Vapor-Liquid Equilibrium Data for the Four Binary Systems Containing Fluorocarbon, Hydrofluorocarbon, and Fluorinated Ethers at 101.3 kPa

Katsumi Tochigi,* Tomomi Satou, Kiyofumi Kurihara, and Kenji Ochi

Department of Industrial Chemistry, Nihon University, 1-8 Kanda Surugadai, Chiyoda-ku, Tokyo 101, Japan

Hiroshi Yamamoto and Yuji Mochizuki

Research Institute of Innovative Technology for the Earth (RITE), Hongo 2-40-17, Bunkyo-ku, Tokyo 113, Japan

Takeshi Sako

Department of Chemical Systems, National Institute of Material and Chemistry Research (NIMC), Higashi 1-1, Tsukuba, Ibaraki 305, Japan

Isobaric vapor—liquid equilibria were measured for the four binary systems of perfluoro-2-methylpentane (FC-5114mmyc2) + perfluorooctane (FC-7118mc6), 1,1,1,2,2,3,3,4,4-nonafluorohexane (HFC-569mccf) + octane, 2,2,2-trifluorodiethyl ether (HFE-356mf-f) + butyl ethyl ether, and methylperfluoroisopropyl ether (HFE-347 mmy) + heptane at atmospheric pressure. The HFE-356mf-f + butyl ethyl ether system formed a minimum boiling azeotrope. The experimental data except for those for the FC-5114mmyc2 + FC-7118mc6 system were correlated by the Wilson and NRTL activity coefficient models. The Wilson and NRTL equations gave similar results. The VLE for the FC-5114mmyc2 + FC-7118mc6 system was predicted to be an ideal solution.

Introduction

The hydrochlorofluorocarbons (HCFCs) are widely used in the manufacture of cleaning solvents, but they contain chlorine atoms which result in an ozone depletion potential. Therefore, the development of the new purer cleaning solvents and mixed cleaning solvents with no chlorine atoms in place of HCFCs has been pursued. For the design and development of manufacturing processes using the new mixed cleaning solvents, it is necessary to have vapor– liquid equilibrium (VLE) data.

This paper reports the experimental VLE data for the four binary systems perfluoro-2-methylpentane ((CF₃)₂CF-CF₂CF₂CF₃, FC-5114mmyc2) + perfluorooctane (CF₃(CF₂)₆-CF₃, FC-7118mc6), 1,1,1,2,2,3,3,4,4-nonafluorohexane (CF₃-(CF₂)₃CH₂CH₃, HFC-569mccf) + octane, 2,2,2-trifluorodiethyl ether (CF₃CH₂OCH₂CF₃, HFE-356mf-f) + butyl ethyl ether, and methylperfluoroisopropyl ether (CF₃CF(CF₃)OCH₃, HFE-347mmy) + heptane at 101.3 kPa. These binary VLE data are not available in the literature.

Experimental Section

Apparatus and Procedures. For the VLE measurements, a modified Rogalski–Malanowski equilibrium still was used. This still has been described in detail by Hiaki et al.¹ and Kurihara et al.² It is a liquid–vapor ebullition-type. The pressure in the still was measured using a Fortin-type mercury barometer. Since the barometric pressure changed slightly, the experimental temperatures were corrected to 101.3 kPa.³ The equilibrium temperature was

* Corresponding author. E-mail: tochigi@chem.cst.nihon-u.ac.jp.

Table 1.	Purity, Densi	ties, ρ, and	Normal	Boiling	Points,
T _b , of the	e Components				

	purity/	ρ(298.1 (kg·n	15 K)/ n ⁻³)	5 K)/ ⁻³) T _b /K		
component	%	expt	lit. ^a	expt	lit. ^a	
FC-5114mmyc2	99.8	1710.2		330.80		
FC-7118mc6	99.9	1755.1		378.87		
HFC-569mccf	99.4	1415.8		340.74		
HFE-356mf-f	99.8	1402.8		336.74		
HFE-347mmy	99.9	1420.5^{b}		302.49		
heptane	99.8	679.5	679.46	371.49	371.54	
octane	99.9	698.5	698.62	398.70	398.82	
butyl ethyl ether	99.9	745.3	744.8	364.25	365.39	

^a Riddick et al.⁴ ^b This value was measured at 293.15 K.

