# Temperature Dependence of Binary Mixing Properties for Acetone, Methanol, and Linear Aliphatic Alkanes ( $C_6-C_8$ )

## Gonzalo Marino, Manuel M. Piñeiro,<sup>†</sup> Miguel Iglesias, Beatriz Orge, and José Tojo\*

Departamento de Ingeniería Química and Departamento de Física Aplicada, Facultad de Ciencias, Universidad de Vigo, 36200 Vigo, Spain

In this work we analyze the temperature dependence of the speed of sound, density, and refractive index of binary mixtures of acetone, methanol, and linear aliphatic alkanes (hexane, heptane, or octane) at atmospheric pressure. From the experimental measurements of these physical properties, the corresponding excess molar volumes, isentropic compressibility deviations, and refractive index deviations were derived. A set of variable-degree polynomials have been fitted to the results. Despite the large excess molar volumes obtained, they were satisfactorily correlated by a cubic equation of state with simple combinatorial mixing rules.

#### Introduction

This paper is a continuation of our work concerned with thermodynamic studies of homogeneous and heterogeneous azeotropic liquid mixtures.<sup>1,2</sup> This work presents experimental speeds of sound, densities, and refractive indexes for the binary mixtures acetone + (methanol, hexane, heptane, or octane) and methanol + (hexane, heptane, or octane) at various temperatures and atmospheric pressure, covering the whole composition range. Excess molar volumes, refractive index deviations, and isentropic compressibility deviations were calculated, and polynomials were fitted to the results. The application of equations of state for predicting the excess molar volumes, as well as other mixing properties, demonstrates that a satisfactory prediction can be obtained in polar/self-associative multicomponent or partially miscible systems using simple mixing rules, critical properties, and acentric factors for the pure components and binary interaction parameters.<sup>2</sup>

### **Experimental Section**

Merck Lichrosolv quality chemicals were used to prepare the samples. The pure components, which had recently been acquired and stored in an inert argon atmosphere (<3 ppmv in water) as soon as the bottles were opened, were degassed with an ultrasound technique and stored over freshly activated molecular sieves type 4 Å or 3 Å, 1.6 mm, for several days before use. The main physical properties were determined for each component, and the results are shown together with literature values in Table 1. Precautions were taken to reduce evaporation errors during sample preparation. The solvents were analyzed by GLC using a HP 6890 GC Series System chromatograph equipped with a flame ionization detector and a HP-INNOWax 19091N-133 column of cross-linked poly(ethylene glycol) (30

† Departamento de Física Aplicada.

 Table 1. Comparison of Data with Literature Values for

 Pure Liquids at 298.15 K

| com-                                               | ρ/g                                                                           | ·cm <sup>-3</sup>                                                                       | n                                                                                        | D                                                        | $u/m \cdot s^{-1}$                             |                                                             |
|----------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------|
| ponent                                             | exp                                                                           | lit. <sup>3</sup>                                                                       | exp                                                                                      | lit. <sup>3</sup>                                        | exp                                            | lit.                                                        |
| acetone<br>methanol<br>hexane<br>heptane<br>octane | $\begin{array}{c} 0.7844 \\ 0.7865 \\ 0.6551 \\ 0.6794 \\ 0.6985 \end{array}$ | $\begin{array}{c} 0.785\ 47\\ 0.786\ 64\\ 0.654\ 84\\ 0.679\ 46\\ 0.698\ 62\end{array}$ | $\begin{array}{c} 1.355\ 80\\ 1.326\ 45\\ 1.372\ 34\\ 1.385\ 12\\ 1.395\ 14 \end{array}$ | 1.355 96<br>1.326 52<br>1.372 26<br>1.385 11<br>1.395 05 | 1161.0<br>1102.1<br>1077.0<br>1130.5<br>1172.1 | $1160.6^4 \\ 1102^5 \\ 1076.37^6 \\ 1129.85^6 \\ 1172.02^6$ |

m  $\times$  2.5  $\times$   $10^{-4}$  m  $\times$  2.5  $\times$   $10^{-7}$  m film thickness). The injector and detector temperatures were maintained at 448.15 K and 473.15 K, respectively. The column temperature was maintained at 313.15 K, and the flow rate of nitrogen carrier gas was  $6 \times 10^{-7}$  mL/min. The analysis showed that the major peak area exceeds 99.8 mass % for acetone and methanol and 99.5 mass % for alkanes, with maximum water contents of 6.8  $\times$  10<sup>-3</sup>, 1.5  $\times$  10<sup>-2</sup>, 7.8  $\times$  $10^{-4},\,8.1\times10^{-4},\,and\,8.0\times10^{-4}$  mass % (Metrohm 737 KF coulometer), for acetone, methanol, and alkanes  $(C_6 - C_8)$ , respectively. The samples were prepared by mass using a Mettler AE-240 balance with a precision of  $\pm 10^{-4}$  g. A PolyScience controller bath model 9510, with a temperature stability of  $\pm 10^{-2}$  K, was used to thermostat the samples before experimental measurement, at least 30 min. The densities and speeds of sound of the mixtures and pure components were measured with an Anton Paar DSA-48 densimeter and sound analyzer with an uncertainty of  $\pm 10^{-4}$  g·cm<sup>-3</sup> and  $\pm 5 \times 10^{-1}$  m·s<sup>-1</sup>, respectively. The refractive indices were measured with an automatic refractometer (ABBEMAT-HP Dr. Kernchen) with an uncertainty of  $\pm 5 \times 10^{-5}$ . Both apparatus calibrations were performed periodically with Millipore quality water and air. The uncertainties were estimated as better than  $\pm 10^{-2}$  $cm^3 \cdot mol^{-1}$  for excess molar volumes,  $\pm 10^{-4}$  for refractive index deviations, and  $\pm 1$  TPa<sup>-1</sup> for isentropic compressibility deviations.

 $<sup>^{*}</sup>$  To whom correspondence should be addressed. Fax: +34 986 812382. E-mail: jtojo@uvigo.es.

Table 2. Densities,  $\rho$ , Refractive Indices,  $n_D$ , Speeds of Sound, u, Isentropic Compressibilities,  $\kappa_S$ , and Excess Molar Volumes,  $V^E$ , for Acetone (1) + (Methanol or Hexane or Heptane or Octane) (2) and Methanol (1) + (Hexane or Heptane or Octane) (2) at Different Temperatures

