# Liquid–Liquid Equilibrium and Physical Properties of the Ternary Mixture (Dimethyl Carbonate + Methanol + Cyclohexane) at 298.15 K

# J. Canosa, A. Rodríguez, and J. Tojo\*

Chemical Engineering Department, Vigo University, 36200 Vigo, Spain

Density, refractive index, and speed of sound of dimethyl carbonate (1) + cyclohexane (3) and methanol (2) + cyclohexane (3) and dimethyl carbonate (1) + methanol (2) + cyclohexane (3) have been measured at 298.15 K and atmospheric pressure, over the miscible composition range. Excess molar volumes, changes of refractive index on mixing, and deviations in isentropic compressibility for the systems have been calculated. Redlich–Kister and Cibulka equations have been used to estimate the binary and ternary fitting parameters, and root-mean-square deviations from the regression lines are shown. Values of derived and excess properties were estimated by different methods and compared with experimental data. Excess partial molar volumes at infinite dilution are also calculated. The liquid–liquid equilibrium of dimethyl carbonate (1) + methanol (2) + cyclohexane (3) at 298.15 K and atmospheric pressure has been measured. The UNIQUAC equation was used to correlate the experimental data, and the root-mean-square deviation between experimental and predictive values is shown.

### 1. Introduction

Densities, refractive indices, and speeds of sound in the miscible region of binary and ternary mixtures of dimethyl carbonate (1) + methanol (2) + cyclohexane (3) at 298.15 K and atmospheric pressure have been measured. This is a continuation of the thermodynamic study<sup>1</sup> of the multicomponent mixture containing dimethyl carbonate and methanol due to the increasing interest in carbonic acid as a raw material in synthetic resins such as polycarbonate, in the synthesis of pharmaceuticals, and in agricultural chemistry. In previous papers,<sup>1</sup> the density, refractive index, and speed of sound of the binary mixture dimethyl carbonate (1) + methanol (2) were measured.

The experimental values were used to calculate excess molar volumes, changes of refractive index on mixing, and deviations in isentropic compressibility over the miscible mole fraction range for the mixtures. Experimental values were correlated with Redlich-Kister<sup>2</sup> and Cibulka<sup>3</sup> equations for binary and ternary mixtures, respectively. The root-mean-square deviation between experimental and calculated values is shown. Comparison between experimental and literature data has been made for binary mixtures.<sup>4-6</sup> The excess molar volumes, changes of refractive index on mixing, and deviations in isentropic compressibility were compared with the results obtained by applying several equations<sup>7</sup> that predict excess and derived properties from the Redlich-Kister fitting parameters of binary systems. Their root-mean-square deviations are shown. By means of the calculated Redlich-Kister correlation parameters, the partial excess molar volumes corresponding to limiting values<sup>7</sup> have been evaluated.

The liquid–liquid equilibrium of dimethyl carbonate (1) + methanol (2) + cyclohexane (3) has been measured because a region of immiscibility was presented when the physical properties were studied. The experimental tie lines were used to obtain, by applying the UNIQUAC equation,<sup>8</sup> the binodal curve. Experimental data of the liquid–liquid Table 1. Comparison of Density  $\rho$  and Refractive Index  $n_{\rm D}$  with Literature Data for Pure Components at 298.15 K

|                         | ρ/(ε             | ρ/(g·cm <sup>-3</sup> )                          |                      | n <sub>D</sub>                    |
|-------------------------|------------------|--------------------------------------------------|----------------------|-----------------------------------|
| component               | exptl            | lit.                                             | exptl                | lit.                              |
| dimethyl carbonate      | 1.0635           | $1.063 \ 50^a \ 1.063 \ 20^b$                    | 1.366 40             | 1.366 70 <sup>a,b</sup>           |
| methanol<br>cyclohexane | 0.7866<br>0.7738 | 0.786 64 <sup>c,d</sup><br>0.773 89 <sup>d</sup> | 1.326 45<br>1.423 63 | $1.326 \ 52^{c,d} \ 1.423 \ 54^d$ |

 $^a$  García et al. <br/>5 $^{\ b}$  Pal et al.  $^{10}$   $^c$  Das et al.  $^{11}$ <br/> $^d$  Riddick et al.  $^{12}$ 

equilibrium related with the ternary system were not found in the literature data.

# 2. Experimental Section

The pure components were supplied by Merck. Dimethyl carbonate was supplied by Fluka. Their mass fraction purities were >99 mass % for dimethyl carbonate, >99.8 mass % for methanol, and >99.5 mass % for cyclohexane. Materials were degassed ultrasonically, dried over molecular sieves Type 3 Å and 4 Å (Aldrich), and kept in an inert argon atmosphere (with a maximum content in water of  $2.14 \times 10^{-6}$  by mass fraction). Chromatographic analysis of the solvents showed purities which fulfilled purchaser specifications. The maximum water contents of the liquids were determined using a Metrohm 737 KF coulometer. The corresponding obtained values were  $1.1 \times 10^{-2} \mbox{ mass }\%$  for methanol and negligible quantities for the rest of the liquids. The densities and refractive indices of the components were compared with recently published values in Table 1.