 Table 2. Antoine Constants^a and Liquid Molar Volumes of Components

Α	В	С	$rac{ u_i^{ m L} imes 10^6}{ m (m^3 \cdot mol^{-1})}$
5.732 67	960.556	-73.068	197.660
5.792 15	1141.890	-77.296	249.588
6.075 06	1169.9045	-53.248	175.228
6.326 51	1218.754	-54.673	129.786
6.004 16	1004.638	-51.233	127.459
6.019 80	1264.370	-56.510	146.499
6.056 90	1358.800	-63.295	163.422
6.084 70	1256.361	-56.243	136.237
	A 5.732 67 5.792 15 6.075 06 6.326 51 6.004 16 6.019 80 6.056 90 6.084 70	A B 5.732 67 960.556 5.792 15 1141.890 6.075 06 1169.9045 6.326 51 1218.754 6.004 16 1004.638 6.019 80 1264.370 6.056 90 1358.800 6.084 70 1256.361	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

^{*a*} log(*P*/kPa) = A - B/[(T/K) + C]. ^{*b*} The values were given by RITE.⁵ ^{*c*} The values were published by Gmehling and Onken.⁶

measured with a calibrated platinum resistance thermometer with an accuracy of ± 0.01 K.

Table 3.	Isobaric Vapor	-Liquid Equilibriu	n Data, Liquio	d Phase, <i>x</i> 1, and	l Vapor Phase,	, <i>y</i> 1, Mole Fraction	ns, Temperature,
T, and A	ctivity Coefficie	nts, γ_i , for the Four	Binary Syste	ms at 101.3 kPa	1		