| <i>X</i> <sub>1</sub> | ρ                  | n <sub>D</sub> | u                                  | $\kappa_{\rm S}$  | $V^{\rm E}$                        | <i>X</i> <sub>1</sub> | ρ                  | n <sub>D</sub> | u                                           | $\kappa_{\rm S}$  | $V^{\rm E}$                        |
|-----------------------|--------------------|----------------|------------------------------------|-------------------|------------------------------------|-----------------------|--------------------|----------------|---------------------------------------------|-------------------|------------------------------------|
|                       | g·cm <sup>-3</sup> |                | $\mathbf{m} \cdot \mathbf{s}^{-1}$ | TPa <sup>-1</sup> | cm <sup>3</sup> ·mol <sup>-1</sup> |                       | g•cm <sup>−3</sup> |                | $\overline{\mathbf{m}\cdot\mathbf{s}^{-1}}$ | TPa <sup>-1</sup> | cm <sup>3</sup> ⋅mol <sup>-1</sup> |
|                       |                    |                |                                    | Acet              | one $(1) + Metha$                  | anol (2). $T =$       | 278.15 K           |                |                                             |                   |                                    |
| 0.0000                | 0.8052             |                | 1169.2                             | 908.5             | 0.000                              | 0.5461                | 0.8111             |                | 1236.5                                      | 806.4             | -0.34                              |
| 0.0339                | 0.8066             |                | 1177.0                             | 894.9             | -0.07                              | 0.6481                | 0.8105             |                | 1241.8                                      | 800.1             | -0.30                              |
| 0.0783                | 0.8078             |                | 1186.0                             | 880.1             | -0.12                              | 0.7458                | 0.8098             |                | 1246.9                                      | 794.3             | -0.25                              |
| 0.1615                | 0.8095             |                | 1199.4                             | 858.7             | -0.22                              | 0.8427                | 0.8089             |                | 1250.3                                      | 790.9             | -0.18                              |
| 0.2570                | 0.8106             |                | 1211.7                             | 840.2             | -0.28                              | 0.8972                | 0.8082             |                | 1250.6                                      | 791.2             | -0.12                              |
| 0.3392                | 0.8112             |                | 1220.3                             | 827.8             | -0.32                              | 0.9576                | 0.8074             |                | 1250.9                                      | 702 5             | -0.05                              |
| 0.4434                | 0.0113             |                | 1229.0                             | 010.4             | -0.34                              | 1.0000                | 0.8009             |                | 1230.3                                      | 192.5             | 0.00                               |
| 0.0000                | 0 7000             | 1 00070        | 1105.0                             | 0747              | T = 23                             | 88.15 K               | 0.0004             | 1 05 401       | 1105 4                                      | 074.0             | 0.00                               |
| 0.0000                | 0.7960             | 1.33070        | 1135.3                             | 974.7             | 0.00                               | 0.5470                | 0.8004             | 1.35421        | 1195.4                                      | 874.3             | -0.33                              |
| 0.0337                | 0.7971             | 1.33282        | 1143.0                             | 900.3             | -0.06                              | 0.0343                | 0.7997             | 1.33000        | 1200.8                                      | 863 /             | -0.30                              |
| 0.0781                | 0.7996             | 1 34024        | 1163.4                             | 924 0             | -0.21                              | 0.7414                | 0.7979             | 1 35974        | 1204.0                                      | 861.8             | -0.18                              |
| 0.2673                | 0.8006             | 1.34511        | 1174.9                             | 904.8             | -0.29                              | 0.9042                | 0.7971             | 1.36066        | 1206.8                                      | 861.5             | -0.11                              |
| 0.3442                | 0.8009             | 1.34815        | 1182.2                             | 893.4             | -0.32                              | 0.9232                | 0.7969             | 1.36085        | 1206.7                                      | 861.7             | -0.10                              |
| 0.4551                | 0.8008             | 1.35178        | 1190.3                             | 881.4             | -0.34                              | 1.0000                | 0.7958             | 1.36161        | 1205.9                                      | 864.1             | 0.00                               |
|                       |                    |                |                                    | Ace               | tone (1) + Hexa                    | ne (2) $T = 2$        | 278 15 K           |                |                                             |                   |                                    |
| 0.0000                | 0.6728             |                | 1167.8                             | 1089.8            | 0.00                               | 0.5451                | 0.7203             |                | 1167.4                                      | 1018.7            | 0.88                               |
| 0.0415                | 0.6750             |                | 1164.6                             | 1092.4            | 0.18                               | 0.6475                | 0.7345             |                | 1176.2                                      | 984.1             | 0.80                               |
| 0.0859                | 0.6775             |                | 1162.0                             | 1093.2            | 0.37                               | 0.7684                | 0.7545             |                | 1192.5                                      | 932.1             | 0.63                               |
| 0.1781                | 0.6838             |                | 1158.6                             | 1089.4            | 0.61                               | 0.8779                | 0.7765             |                | 1214.5                                      | 873.1             | 0.39                               |
| 0.2714                | 0.6913             |                | 1158.0                             | 1078.8            | 0.77                               | 0.9405                | 0.7912             |                | 1231.1                                      | 833.9             | 0.20                               |
| 0.3496                | 0.6985             |                | 1158.8                             | 1066.1            | 0.84                               | 1.0000                | 0.8069             |                | 1250.5                                      | 792.5             | 0.00                               |
| 0.4586                | 0.7099             |                | 1162.4                             | 1042.5            | 0.89                               |                       |                    |                |                                             |                   |                                    |
|                       |                    |                |                                    |                   | T = 23                             | 88.15 K               |                    |                |                                             |                   |                                    |
| 0.0000                | 0.6646             | 1.37847        | 1123.2                             | 1192.7            | 0.00                               | 0.5481                | 0.7110             | 1.36796        | 1122.4                                      | 1116.5            | 0.95                               |
| 0.0899                | 0.6693             | 1.37648        | 1116.8                             | 1198.0            | 0.41                               | 0.6869                | 0.7305             | 1.36577        | 1135.9                                      | 1061.0            | 0.82                               |
| 0.1745                | 0.6749             | 1.37454        | 1113.7                             | 1194.7            | 0.65                               | 0.7592                | 0.7425             | 1.36461        | 1146.2                                      | 1025.2            | 0.70                               |
| 0.2642                | 0.6817             | 1.37285        | 1112.6                             | 1185.1            | 0.83                               | 0.8793                | 0.7661             | 1.36296        | 1169.8                                      | 953.8             | 0.41                               |
| 0.3479                | 0.6891             | 1.37139        | 1113.5                             | 1170.5            | 0.93                               | 0.9355                | 0.7791             | 1.36229        | 1185.3                                      | 913.7             | 0.23                               |
| 0.4492                | 0.0994             | 1.30900        | 1110.0                             | 1140.0            | 0.97                               | 1.0000                | 0.7958             | 1.30101        | 1205.9                                      | 004.1             | 0.00                               |
|                       |                    |                |                                    |                   | T=29                               | 98.15 K               |                    |                |                                             |                   |                                    |
