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The liquid-liquid coexistence curve of the binary nonionic amphiphile 2-butoxyethanol (1) + water (2)
was determined around the lower consolute solution temperature, Tc, by phase volume measurements.
The phase volume method uses the linear relationship between the phase volume and the component
concentration according to the lever rule. The method is much more convenient to use for low-pressure
phase studies than other methods. Moreover, the results show that this method yields equilibrium
compositions as accurate and precise as other methods. The coexistence curve of the binary system is
fitted to (critical-)scaling equations. The scaling equations have a valid region that is limited near the
critical point. This region is extended from ∆T ) |T - Tc| ) 8 K to ∆T ) 20 K by defining a new order
parameter and incorporating this parameter into the equations. These new equations yield excellent fits
to the liquid-liquid equilibrium data of the binary system. When compared to UNIQUAC, the scaling
equations with a new order parameter are slightly better than UNIQUAC. In addition, they give correct
information on the critical points, which are usually predicted erroneously by UNIQUAC.

Introduction

Although the liquid-liquid equilibrium (LLE) for the
binary system of 2-butoxyethanol (C4E1) + water was
already reported in the literature,1 measurements of the
LLE data for this system were redone, but with the phase
volume method. One of the objectives of this work was to
compare liquid-liquid equilibria by the phase volume
method to those by other methods. In the phase volume
method samples are prepared along a tie line, and phase
boundary points or equilibrium phase compositions are
determined by a regression to the linear relationship
between the phase volume and the component concentra-
tion according to the lever rule. The reason for employing
this method in this work is that it has several advantages
over other conventional methods. First, it is much more
convenient to use for the study of low-pressure phase
equilibria. A thermostat bath with viewing windows and
graduated cylinders may be the major components of the
apparatus. Second, it is noninvasive and nondestructive,
because, unlike the analytical method, the phase volume
method does not require either sampling or chemical
analysis. Also, as opposed to the cloud point method, it is
a true equilibrium method. Third, although the equilibrium
phase compositions are obtained as the components’ mass
fractions from linear regressions of measured data, density
measurements are not needed. Rather, either of the phase
densities can be obtained from the slope of the regression;
see eq 1 in the subsequent section. Fourth and most
importantly, the accuracy and the precision of the results
can be greatly improved by preparation of more samples
inside the two-phase region and particularly samples near
the phase boundary points.

The LLE phase compositions for this binary system were
fitted by scaling equations, and the results are compared
to those by UNIQUAC.

LLE data are often fitted by UNIQUAC, because it
provides a satisfactory description for many typical mix-
tures and because it is relatively simple with its only two
adjustable parameters. Its wide range of applicability is
also one of the advantages. However, UNIQUAC cannot
always represent high-quality data with high accuracy,
because the number of adjustable parameters is only two.
Furthermore, it cannot provide accurate information on the
critical point.

In contrast to UNIQUAC, critical-scaling (or scaling)
equations not only yield excellent fits to LLE data but also
give accurate information on the critical point. Moreover,
they are virtually the same for the fluid systems, except
that only the coefficients (or amplitudes) of the terms can
take different values from system to system. This is due
to the universality of the scaling exponents.2 However, the
range of validity of the scaling equations is limited to the
region close to the critical point. How close is close may be
disputable, but in general, the scaling equations are valid
for ε ) |T - Tc|/Tc < O(10-2) with Tc being the critical
temperature.3 For the binary system of 2-(2-hexyloxy-
ethoxy)ethanol (C6E2 in short) and water, where the
amphiphile C6E2 is the second smallest in the homologue
series of polyethylglycol ethers (denoted as CiEj) of which
the smallest is 2-butoxyethanol (C4E1) studied in this
article, the range of validity was where ε < 0.03, which
amounts to ∆T ) |T - Tc| ) 8 K.

Usually for LLE studies, the temperature range was
extended to ε values 10 times larger than that for which
the scaling equations were normally valid. In this work,
the range of validity of the scaling equations was extended
to ∆T ) 20 K by defining a new order parameter similar
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to the one previously used for the scaling equations of
excess enthalpy and incorporating this order parameter
into the scaling equations.4 These new equations yielded
excellent fits to the LLE data of the binary 2-butoxyethanol
(C4E1) + water. The fitting results by these equations are
no worse than those by UNIQUAC. Moreover, the scaling
equations give accurate values for the critical temperature
and critical composition of the system, which are usually
predicted erroneously by UNIQUAC.