<i>X</i> 1	y_1	<i>T</i> /K	γ1	Y2	X_1	y_1	T/K	γ1	Y2
			F	$C_{-511}/mmyc2$ ($1) \pm EC_{-}7118mc6$ (9	2)			
0.000	0.000	270 07	1.	1 000	0.208	0 726	251.96	0.067	1.024
0.000	0.000	370.07	0.024	1.000	0.598	0.730	245.05	0.907	1.034
0.112	0.320	309.43	0.934	1.015	0.528	0.835	343.83	0.985	1.021
0.165	0.444	365.62	0.969	0.994	0.612	0.875	342.42	0.987	1.068
0.229	0.549	361.36	0.965	1.001	0.710	0.926	338.85	1.006	0.969
0.265	0.600	359.14	0.968	1.002	0.858	0.972	334.28	1.010	0.895
0.307	0.649	356.74	0.965	1.010	1.000	1.000	330.80	1.000	
				HEC 560mcc	$f(1) \pm Octano(2)$				
0.000	0.000	208 70		1 000	$(1) + O(table (\lambda))$ 0.577	0 874	247 20	1 990	1 6 1 9
0.000	0.000	330.70	0 551	1.000	0.377	0.074	040.04	1.229	1.012
0.014	0.152	393.31	2.551	1.002	0.602	0.878	346.84	1.200	1.688
0.066	0.484	377.83	2.514	1.026	0.651	0.888	346.02	1.152	1.825
0.101	0.590	371.73	2.347	1.031	0.680	0.894	345.58	1.126	1.917
0.148	0.678	365.14	2.201	1.066	0.724	0.904	344.90	1.092	2.067
0.164	0.701	363.38	2.157	1.072	0.748	0.910	344.47	1.079	2.159
0.174	0.714	362.28	2.136	1.079	0.774	0.917	344.03	1.066	2.259
0.198	0.737	360.20	2.055	1.099	0.805	0.924	343.61	1.046	2.438
0.212	0.748	359.22	2.004	1.110	0.839	0.934	343.10	1.031	2.617
0.252	0.776	356.68	1 882	1 1 2 9	0.886	0.001	342.40	1.001	2 937
0.202	0.708	254.65	1 772	1.100	0.000	0.045	242 11	1.015	2 091
0.232	0.750	252.05	1.775	1.103	0.005	0.333	041.04	1.012	0.001
0.310	0.806	333.83	1.695	1.197	0.935	0.908	341.04	1.005	3.332
0.380	0.825	351.83	1.533	1.285	0.956	0.977	341.34	1.002	3.582
0.462	0.848	349.60	1.387	1.399	0.976	0.987	341.04	1.001	3.757
0.505	0.859	348.61	1.325	1.465	1.000	1.000	340.74	1.000	
0.548	0.866	347.85	1.260	1.570					
			ЦГ	$E 256mff(1) \perp$	Butyl Ethyl Ethor	(9)			
0.000	0.000	204.95	пг	E-330IIII-I (I) T		(2)	240.20	1 007	1 909
0.000	0.000	304.23	1 000	1.000	0.521	0.727	340.20	1.237	1.203
0.063	0.246	357.41	1.980	0.996	0.558	0.743	339.72	1.200	1.311
0.076	0.278	356.41	1.912	0.999	0.581	0.753	339.41	1.181	1.344
0.082	0.300	355.75	1.952	0.995	0.603	0.763	339.15	1.163	1.374
0.093	0.327	354.78	1.933	1.000	0.632	0.776	338.85	1.140	1.416
0.100	0.343	354.35	1.912	0.997	0.654	0.785	338.58	1.125	1.460
0.109	0.362	353.66	1.891	1.000	0.681	0.797	338.30	1.108	1.510
0.137	0.412	351.97	1.806	1.006	0.715	0.812	337.99	1.087	1.583
0.160	0.451	350.69	1.764	1.007	0.741	0.824	337.77	1.072	1.644
0 181	0.477	349.67	1 704	1 018	0.765	0.835	337 58	1.060	1 710
0.235	0.543	347 23	1 617	1.010	0.788	0.846	337 49	1.000	1 780
0.233	0.545	245.00	1.017	1.033	0.700	0.040	007 00	1.040	1.700
0.207	0.576	345.90	1.578	1.049	0.818	0.802	337.23	1.030	1.8/1
0.293	0.597	345.06	1.532	1.064	0.841	0.875	337.08	1.028	1.951
0.308	0.610	344.65	1.510	1.067	0.861	0.887	336.97	1.022	2.025
0.324	0.620	344.18	1.482	1.082	0.924	0.930	336.71	1.008	2.317
0.351	0.635	343.62	1.428	1.104	0.926	0.931	336.70	1.007	2.346
0.376	0.654	342.94	1.404	1.115	0.930	0.935	336.70	1.007	2.336
0.402	0.667	342.38	1.365	1.142	0.953	0.954	336.68	1.003	2.464
0.429	0.682	341.88	1.330	1.162	0.958	0.959	336.67	1.004	2.459
0.458	0.693	341.37	1.289	1.204	0.968	0.967	336.68	1.001	2.597
0.475	0.704	340.93	1.281	1.217	0.982	0.981	336.69	1.001	2.657
0.499	0 717	340 53	1 259	1 237	1 000	1 000	336 74	1 000	2.001
0.400	0.717	010.00	1.200	1.207	1.000	1.000	000.74	1.000	
				HFE-347mmy	(1) + Heptane(2)				
0.000	0.000	371.49		1.000	0.515	0.926	308.47	1.452	1.540
0.029	0.461	355.25	3.217	0.918	0.546	0.927	308.03	1.392	1.656
0.032	0.493	353.28	3.276	0.924	0.643	0.936	307.43	1.219	1.898
0.046	0.604	347.53	3.240	0.889	0.779	0.950	305.35	1.099	2.640
0.086	0 750	334 69	3 064	0.929	0.810	0.951	304.96	1 073	3 065
0.128	0.813	324 80	2 080	1.067	0.842	0.001	304 70	1.073	3 412
0.120	0.013	299 19	2.303	1.007	0.042	0.000	304.73	1 029	2 621
0.130	0.007	J&&.46 220 02	2.001 9.704	1.030	0.000	0.000	JU4.J&	1.00%	1 000
0.173	0.833	320.03	2.704	1.070	0.000	0.903	304.21	1.020	4.032
0.190	0.867	318.38	2.639	1.070	0.903	0.966	304.00	1.013	4.359
0.273	0.901	313.58	2.236	1.092	0.915	0.970	303.80	1.011	4.431
0.288	0.902	313.08	2.158	1.129	0.931	0.974	303.56	1.006	4.785
0.298	0.905	312.67	2.122	1.130	0.947	0.979	303.31	1.003	5.092
0.320	0.909	312.09	2.024	1.147	0.962	0.985	303.07	1.002	5.132
0.403	0.922	310.17	1.741	1.221	0.977	0.990	302.85	1.000	5.712
0.448	0.924	309.33	1.616	1.336	1.000	1.000	302.49	1.000	
0.488	0.926	308.78	1.515	1.438					