| 0.0000                | 0.6551             | 1.37234        | 1077.0                             | 1316.1            | 0.00                               | 0.5551                | 0.7011             | 1.36168        | 1076.7                                      | 1230.4            | 1.04                               |
| 0.0381                | 0.6568             | 1.3/156        | 1074.0                             | 1320.0            | 0.22                               | 0.6590                | 0.7154             | 1.36011        | 1086.5                                      | 1184.0            | 0.93                               |
| 0.0701                | 0.0000             | 1.37074        | 1071.4                             | 1326.3            | 0.39                               | 0.7040                | 0.7525             | 1.33607        | 1101.2                                      | 1043.6            | 0.73                               |
| 0.1045                | 0.0047             | 1 36670        | 1066.2                             | 1308.0            | 0.01                               | 0.0042                | 0.7555             | 1 35638        | 1125.5                                      | 997 5             | 0.44                               |
| 0.3515                | 0.6791             | 1.36519        | 1067.1                             | 1293.2            | 1.02                               | 1.0000                | 0.7844             | 1.35580        | 1161.0                                      | 945.9             | 0.00                               |
| 0.4510                | 0.6890             | 1.36341        | 1070.8                             | 1265.8            | 1.07                               |                       |                    |                |                                             |                   |                                    |
|                       |                    |                |                                    | Acot              | (1) + Hent                         | and (2) $T =$         | 278 15 K           |                |                                             |                   |                                    |
| 0 0000                | 0 6963             |                | 1217                               | 970.0             | 0.00                               | 0.6060                | 0 7377             |                | 1196                                        | 947 0             | 0.91                               |
| 0.0641                | 0.6985             |                | 1210                               | 977.4             | 0.29                               | 0.6895                | 0.7479             |                | 1200                                        | 928.2             | 0.83                               |
| 0.0863                | 0.6994             |                | 1208                               | 979.0             | 0.37                               | 0.7989                | 0.7642             |                | 1210                                        | 894.4             | 0.64                               |
| 0.2025                | 0.7051             |                | 1201                               | 983.0             | 0.67                               | 0.8492                | 0.7731             |                | 1216                                        | 874.4             | 0.52                               |
| 0.2948                | 0.7105             |                | 1197                               | 981.8             | 0.85                               | 0.9318                | 0.7901             |                | 1232                                        | 834.1             | 0.26                               |
| 0.3993                | 0.7181             |                | 1195                               | 975.5             | 0.93                               | 1.0000                | 0.8069             |                | 1251                                        | 792.5             | 0.00                               |
| 0.4956                | 0.7264             |                | 1194                               | 964.9             | 0.95                               |                       |                    |                |                                             |                   |                                    |
|                       |                    |                |                                    |                   | T=22                               | 88.15 K               |                    |                |                                             |                   |                                    |
| 0.0000                | 0.6880             | 1.38999        | 1173                               | 1055.9            | 0.00                               | 0.5952                | 0.7265             | 1.37439        | 1151                                        | 1039.0            | 1.02                               |
| 0.0530                | 0.6896             | 1.38860        | 1168                               | 1062.7            | 0.28                               | 0.6900                | 0.7378             | 1.37143        | 1155                                        | 1015.7            | 0.91                               |
| 0.0901                | 0.6910             | 1.38770        | 1164                               | 1067.4            | 0.42                               | 0.7875                | 0.7518             | 1.36833        | 1163                                        | 982.9             | 0.74                               |
| 0.2010                | 0.6961             | 1.38503        | 1157                               | 1073.4            | 0.75                               | 0.8935                | 0.7709             | 1.36489        | 1179                                        | 933.5             | 0.44                               |
| 0.2930                | 0.7014             | 1.38204        | 1153                               | 1072.8            | 0.91                               | 0.9422                | 0.7813             | 1.30330        | 1190                                        | 903.Z<br>864 1    | 0.27                               |
| 0.4058                | 0.7032             | 1.37370        | 1150                               | 1056.6            | 1.03                               | 1.0000                | 0.7330             | 1.50101        | 1200                                        | 004.1             | 0.00                               |
| 5.1000                | 0.7102             | 1.07710        | 1100                               | 1000.0            | 1.UT                               | 0.157                 |                    |                |                                             |                   |                                    |
| 0.0000                | 0 6704             | 1 20 - 10      | 1190 5                             | 1151.0            | T = 2                              | 98.15 K               | 0 7159             | 1 26044        | 1100.1                                      | 11/0 0            | 1 1 1                              |
| 0.0000                | 0.0794             | 1.30312        | 1130.3<br>1199 Q                   | 1131.0<br>1164.0  | 0.00                               | 0.5840                | 0.7152             | 1.30944        | 1100.1                                      | 1142.8<br>1199 7  | 1.11                               |
| 0.1191                | 0.6831             | 1 38911        | 11193                              | 1168 5            | 0.55                               | 0.0027                | 0.7240             | 1 36564        | 1111 3                                      | 1111 4            | 0.00                               |
| 0.1703                | 0.6856             | 1.38066        | 1115.1                             | 1173.0            | 0.71                               | 0.7345                | 0.7332             | 1.36457        | 1113.8                                      | 1099.5            | 0.92                               |
| 0.2263                | 0.6884             | 1.37919        | 1111.7                             | 1175.4            | 0.85                               | 0.7697                | 0.7383             | 1.36330        | 1117.0                                      | 1085.6            | 0.85                               |
| 0.3004                | 0.6925             | 1.37728        | 1108.5                             | 1175.2            | 1.00                               | 0.7978                | 0.7426             | 1.36242        | 1120.0                                      | 1073.6            | 0.79                               |
| 0.3645                | 0.6967             | 1.37561        | 1106.6                             | 1172.1            | 1.07                               | 0.8520                | 0.7519             | 1.36050        | 1127.3                                      | 1046.5            | 0.62                               |
| 0.4505                | 0.7031             | 1.37331        | 1105.1                             | 1164.6            | 1.13                               | 0.9014                | 0.7614             | 1.35892        | 1136.1                                      | 1017.6            | 0.45                               |
| 0.4968                | 0.7069             | 1.37201        | 1105.0                             | 1158.7            | 1.15                               | 0.9510                | 0.7721             | 1.35727        | 1147.2                                      | 984.1             | 0.25                               |
| 0.5000                | 0.7072             | 1.37191        | 1105.0                             | 1158.2            | 1.14                               | 0.9780                | 0.7787             | 1.35645        | 1154.7                                      | 963.1             | 0.12                               |
| 0.3447                | 0./115             | 1.37000        | 1103.4                             | 1130.0            | 1.15                               | 1.0000                | U./044             | 1.33380        | 1101.0                                      | 945.9             | 0.00                               |