Experimental Section

Materials. The amphiphile 2-butoxyethanol, C4H9-
(OCH2CH2)OH, was from Aldrich. It is usually denoted as
C4E1, where C4 and E1 indicate the number of carbons in
the hydrophobic chain and the number of ethoxylate groups
(OCH2CH2) in the hydrophilic part, respectively. The
amphiphile had a stated purity of 99%, which was con-
firmed by gas chromatography. The amphiphile was used
as received. The water was distilled and deionized.

Phase Volume Measurements. For determination of
liquid-liquid equilibrium phase compositions, a series of
binary mixtures of samples of various component mass
fractions were weighed, put into 25-mL graduated cylin-
ders, and placed in a microprocessor-controlled constant-
temperature bath with viewing windows (Tamson Model
45, Neslab Instruments Inc., Newington, New Hampshire)
for at least 1 day. The weighing balance and the temper-
ature of the bath were regulated within (0.5 mg and
(0.005 K, respectively. After phase separation was com-
plete, the volumes of each phase were recorded through
the viewing windows and volume fractions were calculated.

In the two-phase region the volume fraction of a phase
is proportional to the amphiphile mass fraction according
to the lever rule. The linear relationship between the
amphiphile mass fraction, w, and the phase volume frac-
tion, v, is expressed by

or

where w- and w+ are the amphiphile mass fractions of two
equilibrium conjugate phases with phase densities d- and
d+, respectively, and dh is the overall average density of the
two phases. Equations 1 and 2 are obtained from the total
and component mass balances; details for the derivation
of these equations may be found elsewhere.5

Equations 1 and 2 imply that the amphiphile concentra-
tions at the phase volume fractions of zero and one
correspond to those of the conjugate phase boundary points;
w- and w+ are obtained at v ) 0 and v ) 1 from eq 1, as
illustrated in Figure 1, and the other way around from eq
2. Hence, w- and w+ are determined by simply making a
linear regression of v to w and extrapolating v to zero and
one at each temperature. In this method, therefore, there
is no need for knowing the phase densities d- and d+.
Rather, these phase densities can be obtained from the
slopes (dh/d+ and dh/d-) of the regressions, because dh is
recorded when samples are prepared.

The precision of the measurements of the phase volume
fractions was 0.005, and the correlation coefficients of the
linear regressions were better than 0.999. Since w- and
w+ were determined from the regressions via eq 1, their

final precisions were thought to be better than 0.005, and
therefore w- and w+ were presented in three significant
digits or a total of four digits.

Equations for the Fits to LLE Data

UNIQUAC Equations. For the equilibria between two
liquid phases I and II, the following condition should be
satisfied:

To obtain the equilibrium compositions wi
I and wi

II, the
activity coefficients γi at each phase should be calculated.
These calculations were done by using the UNIQUAC
(universal quasi-chemical) model, which was developed by
Abrams and Prausnitz (1975)6 on the basis of statistical
mechanical theory. This model yields γi as

where γk
comb and γk

res are the combinatorial and residual
contributions, respectively, to the activity coefficients,
which are given by

Here xi, Φi, and θi are the mole fraction, molecular volume
fraction, and surface fraction of component i, respectively.
Φi and θi are calculated from the molecular size parameter
rj and the shape parameter qj, of which values may be
found from various sources.7 The quantity τij is the energy
parameter and related to the binary interaction parameter
aij by the equation

With γi described by eqs 3-5 and the material balances
(∑wi

I ) 1 and ∑wi
II ) 1) the equilibrium compositions wi

I

and wi
II can be obtained from eq 5. When UNIQUAC is

applied to a binary LLE, the number of the fitting param-
eters is two and they are τ12 and τ21 (or a12 and a21).8

v ) ( w - w-

w+ - w-
) dh
d+

(1)

1 - v ) ( w - w+

w- - w+
) dh
d-

(2)

Figure 1. Schematic of relative amounts of equilibrium phase
volumes v at different mass fractions w of the amphiphile
2-butoxyethanol (C4E1) in the two-phase region. The linear
relationship between v and w is observed according to the lever
rule. The quantities w- and w+ are the phase boundary points
between the single- and two-phase regions.
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Critical-Scaling (or Scaling) Equations. According
to renormalization group theory, the phase boundary points
w- and w+ should behave as

where wc is the critical concentration, B, C, and D are
parameters (or amplitudes) that depend on the chemical
system, and â, R, and ∆ are universal scaling exponents
whose values are 0.324,9-14 0.112,11-14 and 0.5,9,10,14 re-
spectively. The quantity ε is the reduced temperature,
defined as ε ≡ |T - Tc|/Tc.