Analysis. Vapor and liquid samples were analyzed with the gas chromatograph (HP-GC6890 series) equipped with a flame ionization detector. Pora PLOT Q (GL Science Co.) was used as column packing and helium as the carrier gas. The relationship between peak area and composition was determined from analysis of samples of known composition. The accuracy of the equilibrium concentration was estimated to be ± 0.001 in mole fraction except for the HFE-

347mmy + heptane system with an accuracy of ± 0.003 mole fraction.

Materials. FC-5114mmyc2, FC-7118mc6, HFC-569mccf, HFE-356mf-f, and HFE-347mmy were provided by the Research Institute of Innovative Technology for the Earth (RITE). Heptane, octane, and butyl ethyl ether were special grade pure reagents (Wako Pure Chemical Industry, Inc., Japan, and Aldrich Chemical Co., Inc., Japan). These

Figure 1. Temperature–composition diagram for the FC-5114mmyc2(1) + FC-7118mc6(2) system: (**■**) experimental liquidphase mole fractions x_1 ; (**▲**) experimental vapor-phase mole fractions y_1 ; (**−**) ideal solution.

Figure 2. Temperature–composition diagram for the HFC-569mccf(1) + octane(2) system: (**■**) experimental liquid-phase mole fractions x_1 ; (**▲**) experimental vapor-phase mole fractions y_1 ; (–) Wilson equation.

Figure 3. Temperature–composition diagram for the HFE-356mf-f(1) + butyl ethyl ether(2) system: (**■**) experimental liquidphase mole fractions x_1 ; (**▲**) experimental vapor-phase mole fractions y_1 ; (**—**) Wilson equation.

Figure 4. Temperature–composition diagram for the HFE-347mmy(1) + heptane(2) system: (**■**) experimental liquid-phase mole fractions x_1 ; (**▲**) experimental vapor-phase mole fractions y_1 ; (–) Wilson equation.

materials were used without further purification. In Table 1, the purity and some measured properties of the samples are shown together with the literature values.

Experimental Results

The experimental results of the four binary VLE data are shown in Table 3 and in Figures 1-8. The activity

Figure 5. Activity coefficient-liquid composition for the FC-5114mmyc2(1) + FC-7118mc6(2) system: (\bullet , \bigcirc) experimental.

Figure 6. Activity coefficient–liquid composition for the HFC-569mccf(1) + octane(2) system: (\bullet, \bigcirc) experimental; (–) Wilson equation.

Figure 7. Activity coefficient-liquid composition for the HFE-356mf-f(1) + butyl ethyl ether(2) system: (\bullet, \bigcirc) experimental; (-) Wilson equation.

Figure 8. Activity coefficient–liquid composition for the HFE-347mmy(1) + heptane(2) system: (\bullet, \bigcirc) experimental; (–) Wilson equation.

coefficients γ_i in Table 3 were calculated by the following equation which assumes ideal gas behavior:

$$Py_i = x_i \gamma_i P_i^{\rm S} \tag{1}$$

because the vapor-phase fugacity coefficients of the FC-5114mmyc2, FC-7118mc6, HFC-569mccf, HFE-356mf-f, and HFE-347mmy could not be calculated. In eq 1, the vapor pressures of the pure components P_i^S were calculated from the Antoine equation constants shown in Table 2.