| Table  | 2. | (Continued) |
|--------|----|-------------|
| I abic | ~. | (Commucu)   |

| X1     | ρ                  | n <sub>D</sub> | и                                  | κs                | $V^{\rm E}$                        | <i>X</i> <sub>1</sub> | ρ                  | n <sub>D</sub> | и                                  | κs                | $V^{\rm E}$                        |
|--------|--------------------|----------------|------------------------------------|-------------------|------------------------------------|-----------------------|--------------------|----------------|------------------------------------|-------------------|------------------------------------|
|        | g⋅cm <sup>-3</sup> |                | $\mathbf{m} \cdot \mathbf{s}^{-1}$ | TPa <sup>-1</sup> | cm <sup>3</sup> ⋅mol <sup>-1</sup> |                       | g•cm <sup>−3</sup> |                | $\mathbf{m} \cdot \mathbf{s}^{-1}$ | TPa <sup>-1</sup> | cm <sup>3</sup> ·mol <sup>-1</sup> |
|        |                    |                |                                    | Ace               | tone $(1) + Octar$                 | ne (2), $T = 27$      | 78.15 K            |                |                                    |                   |                                    |
| 0.0000 | 0.7146             |                | 1256                               | 887.7             | 0.00                               | 0.6002                | 0.7451             |                | 1218                               | 905.4             | 0.97                               |
| 0.0580 | 0.7159             |                | 1249                               | 895.7             | 0.26                               | 0.6839                | 0.7534             |                | 1217                               | 896.0             | 0.89                               |
| 0.1060 | 0.7172             |                | 1244                               | 900.9             | 0.44                               | 0.7805                | 0.7652             |                | 1220                               | 878.1             | 0.74                               |
| 0.1928 | 0.7203             |                | 1237                               | 907.7             | 0.65                               | 0.8926                | 0.7831             |                | 1229                               | 845.0             | 0.45                               |
| 0.3030 | 0.7250             |                | 1229                               | 913.0             | 0.87                               | 0.9348                | 0.7916             |                | 1236                               | 827.5             | 0.29                               |
| 0.3928 | 0.7299             |                | 1224                               | 913.8             | 0.95                               | 1.0000                | 0.8069             |                | 1251                               | 792.5             | 0.00                               |
| 0.4920 | 0.7364             |                | 1220                               | 912.1             | 0.99                               |                       |                    |                |                                    |                   |                                    |
|        |                    |                |                                    |                   | T = 28                             | 8.15 K                |                    |                |                                    |                   |                                    |
| 0.0000 | 0.7066             | 1.40006        | 1214                               | 961.0             | 0.00                               | 0.5980                | 0.7351             | 1.38100        | 1173                               | 988.3             | 1.08                               |
| 0.0530 | 0.7076             | 1.39840        | 1207                               | 970.1             | 0.27                               | 0.6845                | 0.7434             | 1.37722        | 1176                               | 976.6             | 1.00                               |
| 0.1003 | 0.7088             | 1.39708        | 1202                               | 970.4             | 0.45                               | 0.7971                | 0.7372             | 1.37210        | 11/0                               | 900.2<br>022 7    | 0.77                               |
| 0.1920 | 0.7117             | 1.39493        | 1194                               | 900.0             | 0.73                               | 0.8938                | 0.7720             | 1.30727        | 1104                               | 922.7             | 0.49                               |
| 0.3024 | 0.7102             | 1.39130        | 1100                               | 992.9             | 1.05                               | 1 0000                | 0.7020             | 1.30470        | 1206                               | 900.2<br>864 1    | 0.29                               |
| 0.4892 | 0.7267             | 1.38520        | 1176                               | 993.3<br>994.6    | 1.11                               | 1.0000                | 0.7938             | 1.30101        | 1200                               | 004.1             | 0.00                               |
| 0.1002 | 0.1201             | 1.00020        | 1170                               | 001.0             | T = 20                             | Q 15 V                |                    |                |                                    |                   |                                    |
| 0.000  | 0 6985             | 1 39514        | 1172.1                             | 1042.2            | 1 - 29                             | 0.13 K<br>0.577       | 0 7237             | 1 37629        | 1130.0                             | 1082.1            | 1 17                               |
| 0.000  | 0.6992             | 1 39392        | 1166.9                             | 1042.2            | 0.23                               | 0.656                 | 0.7206             | 1 37305        | 1128.9                             | 1073.9            | 1.17                               |
| 0.087  | 0.7001             | 1 39250        | 1162.3                             | 1057.4            | 0.43                               | 0.726                 | 0 7378             | 1 36988        | 1129.3                             | 1062.8            | 1.00                               |
| 0.103  | 0.7005             | 1.39218        | 1161.1                             | 1058.9            | 0.49                               | 0.784                 | 0.7448             | 1.36703        | 1131.3                             | 1049.2            | 0.89                               |
| 0.184  | 0.7029             | 1.38970        | 1152.4                             | 1071.3            | 0.74                               | 0.845                 | 0.7534             | 1.36417        | 1135.0                             | 1030.3            | 0.72                               |
| 0.184  | 0.7029             | 1.38975        | 1152.6                             | 1070.9            | 0.74                               | 0.895                 | 0.7618             | 1.36155        | 1140.4                             | 1009.4            | 0.53                               |
| 0.257  | 0.7055             | 1.38754        | 1146.6                             | 1078.2            | 0.92                               | 0.945                 | 0.7715             | 1.35879        | 1148.3                             | 983.1             | 0.31                               |
| 0.304  | 0.7074             | 1.38594        | 1143.2                             | 1081.6            | 1.02                               | 0.987                 | 0.7810             | 1.35649        | 1157.4                             | 955.8             | 0.09                               |
| 0.375  | 0.7108             | 1.38354        | 1138.8                             | 1084.8            | 1.11                               | 1.000                 | 0.7844             | 1.35580        | 1161.0                             | 945.9             | 0.00                               |
| 0.481  | 0.7170             | 1.38005        | 1133.7                             | 1085.2            | 1.16                               |                       |                    |                |                                    |                   |                                    |
|        |                    |                |                                    | Metl              | hanol (1) + Hexa                   | nne (2). $T = 2$      | 278.15 K           |                |                                    |                   |                                    |
| 0.0000 | 0.6728             |                | 1167.8                             | 1089.8            | 0.00                               | 0.8772                | 0.7592             |                | 1136.6                             | 1019.5            | 0.33                               |
| 0.0279 | 0.6737             |                | 1163.8                             | 1096.0            | 0.05                               | 0.9040                | 0.7670             |                | 1140.0                             | 1003.3            | 0.28                               |
| 0.0953 | 0.6761             |                | 1158.9                             | 1101.2            | 0.16                               | 0.9569                | 0.7857             |                | 1151.9                             | 959.2             | 0.15                               |
| 0.1175 | 0.6769             |                | 1157.5                             | 1102.6            | 0.20                               | 1.0000                | 0.8052             |                | 1169.2                             | 908.5             | 0.00                               |
|        |                    |                |                                    |                   | T = 28                             | 8.15 K                |                    |                |                                    |                   |                                    |
| 0.0000 | 0.6646             | 1.37847        | 1123.2                             | 1192.7            | 0.00                               | 0.8630                | 0.7466             | 1.34398        | 1098.6                             | 1109.7            | 0.35                               |
| 0.0787 | 0.6665             | 1.37638        | 1114.5                             | 1208.0            | 0.28                               | 0.9015                | 0.7571             | 1.34062        | 1102.9                             | 1085.9            | 0.30                               |
| 0.1022 | 0.6673             | 1.37544        | 1112.8                             | 1210.1            | 0.32                               | 0.9463                | 0.7726             | 1.33645        | 1114.4                             | 1042.2            | 0.18                               |
| 0.1357 | 0.6685             | 1.37425        | 1111.2                             | 1211.5            | 0.39                               | 1.0000                | 0.7960             | 1.33070        | 1135.3                             | 974.7             | 0.00                               |
| 0.8532 | 0.7438             | 1.34474        | 1096.6                             | 1118.0            | 0.38                               |                       |                    |                |                                    |                   |                                    |
|        |                    |                |                                    | Meth              | anol (1) + Hepta                   | ane (2), $T =$        | 278.15 K           |                |                                    |                   |                                    |
| 0.0000 | 0.6963             |                | 1216.8                             | 970.0             | 0.00                               | 0.9268                | 0.7771             |                | 1154.5                             | 965.5             | 0.24                               |
| 0.0383 | 0.6970             |                | 1212.0                             | 976.8             | 0.10                               | 0.9410                | 0.7815             |                | 1155.7                             | 958.1             | 0.21                               |
| 0.0499 | 0.6973             |                | 1210.9                             | 978.0             | 0.11                               | 0.9712                | 0.7924             |                | 1160.1                             | 937.7             | 0.12                               |
| 0.0772 | 0.6980             |                | 1209.1                             | 980.1             | 0.15                               | 1.0000                | 0.8052             |                | 1169.2                             | 908.5             | 0.00                               |
|        |                    |                |                                    |                   | T = 28                             | 8.15 K                |                    |                |                                    |                   |                                    |
| 0.0000 | 0.6880             | 1.38999        | 1173                               | 1055.9            | 0.00                               | 0.9169                | 0.7646             | 1.34289        | 1117                               | 1048.6            | 0.30                               |
| 0.0446 | 0.6887             | 1.38958        | 1168                               | 1064.8            | 0.14                               | 0.9412                | 0.7720             | 1.33979        | 1119                               | 1033.8            | 0.25                               |
| 0.0744 | 0.6894             | 1.38852        | 1165                               | 1068.5            | 0.19                               | 0.9702                | 0.7826             | 1.33547        | 1126                               | 1008.6            | 0.14                               |
| 0.0901 | 0.6898             | 1.38825        | 1164                               | 1069.6            | 0.21                               | 1.0000                | 0.7960             | 1.33070        | 1135                               | 974.7             | 0.00                               |
| 0.1022 | 0.6901             | 1.38788        | 1163                               | 1071.0            | 0.23                               |                       |                    |                |                                    |                   |                                    |
|        |                    |                |                                    | Met               | hanol (1) + Octa                   | ne (2), $T = 2$       | 278.15 K           |                |                                    |                   |                                    |
| 0.0000 | 0.7146             |                | 1255.5                             | 887.7             | 0.00                               | 0.9568                | 0.7880             |                | 1162.5                             | 939.0             | 0.19                               |
| 0.0164 | 0.7147             |                | 1253.2                             | 890.9             | 0.06                               | 0.9668                | 0.7913             |                | 1163.1                             | 934.2             | 0.16                               |
| 0.0253 | 0.7148             |                | 1252.5                             | 891.8             | 0.08                               | 0.9817                | 0.7971             |                | 1164.9                             | 924.6             | 0.09                               |
| 0.0624 | 0.7153             |                | 1249.0                             | 896.2             | 0.17                               | 1.0000                | 0.8052             |                | 1169.2                             | 908.5             | 0.00                               |
| 0.06   | T = 288.15  K      |                |                                    |                   |                                    |                       |                    |                |                                    |                   |                                    |
| 0.0000 | 0.7066             | 1.40006        | 1213.5                             | 961.0             | 0.00                               | 0.9527                | 0.7772             | 1.34059        | 1127.1                             | 1012.9            | 0.23                               |
| 0.0287 | 0.7068             | 1.39965        | 1209.6                             | 967.0             | 0.10                               | 0.9657                | 0.7816             | 1.33796        | 1128.6                             | 1004.6            | 0.18                               |
| 0.0568 | 0.7072             | 1.39919        | 1207.1                             | 970.5             | 0.16                               | 0.9808                | 0.7875             | 1.33473        | 1130.3                             | 993.9             | 0.11                               |
| 0.0667 | 0.7073             | 1.39876        | 1206.4                             | 971.4             | 0.19                               | 1.0000                | 0.7960             | 1.33070        | 1135.3                             | 974.7             | 0.00                               |