From eq 8 one obtains

On the right-hand side of eq 9 the first term predominates
in the vicinity of the critical point, while the second term
is more significant away from the critical point because of
the larger exponent value (â + ∆ ) 0.824 versus â ) 0.324).
Hence, on the right-hand side of eq 9, only the first term
was retained for the fit. Without the second term on the
right-hand side, eq 9 is rewritten as

where B′ ) (2B)1/â/Tc.
In the terminology of critical phenomena, the chemical

potential approximates the ordering field, and a fractional
concentration such as the mole fraction approximates the
order parameter. This critical behavior is basically sym-
metric in the order parameter. However, liquid-liquid
equilibria in real fluids usually display asymmetries in the
common fractional concentrations, and these asymmetries
limit the applicability of eqs 7-9 to the region close to the
critical point. Hence a successful incorporation of the asym-
metries, which real fluids exhibit, into the scaling theory
will make the theory accurate for liquid-liquid equilibria
at considerable distances from the critical point. One of the
ways to incorporate the asymmetries is to define a new
order parameter OP. Then, the new order parameter OP
should have the temperature dependence like eq 8, that
is,2,4

where OPc is the OP value at the critical point.
It is still a matter of some controversy whether the mass

fraction or the mole fraction or the volume fraction is the
correct order parameter for binary mixtures.15 However,
the literature seems to support a fractional concentration
as the likely order parameter. Furthermore, a fractional
order parameter is also consistent with a fractional activity
being the ordering field, which has also been used in the
literature.4,16

Consider the transformation from, for example, mass
fraction w to volume fraction v:

where f ) d2/d1 with di and Vi being the density and volume
of species i, respectively. Because the a priori preference
for one type of fractional order parameter over another is
not justified at present, it is appealing to work with a

fractional order parameter where the transformation factor
f is a fitting parameter. Fractional densities similar to this
are used in the Flory-Huggins theory of polymer solutions
and have been used in critical scaling fits to liquid-liquid
equilibria in polymer solutions.17-20 For these reasons a
new order parameter is chosen to have the form

where f is a fitting parameter to make the best fit of the
data to the inherently symmetric critical scaling equations.

Results and Discussion

Liquid-Liquid Coexistence Curve. The liquid-liquid
coexistence curve for the binary C4E1 + water was deter-
mined by phase volume measurements at 15 temperatures
from 323.18 K to 342.94 K. At each temperature, volume
fractions of the upper phase (amphiphilic phase) were
measured at several C4E1 concentrations. Figure 2 shows
a typical example of upper phase volume fraction, v, versus
C4E1 mass fraction, w. The linear relationship between
these quantities is a replica of the trend of the gray portions
at different w’s in Figure 1. The correlation is excellent;
the correlation coefficient is 0.9993. The phase boundary
points w- and w+, where the volume fractions v are zero
and one, respectively, are found from the plot. The points
w- and w+ thus determined are tabulated in Table 1 and
also plotted in Figure 3 along with data from the literature.
The phase boundary points on the aqueous side are in
excellent agreement with one another, irrespective of the
methods employed. On the amphiphilic side, however, there
exist substantive differences among the different methods.

The coexistence curve is more symmetric in mass (or
volume) fraction than in mole fraction. Since enhanced
symmetry provides more accurate fitting results,4,21 the
equilibrium compositions are expressed in terms of mass
fractions of the components, as represented in Figure 2.
Poorer symmetry in mole fraction is due to the large
disparity between the components’ molecular weights
(118.18 vs 18.016).

