Weiland, R. H. Physical Solubility of Carbon Dioxide in Aqueous Alkanolamines via Nitrous Oxide Analogy. *J. Chem. Eng. Data* **1994**, *39*, 817–822.

Received for review June 26, 2000. Accepted October 26, 2000. M.-K.P. held a fellowship from the Korea Science and Engineering Foundation.

JE000190T