# **Results and Discussion**

The experimental data of speed of sound, density, and refractive index for the binary systems as a function of

temperature are reported in Table 2. The isentropic compressibility deviations, refractive index deviations, and excess molar volumes were evaluated for each composition

|                                                    | $A_0$                    | - A <sub>1</sub>         | $A_2$                    | $A_3$                    | $A_4$                       | $A_5$                        | $A_6$                  | σ                                        |
|----------------------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-----------------------------|------------------------------|------------------------|------------------------------------------|
|                                                    |                          |                          | Acetone (1)              | + Methanol (2), 7        | Г= 278.15 К                 |                              |                        |                                          |
| V <sup>E</sup> /cm <sup>3</sup> ⋅mol <sup>-1</sup> | -1.3555                  | $2.0011 \times 10^{-1}$  | $-2.1241 \times 10^{-1}$ |                          |                             |                              |                        | 0.005 cm <sup>3</sup> ⋅mol <sup>-1</sup> |
| $\delta \kappa_{\rm S}/{\rm TPa^{-1}}$             | $-1.5966 \times 10^{2}$  | $5.3779 \times 10^{1}$   | $-6.4076 \times 10^{1}$  | $2.1494 \times 10^{1}$   |                             |                              |                        | 0.4 TPa <sup>-1</sup>                    |
|                                                    |                          |                          |                          | T = 288.15  K            |                             |                              |                        |                                          |
| V <sup>E</sup> /cm <sup>3</sup> ·mol <sup>−1</sup> | -1.3526                  | $1.6393 \times 10^{-1}$  | $-1.4618 \times 10^{-1}$ |                          |                             |                              |                        | 0.003 cm <sup>3</sup> ·mol <sup>-1</sup> |
| $\partial n_{\rm D}$                               | $2.7763 \times 10^{-2}$  | $-6.7887 \times 10^{-3}$ | 6 9991 101               | 9 9740 101               |                             |                              |                        | 0.0001                                   |
| oks/1Pa 1                                          | $-1.6653 \times 10^{2}$  | $3.4609 \times 10^{11}$  | $-6.2231 \times 10^{10}$ | $2.2749 \times 10^{4}$   |                             |                              |                        | 0.3 IPa 1                                |
| - 54 0 1 1                                         |                          |                          | Acetone (1)              | + Hexane (2), $T$        | = 278.15 K                  |                              |                        |                                          |
| V <sup>E</sup> /cm <sup>3</sup> ·mol <sup>-1</sup> | 3.5369                   | $-2.9013 \times 10^{-1}$ | $8.2738 \times 10^{-1}$  | $-4.6809 \times 10^{-1}$ |                             |                              |                        | 0.004 cm <sup>3</sup> ·mol <sup>-1</sup> |
| οκ <sub>S</sub> /1Pa <sup>-1</sup>                 | $3.6227 \times 10^{2}$   | $4.7966 \times 10^{4}$   | $4.6228 \times 10^{11}$  | $-2.5762 \times 10^{11}$ |                             |                              |                        | 0.1 IPa <sup>1</sup>                     |
|                                                    |                          |                          |                          | T = 288.15  K            |                             |                              |                        |                                          |
| V <sup>E</sup> /cm <sup>3</sup> ·mol <sup>−1</sup> | 3.8577                   | $-3.9330 \times 10^{-1}$ | $8.4494 \times 10^{-1}$  | $-3.5548 \times 10^{-1}$ |                             |                              |                        | 0.005 cm <sup>3</sup> ·mol <sup>-1</sup> |
| $\delta n_{\rm D}$                                 | $-5.1469 \times 10^{-3}$ | $3.0847 \times 10^{-4}$  | $-2.4752 \times 10^{-3}$ | 0.4000                   |                             |                              |                        | 0.0001                                   |
| oks/1Pa 1                                          | $4.1480 \times 10^{2}$   | $4.5556 \times 10^{12}$  | $5.0952 \times 10^{4}$   | $-2.4230 \times 10^{10}$ |                             |                              |                        | 0.2 IPa 1                                |
|                                                    |                          |                          |                          | T = 298.15  K            |                             |                              |                        |                                          |
| V <sup>E</sup> /cm <sup>3</sup> ·mol <sup>−1</sup> | 4.3252                   | $-5.2555 \times 10^{-1}$ |                          |                          |                             |                              |                        | 0.028 cm <sup>3</sup> ·mol <sup>-1</sup> |
| $\partial n_{\rm D}$                               | $-5.8591 \times 10^{-3}$ | $-4.0765 \times 10^{-4}$ | 4 47 40 101              |                          |                             |                              |                        | 0.0001                                   |
| οκ <sub>S</sub> /1Pa <sup>1</sup>                  | $4.7828 \times 10^{2}$   | $4.1930 \times 10^{4}$   | $4.4742 \times 10^{11}$  |                          |                             |                              |                        | 0.6 IPa <sup>1</sup>                     |
|                                                    |                          |                          | Acetone (1)              | + Heptane (2), 7         | '= 278.15 K                 |                              |                        |                                          |
| V <sup>E</sup> /cm <sup>3</sup> ·mol <sup>-1</sup> | 3.8066                   | $-2.3625 \times 10^{-1}$ | $8.8276 \times 10^{-1}$  |                          |                             |                              |                        | 0.009 cm <sup>3</sup> ·mol <sup>-1</sup> |
| $\partial \kappa_{\rm S}/{\rm TPa^{-1}}$           | $3.3240 \times 10^{2}$   | $8.9282 \times 10^{1}$   | $7.2486 \times 10^{1}$   |                          |                             |                              |                        | $0.1 \mathrm{TPa}^{-1}$                  |
|                                                    |                          |                          |                          | T = 288.15  K            |                             |                              |                        |                                          |
| V <sup>E</sup> /cm <sup>3</sup> ⋅mol <sup>-1</sup> | 4.2062                   | $-9.6491 \times 10^{-2}$ | $6.7911 \times 10^{-1}$  | $-2.6622 \times 10^{-1}$ | $6.4815 	imes 10^{-1}$      |                              |                        | 0.005 cm <sup>3</sup> ·mol <sup>-1</sup> |
| $\delta n_{\rm D}$                                 | $5.5606 \times 10^{-3}$  | $4.3910 \times 10^{-4}$  | $-6.9283 \times 10^{-3}$ | $-3.9123 \times 10^{-3}$ | $1.4007 \times 10^{-2}$     | $3.7578 \times 10^{-3} - 1.$ | $.3920 \times 10^{-2}$ | 0.0001                                   |
| δκ <sub>S</sub> /TPa <sup>-1</sup>                 | $3.8159 \times 10^{2}$   | $1.0169 \times 10^{2}$   | $7.6072 \times 10^{1}$   |                          |                             |                              |                        | $0.4 \mathrm{TPa}^{-1}$                  |
|                                                    |                          |                          |                          | T = 298.15  K            |                             |                              |                        |                                          |
| V <sup>E</sup> /cm <sup>3</sup> ·mol <sup>−1</sup> | 4.5550                   | $-7.3191 \times 10^{-2}$ | $9.6669 \times 10^{-1}$  |                          |                             |                              |                        | 0.005 cm <sup>3</sup> ·mol <sup>-1</sup> |
| $\delta n_{\rm D}$                                 | $5.8150 \times 10^{-3}$  | $9.6104 \times 10^{-4}$  | $-5.3967 \times 10^{-3}$ | $-1.8635 \times 10^{-3}$ |                             |                              |                        | 0.0001                                   |
| $\partial \kappa_{\rm S}/1{\rm Pa}^{-1}$           | $4.3712 \times 10^{2}$   | $1.1046 \times 10^{2}$   | $8.3709 \times 10^{11}$  |                          |                             |                              |                        | $0.2 \mathrm{TPa}^{-1}$                  |
|                                                    |                          |                          | Acetone (1)              | + Octane (2), $T$        | = 278.15 K                  |                              |                        |                                          |