Table 2 shows the overall densities, d, from the masses
and the volumes of the liquids inside the glass cylinders
in the thermostat. Estimated changes in dh/d- and dh/d+
inside the two-phase region were in the range 0.985 and

w( ) wc ( Bε
â ( Cε

â+∆ + Dε
1-R (8)

w+ - w- ) 2Bε
â + 2Cε

â+∆ (9)

w+ + w-

2
≡ wavg ) wc + Dε

1-R (10)

(w+ - w-)1/â ) B′|T - Tc| (11)

OP( ) OPc ( B̃ε
â ( C̃ε

â+∆ + D̃ε
1-R (12)

v )
V1

V1 + V2
)

w1/d1

w1/d1 + w2/d2
) fw

1 + (f - 1)w
(13)

Figure 2. Volume fraction of the upper phase versus mass
fraction of C4E1 in the 2-butoxyethanol (C4E1)/water system at
327.14 K.

OP( )
fw(

1 + (f - 1)w(
(14)
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1.014. As mentioned previously, the phase densities d- and
d+ can be determined from the slopes of the regressions to
eqs 1 and 2. The phase densities from the phase volume
method and densitometry will be compared, and the results
will be reported in a separate article.

Fit by UNIQUAC Equations. The molecular size
parameter r and the shape parameter q were found for the
two components rwater and qwater for water from the list and
rC4E1 ) 5.517 and qC4E1 ) 4.988 calculated for 2-butoxy-
ethanol. Using these rj and qj values, molecular volume
fraction Φj and the surface fraction θj were obtained and
then γi was obtained from eqs 3 to 5. Then the binary
interaction parameters a12 and a21 were determined at each
temperature by solving eq 3 with the measured w- and
w+. Figure 4 shows the temperature dependence of a12 and
a21 thus determined. The parameter a12 increases with
temperature but remains negative over the temperature
range examined. On the other hand, a21 decreases with
temperature and remains positive. Over the temperature
range examined, the extent of change in a12 and a21 is
almost identical; it is around 80 in absolute value.

The binary interaction parameter aij is then fitted to the
third order polynomial of temperature, as was done previ-
ously:22

Here the coefficients bk for a12 and a21 are found as shown
in Table 3.

With the a12 and a21 described by eq 15, the phase
boundary points w- and w+ at a temperature of interest
were calculated from eq 3. Figure 5 shows the results of
the fit by UNIQUAC. It shows that the values calculated
by UNIQUAC follow very closely the measured data; the
sum of squares for the 30 data points is 6.5525 × 10-3.

Fit by Scaling Equations. The values of Tc and wc are
first determined from eqs 9 and 10 and the LLE data of
Table 1. A linear regression of (w+ - w-)1/â to T yields Tc

from the x-axis intercept of the fit (eq 11). Figure 6 shows
a (w+ - w-)1/â versus T plot. Close to the lower critical
solution temperature Tc, the data increase linearly with
temperature up to 331.15 K, above which the increase in
rate is reduced. Hence, the first nine data points are used
for the regression to determine Tc; Tc is found to be 321.7
( 0.3 K with the correlation coefficient of 0.9875.

Equation 11 is valid only close to the critical point. Since
how close is close is arguable, this issue may be examined

in two ways. One is to make linear fits to eq 11 but by
adding datum by datum, and the other is to make nonlinear
fits to eq 9. For linear fits with more data included, larger
fitting errors were obtained; with the first 10 points, the
root-mean-square error (0.06) of the fit increased by 50%,
and with the first 11 points, it (0.08) increased by 100%,
compared to that (0.04) with the first 9 points. This trend
continued, and with the first 15 points the error (0.11) was
three times larger. For nonlinear fits to eq 9, the Tc value
obtained was almost the same as that from the linear
regression with the first 9 points but the fitting error was
10% larger. When more data points were included for the
fits, a trend similar to that with the linear fits was
observed. All these results may imply that an accurate Tc

can be obtained with the linear fits to eq 11.
After Tc is determined, ε is calculated, and the linear

regression of wavg to ε1-R is done to determine wc. Similar
behavior is observed for this plot, that is, eq 10 is valid for
the first 9 data points. This may point to the fact that the
critical scaling equations are valid for ε up to 0.0294 for
this binary system when the mass fraction is used as the
order parameter. From the regression, wc ) 0.294 ( 0.002
is obtained. These values of Tc and wc are comparable to
those determined by a different method as presented in
Table 4.

As seen in Figure 6, the validity of the critical scaling
equations is restricted to the region of ε e 0.0294. Hence,
to extend their region of validity, the order parameter
defined by eq 14 is used in place of mass fraction and eq
12 is used for the fit of the phase boundary points. The
fitting results are presented in Figure 4. The figure reveals
that the curve representing the values calculated by eq 12
is in excellent agreement with the measured LLE data; for
these fits f ) 1.6312, B̃ ) 0.859 81, C̃ ) 0.720 50, D̃ )
0.400 53, and the sum of squares is 8.1490 × 10-4.