test	FC-5114mmyc2(1) + FC-7118mc6(2)	HFC-569mccf(1) + octane(2)	HFE-356mf-f(1) + butyl ethyl ether(2)	HFE-347mmy(1) + heptane(2)
$\begin{array}{c} point^b\\ \Delta y_1 \end{array}$	$+ 0.005_1$	0.0119	$+ 0.005_5$	+ 0.009 ₃
area ^{c} $D-J\%$	n.a. ^d	$^{+}_{-6.2}$	$^{+}_{-6.2}$	$^{+}$

Table 4. Results^a of Thermodynamic Consistency Tests of VLE Data for Four Binary Systems Containing Hydrochlorofluorocarbons at 101.3 kPa

^{*a*} Results of the tests are characterized by the signs "+" (pass) and "-" (not pass). ^{*b*} The criterion for passing the test is $\Delta y_1 \leq 0.010.^6$ ^{*c*} The criterion for passing the test is $D-J \leq 10\%.^6$ ^{*d*} n.a. = Not available.

Table 5.	Parameters and	Deviations be	tween the Calo	ulated and	Experimental	Vapor-Phase	Mole Fractions, A	Δy_1 , and
Tempera	ture, ΔT , for the	Three Binary	Systems Using	the Wilsor	n and NRTL Eq	uations ^a		

parameter	HFC-5 oc	HFC-569mccf(1) + HFE-356mf-f(1) + octane(2) butyl ethyl ether(2)				nmy(1) + ne(2)	
			Wilson Equation				
$\lambda_{12} - \lambda_{11}{}^b$	1	536.54	92	8.72	2226	.92	
$\lambda_{21} - \lambda_{22}{}^b$	2	854.10	201	7.04	3212	.83	
			NRTL Equation				
$g_{12} - g_{22}{}^b$	2550.23		246	2464.08		3534.12	
$g_{21} - g_{11}{}^{b}$	1491.91		35	357.80		1325.20	
α_{12}		0.3 0.3		0.3			
	$\Delta y_1 \times 100$	$\Delta T/K$	$\Delta y_1 \times 100$	$\Delta T K$	$\Delta y_1 \times 10_0$	Δ <i>T</i> /K	
			Wilson Equation				
average	1.3	0.47	0.3	0.17	0.3	0.64	
maximum	2.3	1.18	1.0	0.50	0.9	2.97	
			NRTL Equation				
average	1.3	0.52	0.4	0.17	0.4	0.70	
maximum	2.4	1.22	1.1	0.47	1.6	2.54	

 $a^{a} \Delta y_{1} = \sum_{k} |y_{1,\exp} - y_{1,calc}|_{k} / N_{\lambda} \Delta T = \sum_{k} |T_{\exp} - T_{calc}|_{k} / N_{i}; N = \text{number of data points.}$ ^b J mol⁻¹.

The thermodynamic consistency of the experimental VLE data was checked using the point test of Van Ness et al.⁷ and Frendenslund et al.8 and the area test of Herington9 and of Redlich and Kister¹⁰ as described by Gmehling and Onken.⁶ The consistency of the data for the FC-5114mmyc2 + FC-7118mc6 system was only checked by the point test, because all the values γ_i were close to 1, indicating that this system at atmospheric pressure is nearly an ideal solution. The results of the consistency test are shown in Table 4. The reported data except for those for the HFC-569mccf + octane system were found to be thermodynamically consistent according to the point test. But the difference between the calculated value ($\Delta y_1 = 0.012$) and the criterion ($\Delta y_1 = 0.010$) of the point test was small for this system. On the other hand, the area test also indicated that the data sets for the all-three-measures systems are reliable.

The HFE-356mf-f + butyl ethyl ethyl ether system forms a minimum boiling azeotrope. The binary azeotropic point was determined by a graphical method¹¹ on the basis of experimental VLE data and is $x_{1(AZ)} = 0.961$ and $T_{(AZ)} = 336.68$ K.