| V <sup>E</sup> /cm <sup>3</sup> ⋅mol <sup>-1</sup> | 3.9562                   | $1.1340 \times 10^{-1}$  | $9.9776 \times 10^{-1}$  |                          |                             |                              |                        | 0.007 cm <sup>3</sup> ·mol <sup>-1</sup> |
| $\delta \kappa_{\rm S}/{\rm TPa^{-1}}$             | $2.8665 \times 10^{2}$   | $1.0776 \times 10^{2}$   | $7.7247 \times 10^{1}$   | $2.6745 \times 10^{1}$   | $2.3530 \times 10^{1}$      |                              |                        | $0.1 \mathrm{TPa}^{-1}$                  |
|                                                    |                          |                          |                          | T = 288.15  K            |                             |                              |                        |                                          |
| V <sup>E</sup> /cm <sup>3</sup> ⋅mol <sup>-1</sup> | 4.4433                   | $2.4089\times10^{-1}$    | $5.1088 	imes 10^{-1}$   | $-2.1948 	imes 10^{-1}$  | $7.4434 	imes 10^{-1}$      |                              |                        | 0.004 cm <sup>3</sup> ⋅mol <sup>-1</sup> |
| $\delta n_{\rm D}$                                 | $1.5682 	imes 10^{-2}$   | $1.6221 \times 10^{-3}$  |                          | 1 7007 101               |                             |                              |                        | 0.0001                                   |
| δκ <sub>S</sub> /TPa <sup>-1</sup>                 | $3.2640 \times 10^{2}$   | $1.1628 \times 10^{2}$   | $7.4858 \times 10^{1}$   | $4.7627 \times 10^{1}$   | $5.4595 \times 10^{1}$      |                              |                        | $0.4 \mathrm{TPa}^{-1}$                  |
|                                                    |                          |                          |                          | T = 298.15  K            |                             |                              |                        |                                          |
| V <sup>E</sup> /cm <sup>3</sup> ⋅mol <sup>-1</sup> | 4.6888                   | $2.8812 \times 10^{-1}$  | 1.2647                   |                          |                             |                              |                        | 0.008 cm <sup>3</sup> ⋅mol <sup>-1</sup> |
| $\delta n_{\rm D}$                                 | $1.5168 	imes 10^{-2}$   | $3.8216 \times 10^{-3}$  | $-2.0230 \times 10^{-3}$ |                          |                             |                              |                        | 0.0001                                   |
| $\delta \kappa_{\rm S}/{\rm TPa^{-1}}$             | $3.6506 \times 10^{2}$   | $1.3875 \times 10^{2}$   | $1.0940 \times 10^{2}$   | $4.9706 \times 10^{1}$   |                             |                              |                        | $0.4 \text{ TPa}^{-1}$                   |
|                                                    |                          |                          | Methanol (1              | ) + Hexane (2), 7        | $\Gamma = 278.15 \text{ K}$ |                              |                        |                                          |
| V <sup>E</sup> /cm <sup>3</sup> ⋅mol <sup>-1</sup> | 1.8956                   | $6.3408 	imes 10^{-2}$   | 1.0156                   | 1.1721                   |                             |                              |                        | 0.003 cm <sup>3</sup> ·mol <sup>-1</sup> |
| $\delta \kappa_{\rm S}/{\rm TPa^{-1}}$             | $2.6621 	imes 10^2$      | $3.3957	imes10^2$        | $5.3588 	imes 10^2$      |                          |                             |                              |                        | 0.6 TPa <sup>-1</sup>                    |
|                                                    |                          |                          |                          | T = 288.15  K            |                             |                              |                        |                                          |
| V <sup>E</sup> /cm <sup>3</sup> ⋅mol <sup>-1</sup> | 1.9338                   | $-1.6456\times10^{-1}$   | 2.3533                   |                          |                             |                              |                        | 0.008 cm <sup>3</sup> ·mol <sup>-1</sup> |
| $\delta n_{\rm D}$                                 | $3.9147 	imes 10^{-2}$   | $2.4402 	imes 10^{-2}$   |                          |                          |                             |                              |                        | 0.0001                                   |
| $\delta \kappa_{\rm S}/{\rm TPa^{-1}}$             | $3.8431 	imes 10^2$      | $3.4429 	imes 10^2$      | $5.1422 	imes 10^2$      |                          |                             |                              |                        | 1 TPa <sup>-1</sup>                      |
|                                                    |                          |                          | Methanol (1)             | ) + Heptane (2), 2       | T = 278.15  K               |                              |                        |                                          |
| V <sup>E</sup> /cm <sup>3</sup> ⋅mol <sup>-1</sup> | $-3.5959 	imes 10^{-1}$  | $8.3112 \times 10^{-1}$  | 4.3653                   |                          |                             |                              |                        | 0.002 cm <sup>3</sup> ·mol <sup>-1</sup> |
| $\delta \kappa_{\rm S}/{\rm TPa^{-1}}$             | $-6.6318 \times 10^{1}$  | $9.1228 \times 10^{1}$   | $7.6546 	imes 10^2$      | $3.2531 	imes 10^2$      |                             |                              |                        | 0.2 TPa <sup>-1</sup>                    |
|                                                    |                          |                          |                          | T = 288.15  K            |                             |                              |                        |                                          |
| V <sup>E</sup> /cm <sup>3</sup> ⋅mol <sup>-1</sup> | $4.9051 \times 10^{-1}$  | $7.8444 \times 10^{-1}$  | 4.1352                   |                          |                             |                              |                        | 0.004 cm <sup>3</sup> ·mol <sup>-1</sup> |
| $\delta n_{\rm D}$                                 | $3.6856 \times 10^{-2}$  | $3.0418 \times 10^{-2}$  | $4.7358 \times 10^{-2}$  | 0.0000 102               |                             |                              |                        | 0.0001                                   |
| oks/1Pa '                                          | $1.1702 \times 10^{2}$   | $1.7353 \times 10^{2}$   | $0.3030 \times 10^{2}$   | $2.8302 \times 10^{2}$   |                             |                              |                        | 0.3 IPa 1                                |
|                                                    | <b>7</b> 0076 10 1       | 0.4000 10.1              | Methanol (1              | (2) + Octane (2), 7      | <sup>'</sup> = 278.15 K     |                              |                        | 0.000 0 2 1                              |
| V <sup>r</sup> /cm <sup>3</sup> ·mol <sup>-1</sup> | $-7.9270 \times 10^{-1}$ | $8.1062 \times 10^{-1}$  | 5.6302                   | r 7000 40°               |                             |                              |                        | 0.003 cm <sup>3</sup> ·mol <sup>-1</sup> |
| <i>ок<sub>S</sub></i> /1Ра <sup>-1</sup>           | $-3.2633 \times 10^{2}$  | $-1.3589 \times 10^{2}$  | $9.2830 \times 10^{2}$   | $5.7002 \times 10^{2}$   |                             |                              |                        | 0.2 IPa <sup>-1</sup>                    |
|                                                    |                          |                          |                          | T = 288.15  K            |                             |                              |                        |                                          |
| V <sup>E</sup> /cm <sup>3</sup> ⋅mol <sup>-1</sup> | $1.9558 \times 10^{-1}$  | 1.0930                   | 4.9047                   | 10550                    | 0.5500                      |                              |                        | 0.004 cm <sup>3</sup> ·mol <sup>-1</sup> |
| $\partial n_{\rm D}$                               | $-5.0574 \times 10^{-1}$ | $5.7022 \times 10^{-2}$  | 1.4438                   | $-1.0558 \times 10^{-2}$ | $-8.5566 \times 10^{-1}$    |                              |                        | 0.0001                                   |
| $o\kappa_{\rm S}/1{\rm Pa}^{-1}$                   | $-2.3778 \times 10^{2}$  | $4.3506 \times 10^{1}$   | $9.2084 \times 10^{2}$   | $4.0638 \times 10^{2}$   |                             |                              |                        | 0.3 IPa <sup>-1</sup>                    |
|                                                    |                          |                          |                          |                          |                             | 9                            |                        |                                          |