The fits give residuals with no systematic pattern as
shown in Figure 7. This may indicate that there are few
systematic errors in the measurements of phase composi-
tions and in the fits of eq 15 to the compositions.

The sums of squares for the fits by UNIQUAC and the
scaling equations are 6.5525 × 10-3 and 8.1490 × 10-4,
respectively. Comparison of the sums of squares by
UNIQUAC and by the scaling equations tells that the
scaling equations give better fits to the data. However, the
larger sum of squares for the fit by UNIQUAC is mainly
due to large error at the critical point, which is one of the
problems UNIQUAC has inherently. Except at the critical
point, the fits by UNIQUAC are as good as those by the

Table 1. Liquid-Liquid Phase Boundary Points for the
2-Butoxyethanol/Water Systema

T/K (t/°C) w- (aqueous) w+ (amphiphilic)

323.18 (50.03) 0.1826 0.4211
324.19 (51.04) 0.1667 0.4484
324.92 (51.77) 0.1529 0.4694
326.12 (52.97) 0.1469 0.4752
327.14 (53.99) 0.1400 0.5977
328.07 (54.92) 0.1360 0.5140
329.17 (56.02) 0.1340 0.5155
330.13 (56.98) 0.1236 0.5452
331.14 (57.99) 0.1176 0.5525
333.10 (59.95) 0.1188 0.5533
325.17 (62.02) 0.1152 0.5630
337.01 (63.86) 0.1086 0.5834
338.99 (65.84) 0.1094 0.5896
341.00 (67.85) 0.1048 0.5958
342.94 (69.79) 0.1071 0.6121

a The quantities w- and w+ are the mass fractions of the
amphiphile 2-butoxyethanol for the aqueous and amphiphilic
phases, respectively.

aij ) b0 + b1T + b2T
2 + b3T

3 (15)

Figure 3. Phase boundary points for the binary 2-butoxyethanol
(C4E1) and water: ], Ellis (1967);28 0, Cox and Cretcher (1926);32

4, Elizalde et al. (1988);29 +, Ito et al. (1983);34 /, Poppe (1935);24

b, this study.
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critical scaling equations, which is manifested by the resid-
uals shown in Figure 7. In fact, better fits by UNIQUAC
can be made, for example, using higher-order polynomials
of temperature for aij as in eq 15. Although this can be
achieved, it may be insignificant. UNIQUAC still can
predict the critical point incorrectly. It is because eq 15 is
not theory-based,

Compared to UNIQUAC, the scaling equations yield the
correct critical point, and although their use is limited to

the region close to the critical point, they fit excellently
the LLE data. Farther away from the critical point the
scaling equations with a new order parameter were used.
The new order parameter worked well for the liquid-liquid
coexistence curve for the binary system examined in this
work. This order parameter is reminiscent of volume of site
fraction in the Flory-Huggins model for polymer solu-

Table 2. Overall Densities (d/g‚cm-3) at Different Volume Fractions (v) and Temperatures

324.92 K 326.12 K 330.13 K 333.10 K 325.17 K 337.01 K 338.99 K 341.00 K 342.94 K

v d v d v d v d v d v d v d v d v d

0.118 0.971 0.167 0.971 0.175 0.962 0.051 0.967 0.066 0.962 0.073 0.967 0.068 0.967 0.078 0.962 0.082 0.957
0.282 0.961 0.286 0.965 0.295 0.956 0.165 0.962 0.170 0.962 0.179 0.957 0.179 0.957 0.183 0.953 0.183 0.953
0.378 0.965 0.371 0.960 0.381 0.960 0.302 0.947 0.295 0.956 0.307 0.947 0.295 0.956 0.305 0.943 0.290 0.956
0.442 0.959 0.442 0.959 0.435 0.955 0.377 0.951 0.377 0.951 0.373 0.951 0.368 0.951 0.371 0.947 0.366 0.947
0.528 0.952 0.519 0.952 0.491 0.952 0.425 0.941 0.419 0.946 0.415 0.941 0.412 0.946 0.408 0.937 0.406 0.941
0.754 0.953 0.747 0.949 0.686 0.949 0.479 0.947 0.474 0.947 0.472 0.943 0.467 0.943 0.458 0.943 0.458 0.943
0.896 0.944 0.868 0.944 0.804 0.935 0.652 0.944 0.643 0.944 0.636 0.940 0.628 0.940 0.621 0.936 0.612 0.936

0.759 0.926 0.748 0.935 0.742 0.922 0.728 0.939 0.719 0.922 0.708 0.926
0.867 0.918 0.848 0.931 0.832 0.918 0.820 0.931

Figure 4. UNIQUAC parameters a12 and a21 as a function of temperature.