Correlation

The activity coefficients of the three binary systems (except the FC-5114mmyc2 + FC-7118mc6 system) were correlated by the Wilson¹² and NRTL equations.¹³ The following objective function was minimized during optimization of the parameters in each of the two equations.

$$F_{\rm obj} = \sum_{k=1}^{N} \left[\left(\frac{\gamma_{1,\rm calc} - \gamma_{1,\rm exp}}{\gamma_{1,\rm exp}} \right)_{k}^{2} + \left(\frac{\gamma_{2,\rm calc} - \gamma_{2,\rm exp}}{\gamma_{2,\rm exp}} \right)_{k}^{2} \right] \quad (2)$$

Table 5 lists the estimated parameters of three binary

systems and the deviations between experimental and calculated vapor-phase compositions and bubble point temperatures. The liquid molar volumes v_i^L in the Wilson equation are the constant values shown in Table 2. The parameter α_{12} in the NRTL equation was set to 0.3 for all the binary systems in this work. The Wilson and NRTL equations yielded similar results. The correlated results from the Wilson equation are illustrated in Figure 2.

For the FC-5114mmyc2 + FC-7118mc6 system, the VLE was predicted to be an ideal solution. The predicted results give an absolute average deviation of 0.9 mol % in vaporphase composition and 0.43 K in temperature. The predicted results are illustrated in Figure 1.

Literature Cited

- Hiaki, T.; Yamato, K.; Kojima, K. Vapor-Liquid Equilibria of 2,3-Dimethylbutane + Methanol or Ethanol at 101.3 kPa. *J. Chem. Eng. Data* **1992**, *37*, 203–206.
- (2) Kurihara, K.; Minoura, T.; Takeda, K.; Kojima, K. Isothermal Vapor-Liquid Equilibria for Methanol + Ethanol + Water, Methanol + Water, and Ethanol + Water. J. Chem. Eng. Data 1995, 40, 679–684.
- (3) Hiaki, T.; Kawai, A. Vapor-Liquid Equilibria Determination of a Hydrofluoroether with Several Alcohols. *Fluid Phase Equilib.* 1999, 158–160, 979–989.
- (4) Riddick, J. A.; Bunger, W.; Sakano, T. K. Organic Solvents Physical Properties and Methods of Purification, 4th ed.; John Wiley & Sons: New York, 1986.
- (5) Annual reports of the national project. Development of New Refrigerants, Blowing Agents and Cleaning Solvents for Effective Use of Energy; Edited by RITE (1994–1999).
- (6) Gmehling, J.; Onken, U. Vapor-Liquid Equilibrium Data Collection; Chemistry Data Series; DECHEMA: Frankfurt, 1977–1982.
 (7) Van Ness, H. C.; Byer, S. M.; Gibbs, R. E. Vapor-Liquid Equilib-
- (7) Van Ness, H. C.; Byer, S. M.; Gibbs, R. E. Vapor-Liquid Equilibrium: Part I. An Appraisal Data Reduction Methods. *AIChE J.* **1973**, *19*, 238–244.
- (8) Frendenslund, A.; Gmehling, J.; Rasmussen, P. Vapor-Liquid Equilibria Using UNIFAC; A Group-Contribution method; Elsevier: Amsterdam, 1977.
- (9) Herington, E. F. G. Tests for Consistency of Experimental Isobaric Vapor Liquid Equilibrium Data. J. Inst. Pet. 1951, 37, 457–470.

- (10) Redlich, O.; Kister, A. T. Algebraic Representation of Thermo-
- (10) Redlich, O.; Kister, A. T. Algebraic Representation of Thermo-dynamic Properties and the Classification of Solutions. *Ind. Eng. Chem.* **1948**, *40*, 345–348.
 (11) Hiaki, T.; Tochigi, K.; Kojima, K. Measurement of Vapor-Liquid Equilibria and Determination of Azeotropic Point. *Fluid Phase Equilib.* **1986**, *26*, 83–102.
 (12) Wilson, G. M. Vapor-liquid equilibrium. XI. A New Expression for the Excess Free Energy of Mixing. *J. Am. Chem. Soc.* **1964**, *86*, 127–130.
- (13) Renon, H.; Prausnitz, J. M. Local Compositions in Thermodynamic Excess Functions for Liquid Mixtures. *AIChE J.* **1968**, *14*, 135–144.

Received for review June 28, 2000. Accepted April 17, 2001. The authors acknowledge the financial support of the New Energy and Industrial Technology Development Organization (NEDO).

JE000192D