point, using the following equations:

$$\delta\kappa_{\rm S} = \frac{1}{{\rm p}u^2} - \sum_{i=1}^2 \frac{x_i}{\rho_i {\rm u}_i^2}$$

(1)

$$\delta n_{\rm D} = n_{\rm D} - \sum_{i=1}^{2} x_i n_{{\rm D},i}$$
 (2)

$$V_{\rm m}^{\rm E} = \sum_{i=1}^{2} x_i M_i (\rho^{-1} - \rho_i^{-1})$$
(3)



**Figure 1.** Excess molar volumes of acetone + (hexane ( $\bigcirc$ ), heptane ( $\Box$ ), or octane ( $\triangle$ )) at the temperatures (- - -) 278.15, (-) 288.15, and (· · ·) 298.15 K and of acetone + methanol ( $\diamond$ ) at (- - -) 278.15 and (-) 288.15 K.

where  $\kappa_{\rm S}$  is the isentropic compressibility ( $\kappa_{\rm S} = \rho^{-1} u^{-2}$ ),  $n_{\rm D}$  is the refractive index,  $\rho$  is the density of the mixture, and the corresponding quantities with subscript *i* refer to pure chemicals. Excess and derived values were correlated by means of the Redlich–Kister<sup>7</sup> expression for every binary mixture.

$$\delta Q = x_i x_j \sum_{p=0}^{m} A_p (x_i - x_j)^p \tag{4}$$

In this equation  $\delta Q$  is the excess or derived property,  $x_i$ is the mole fraction of component *i*,  $A_p$  are the correlation parameters, and *m* is the degree of the polynomial expansion. The unweighted least-squares method was used to fit the polynomials to the data. The degree of each equation was optimized by applying the F-test.<sup>8</sup> The parameters calculated using eq 4 are listed in Table 3. Methanol with hexane, heptane, or octane shows a heterogeneous region at every temperature due to disruption of hydrogen bonds by the inert alkane presence. The limiting mixture points (liquid-liquid equilibria) have been previously published.9 The curves fitted, as well as excess and derived property values, are shown in Figures 1-6. The excess molar volumes of these mixtures show considerable positive trends, such behavior being increased by the chain length or temperature factors. In what is referred to as acetone mixtures, an analogous trend should be observed by the effect of an inert aliphatic alkane, breaking polar interactions among carbonyl molecular groups. In all cases, the acetone + alkane mixtures show a positive tendency with almost equimolar maxima. In a similar way, a longer chain produces a higher expansive effect. Approximately, a temperature change of 20 deg (278.15 to 298.15 K) produces a 10% variation in the excess molar volume for the



**Figure 2.** Refractive index deviations of acetone + (hexane ( $\bigcirc$ ), heptane ( $\Box$ ), or octane ( $\triangle$ )) at the temperatures (- -) 278.15, (-) 288.15, and (· · ·) 298.15 K and of acetone + methanol ( $\diamond$ ) at (-) 288.15 K.



**Figure 3.** Isentropic compressibility deviations of acetone + (hexane ( $\bigcirc$ ), heptane ( $\square$ ), or octane ( $\triangle$ )) at the temperatures (- -) 278.15, (-) 288.15, and (· · ·) 298.15 K and of acetone + methanol ( $\diamondsuit$ ) at (- -) 278.15 and (-) 288.15 K.

mixtures studied. Only the acetone + methanol mixture presents a contractive tendency with negligible temperature dependence due to polar and hydrogen bond interactions, as suggested in a previous work.<sup>1</sup> The refractive index deviations are positive for all the binary mixtures except for the acetone + hexane, in agreement with the excess molar volume behavior. The increasing of the alkane



**Figure 4.** Excess molar volumes of methanol + (hexane  $(\bigcirc)$ , heptane  $(\Box)$ , or octane  $(\triangle)$ ) at the temperatures (a) 278.15 and (b) 288.15 K.

chain length produces lower positive isentropic compressibility deviations. This effect is also produced with the decreasing of the temperature. The acetone + methanol mixture presents a different behavior, due to the hydrogen bonds and molecular packing.

## **Equations of State**

The interest related to theoretical and semiempirical work based on equations of state for prediction of thermodynamic quantities or phase equilibria has increased in the past few years. This fact is due to their high simplicity, accuracy, low information requirements, and versatility in



**Figure 5.** Refractive index deviations of methanol + (hexane  $(\bigcirc)$ , heptane  $(\Box)$ , or octane  $(\triangle)$ ) at the temperature 288.15 K.

Table 4. Binary Interaction Parameters Calculated for the Described Mixing Rules, Applied in Combination with the SRK Equation of State, and, in Parentheses, Root Mean Square Deviations of  $V^{\text{E}}$  (cm<sup>3</sup>·mol<sup>-1</sup>) Obtained