Figure 5. Liquid-liquid coexistence curve for the binary 2-bu-
toxyethanol and water, and the fits by the critical-scaling equa-
tions with a new order parameter (solid line) and by UNIQUAC
(broken line).

Table 3. UNIQUAC Parameters a12 and a21 for the
Binary 2-Butoxyethanol + Water System (aij + b0 + b1T +
b2T2 + b3T3)

b0 b1 b2 b3

a12/K -3.6405 × 105 3.2684 × 103 -9.7910 9.7834 × 103

a21/K 4.1101 × 105 -3.7003 × 103 11.118 -1.1139 × 102

Figure 6. Plot of (w+ - w-)1/â versus temperature, T.

Table 4. Lower Critical Solution Temperature (Tc) and
the C4E1 Mole Fraction (xc) at Tc for the Binary
Amphiphile 2-Butoxyethanol (C4E1) and Water

tc/°C xc ref tc/°C xc ref

44.5 0.053 23 49.0 0.058 29
47.5 0.048 24 49.0 0.059 30
48.0 0.048 25 49.0 0.059 31
48.2 0.061 26 49.1 0.048 32
48.3 0.052 1 49.2 33
48.5 0.059 (wc ) 0.294) this study 49.4 0.07 34
48.7 0.059 27 49.8 0.051 35
48.8 0.054 28
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tions,36 and order parameters similar to OP defined in eq
14 are found in various mixtures.4,16-20,37 In the new order
parameter OP, the value of the factor f should be well
examined. If f were around 1.13, which is the density ratio
d2/d1 ()0.9858/0.8744, for example, at 328.15 K), OP would
be the volume fraction v, as represented by eq 16. However,
f for the best fit is 1.6338 and is 80% larger than d2/d1.
This indicates that scaling equations with a simple frac-
tional concentration (volume-, mass-, or mole-fraction) as
the order parameter may be inadequate to describe liquid-
liquid coexistence curves correctly and that f may be
represented by quantities other than component densities.
In fact, f may be equal to the ratio of the activity coefficients
of the two components for binary systems.4 Hence, the near-
constancy of f over a wide range of temperature and
compositions implies a kind of very extended “Henry’s law”
behavior for the highly polar 2-butoxyethanol/water sys-
tem.

Conclusions

The liquid-liquid coexistence curve of the binary non-
ionic amphiphile 2-butoxyethanol (1) + water (2) was
determined around the lower consolute solution tempera-
ture, Tc, by phase volume measurements, and the fits of
data to UNIQUAC and scaling equations were made and
compared.

The phase boundary points determined by the phase
volume method are in excellent agreement on the aqueous
side with literature values determined by other methods.
On the amphiphilic side this method also, like other
methods, yields the phase boundary points which agree less
well with literature values. These results imply that the
phase volume method is as effective as other methods for
the determination of liquid-liquid equilibrium (LLE) phase
compositions. Taking account for its advantages over other
methods, such as its being convenient to use, noninvasive
and nondestructive, capable of determining phase densities,
and capable of improving greatly the accuracy and the
precision by preparation of more samples inside the two-
phase region and particularly samples near the phase
boundary points, the phase volume method may be one of
the powerful methods for low-pressure phase studies.

The LLE phase compositions were fitted to UNIQUAC
and scaling equations with a new order parameter. These
equations followed very closely the measured data over the
experimental temperature range of 20 K, and the scaling
equation gave slightly better fits than UNIQUAC. The
incorporation of the new order parameter into the scaling
equations made the range of validity of the scaling equa-
tions extended from 8 K to 20 K. Although the scaling
equations have more fitting parameters than UNIQUAC

(5 vs 2), they may be considered as being more useful,
because they are based on the rigorous theory and more
importantly they yield also the correct critical point
through a linear regression to eq 11.
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