| R1                                                                          | R2                                                                                                         | R3                                                                                                                                                                  |
|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $A_{k} = -5.202 \times 10^{-2}$                                             | cetone (1) + Methanol<br>$k_{\rm H} = 1.107 \times 10^{-2}$                                                | (2)<br>$k_{\rm c} = 1.428 \times 10^{-2}$                                                                                                                           |
| (0.02)                                                                      | $m_{12} = 1.007 \times 10$<br>$m_{12} = 1.016 \times 10^{-2}$<br>(0.007)                                   | $R_{12} = 1.428 \times 10^{-10}$<br>$l_{12} = -6.670 \times 10^{-4}$<br>$m_{12} = 1.069 \times 10^{-2}$<br>(0.007)                                                  |
| $k_{12} = 4.841 \times 10^{-2}$ (0.05)                                      | Acetone (1) + Hexane (2)<br>$k_{12} = 2.447 \times 10^{-2}$<br>$m_{12} = -4.583 \times 10^{-3}$<br>(0.05)  | 2)<br>$k_{12} = 2.598 \times 10^{-2}$<br>$l_{12} = -9.059 \times 10^{-3}$<br>$m_{12} = -4.258 \times 10^{-3}$<br>(0.03)                                             |
| $k_{12} = 2.612 \times 10^{-2}$ (0.06)                                      | cetone (1) + Heptane ( $k_{12} = -2.361 \times 10^{-2} \ m_{12} = -8.580 \times 10^{-3} \ (0.05)$          | 2)<br>$k_{12} = 1.243 \times 10^{-2}$<br>$l_{12} = -1.115 \times 10^{-2}$<br>$m_{12} = -2.563 \times 10^{-3}$<br>(0.04)                                             |
| $k_{12} = 4.487 	imes 10^{-3}$ (0.06)                                       | Acetone (1) + Octane (2)<br>$k_{12} = -3.724 \times 10^{-2}$<br>$m_{12} = -6.416 \times 10^{-3}$<br>(0.05) | $ \begin{aligned} &k_{12} = 3.076 \times 10^{-3} \\ &l_{12} = -1.368 \times 10^{-2} \\ &m_{12} = -4.429 \cdot 10^{-4} \\ &(0.04) \end{aligned} $                    |
| $k_{12} = 1.186 \times 10^{-2}$ (0.09)                                      |                                                                                                            | (2)<br>$k_{12} = 1.305 \times 10^{-2}$<br>$l_{12} = 2.727 \times 10^{-2}$<br>$m_{12} = -2.347 \cdot 10^{-4}$<br>(0.05)                                              |
| $\begin{matrix} M \\ k_{12} = -6.697 \times 10^{-2} \\ (0.05) \end{matrix}$ | tethanol (1) + Heptane<br>$k_{12} = -4.760 \times 10^{-1}$<br>$m_{12} = -5.243 \times 10^{-2}$<br>(0.04)   | (2)<br>$k_{12} = -6.580 \times 10^{-2}$<br>$l_{12} = 2.829 \times 10^{-2}$<br>$m_{12} = -7.564 \times 10^{-4}$<br>(0.02)                                            |
| $k_{12} = -1.175 \times 10^{-1} \\ (0.03)$                                  | Methanol (1) + Octane ( $k_{12} = 8.851 \times 10^{-2}$<br>$m_{12} = 2.2442 \times 10^{-2}$<br>(0.02)      | $\begin{array}{l} \textbf{(2)} \\ k_{12} = -1.671 \times 10^{-1} \\ l_{12} = 2.982 \times 10^{-2} \\ m_{12} = -6.023 \times 10^{-3} \\ \textbf{(0.01)} \end{array}$ |

operation conditions. A considerable number of equations of state are currently available in the open literature, most



**Figure 6.** Isentropic compressibility deviations of methanol + (hexane  $(\bigcirc)$ , heptane  $(\Box)$ , or octane  $(\triangle)$ ) at the temperatures (a) 278.15 and (b) 288.15 K.

of them being adequate to compute acceptable results in combination with simple mixing rules if interaction parameters are obtained from enclosed binary mixtures in the multicomponent system. In this case the Soave–Redlich–Kwong<sup>10</sup> (SRK) equation was applied. Three different simple combining rules for *a* and *b* were incorporated to this EOS, according to the general expression

$$a = \sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} \mathbf{x}_{j} (1 - k_{ij} - l_{ij} (x_{i} - x_{j})) (a_{i} a_{j})^{0.5}$$
(5)

$$b = \sum_{i=1}^{n} \sum_{j=1}^{n} x_{j} x_{j} (1 - m_{ij}) \frac{(b_{i} + b_{j})}{2}$$
(6)

where  $k_{ij} = l_{ij} = m_{ij} = 0$  for i = j, and  $l_{ij} = m_{ij} = 0$  for the first mixing rule (R1),  $l_{ij} = 0$  for the second one (R2), and, finally,  $k_{ij}$ ,  $l_{ij}$ ,  $m_{ij} \neq 0$  for the third one (R3). These parameters are constant values over the whole composition and temperature ranges for every mixture.

To compute the binary interaction parameters for each mixing rule, the fitting procedure consisted of the minimization of the following objective function:

$$OF = \sum_{i=1}^{n} \frac{(V_{\exp,i}^{E} - V_{\text{pred},i}^{E})^{2}}{V_{\exp,i}^{E}}$$
(7)

A Marquardt<sup>11</sup> routine was applied, in combination with a Newton–Raphson method, and the fitting parameters obtained are gathered in Table 4. Similar values for deviations were obtained in acetone or methanol + alkane mixtures, the R3 mixing rule (three fitting parameters) yielding the best results with root square deviations lower than 0.05 cm<sup>3</sup>·mol<sup>-1</sup>. In addition, the mixture acetone + methanol shows, for the same rule, similar deviations comparatively from usual correlation equations. Highly accurate results are obtained by application of such parameters for multicomponent prediction.<sup>12</sup>

#### **Literature Cited**

- Iglesias, M.; Orge, B.; Domínguez, M.; Tojo, J. Mixing Properties of the Binary Mixtures of Acetone, Methanol, Ethanol, and 2-Butanone at 298.15 K. *Phys. Chem. Liq.* **1998**, *37*, 9–29.
- (2) Iglesias, M.; Orge, B.; Piñeiro, M. M.; Marino, G.; Tojo, J. Volumetric Properties prediction by Cubic EOS for Nonideal Mixtures: Application to the Ternary System Acetone + Methanol + *n*-Hexane. *Thermochim. Acta* **1999**, *328*, 265–275.
- (3) TRC Thermodynamic Tables, Thermodynamic Research Center, Texas A&M University: College Station, TX, 1994.
- (4) Papaloannou, D.; Panayiotou, Č. Volumetric Properties of Binary Mixtures. 1. 2-Propanone + 2,2,4-Trimethylpentane and n-Heptane + Ethanol Mixtures. J. Chem. Eng. Data 1991, 36, 35– 39.
- (5) Arce, A.; Martínez-Ageitos, J.; Mendoza, J.; Soto, A. Densities, Refractive Indices, Speeds of Sound, and Isentropic Compressibilities of Water + Methanol + 2-Methoxy-2-methylbutane at 298.15 K. J. Chem. Eng. Data 1996, 41, 724–727.
- (6) Junquera, E.; Tardajoš, G.; Aicart, E. Speeds of Sound and Isentropic Compressibilities of (Cyclohexane + Benzene) and (1-Chlorobutane + n-Hexane or n-Heptane or n-Octane or n-Decane) at 298.15 K. J. Chem. Thermodyn. 1988, 20, 1461–1467.
- (7) Redlich, O.; Kister, A. T. Thermodynamics of Nonelectrolytic Solutions. Algebraic Representation of Thermodynamic Properties and the Classification of Solutions. *Ind. Eng. Chem.* **1948**, *40*, 345–348.
- (8) Bevington, P. Data Reduction and Error Analysis for the Physical Sciences, McGraw-Hill: New York, 1969.
- (9) Orge, B.; Iglesias, M.; Rodríguez, A.; Canosa, J. M.; Tojo, J. Mixing Properties of (Methanol, Ethanol, or 1-Propanol) with (*n*-Pentane, *n*-Hexane, *n*-Heptane and *n*-Octane) at 298.15 K. *Fluid Phase Equilib.* **1997**, *133*, 213–227.
- (10) Soave, G. Equilibrium Constants from a Modified Redlich-Kwong Equation of State. *Chem. Eng. Sci.* **1972**, *27*, 1197–1203.
- (11) Marquardt, D. W. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. J. Soc. Ind. Appl. Math. 1963, 2, 431– 441.
- (12) Iglesias, M.; Piñeiro, M. M.; Marino, G.; Orge, B.; Domínguez, M.; Tojo, J. Thermodynamic Properties of the Mixture Benzene + Cyclohexane + 2-Methyl-2-butanol at the Temperature 298.15 K: Excess Molar Volumes Prediction by Application of Cubic Equations of State. *Fluid Phase Equilib.* **1999**, *154*, 123–138.

Received for review July 5, 2000. Accepted February 13, 2001. JE000200Q