The mixtures were prepared from known masses of the pure liquids, by syringing into stoppered bottles to prevent evaporation and reduce possible errors in the mole fractions. A Mettler AT-261 Delta Range balance was used with a precision of  $\pm 10^{-5}$  g, covering the whole composition range of the mixture. The density and the speed of sound of the pure liquids and mixtures were measured with an

<sup>\*</sup> Corresponding author. E-mail: jtojo@uvigo.es.

Table 2. Density  $\rho$ , Refractive Index  $n_D$ , Excess Molar Volume  $V_m^E$ , Change of Refractive Index on Mixing  $\Delta n_D$ , Speed of Sound u, Isentropic Compressibility  $\kappa_S$ , and Deviation in Isentropic Compressibility  $\Delta \kappa_S$  for Binary Mixtures at 298.15 K

|        | ρ                  |                | и                                                          | $V_{\mathrm{m}}^{\mathrm{E}}$                      |                    | κs                                           | $\Delta \kappa_{\rm S}$                      |
|--------|--------------------|----------------|------------------------------------------------------------|----------------------------------------------------|--------------------|----------------------------------------------|----------------------------------------------|
| х      | g⋅cm <sup>-3</sup> | n <sub>D</sub> | $\overline{\mathbf{m}{\boldsymbol{\cdot}}\mathbf{s}^{-1}}$ | $\overline{\mathrm{cm}^{3}\cdot\mathrm{mol}^{-1}}$ | $\Delta n_{\rm D}$ | $\overline{\mathrm{T}}\cdot\mathrm{Pa}^{-1}$ | $\overline{\mathrm{T}}\cdot\mathrm{Pa}^{-1}$ |
|        |                    | Dir            | nethyl Carbonat                                            | te (1) + Cyclohexane                               | e (2)              |                                              |                                              |
| 0      | 0.7738             | 1.423 63       | ž 1255                                                     | 0                                                  | 0                  |                                              | 0                                            |
| 0.0378 | 0.7801             | 1.420 71       | 1244                                                       | 0.318                                              | -0.0008            | 829                                          | 14                                           |
| 0.0808 | 0.7879             | 1.417 41       | 1232                                                       | 0.605                                              | -0.0016            | 835                                          | 28                                           |
| 0.1764 | 0.8070             | 1.410 74       | 1212                                                       | 1.064                                              | -0.0028            | 843                                          | 51                                           |
| 0.2896 | 0.8325             | 1.403 53       | 1195                                                       | 1.358                                              | -0.0035            | 841                                          | 68                                           |
| 0.3880 | 0.8570             | 1.397 79       | 1184                                                       | 1.457                                              | -0.0036            | 832                                          | 75                                           |
| 0.4938 | 0.8856             | 1.391 87       | 1176                                                       | 1.451                                              | -0.0035            | 817                                          | 77                                           |
| 0.5908 | 0.9141             | 1.386 54       | 1172                                                       | 1.348                                              | -0.0033            | 796                                          | 72                                           |
| 0.6864 | 0.9443             | 1.381 47       | 1172                                                       | 1.180                                              | -0.0029            | 770                                          | 62                                           |
| 0.7918 | 0.9807             | 1.376 12       | 1176                                                       | 0.885                                              | -0.0022            | 737                                          | 46                                           |
| 0.8976 | 1.0210             | 1.371 11       | 1185                                                       | 0.468                                              | -0.0011            | 698                                          | 24                                           |
| 0.9503 | 1.0423             | 1.368 64       | 1190                                                       | 0.245                                              | -0.0006            | 677                                          | 12                                           |
| 1      | 1.0635             | 1.366 40       | 1196                                                       | 0                                                  | 0                  | 657                                          | 0                                            |
|        |                    |                | Methanol (2)                                               | + Cyclohexane (3)                                  |                    |                                              |                                              |
| 0      | 0.7738             | 1.423 63       | 1255                                                       | 0                                                  | 0                  | 821                                          | 0                                            |
| 0.0198 | 0.7733             | 1.422 68       | 1248                                                       | 0.083                                              | 0.0010             | 830                                          | 4                                            |
| 0.0286 | 0.7731             | 1.422 41       | 1247                                                       | 0.116                                              | 0.0016             | 832                                          | 5                                            |
| 0.0484 | 0.7729             | 1.421 46       | 1242                                                       | 0.155                                              | 0.0025             | 839                                          | 8                                            |
| 0.0550 | 0.7728             | 1.421 12       | 1240                                                       | 0.173                                              | 0.0028             | 841                                          | 8                                            |
| 0.8309 | 0.7745             | 1.355 87       | 1113                                                       | 0.512                                              | 0.0130             | 1041                                         | 33                                           |
| 0.8960 | 0.7773             | 1.345 48       | 1105                                                       | 0.386                                              | 0.0089             | 1054                                         | 31                                           |
| 0.9566 | 0.7819             | 1.334 66       | 1101                                                       | 0.185                                              | 0.0040             | 1055                                         | 18                                           |
| 1      | 0.7866             | 1.326 45       | 1102                                                       | 0                                                  | 0                  | 1047                                         | 0                                            |

Anton Paar DSA-48 densimeter and sound analyzer with a precision of  $\pm 10^{-4}$  g·cm<sup>-3</sup> and  $\pm 1$  m·s.<sup>-1</sup> The refractive index at the sodium D line was measured by the automatic refractometer ABBEMAT-HP Dr Kernchen with a precision of  $\pm 10^{-5}$ . These instruments were calibrated with Millipore quality water and ambient air, respectively, in accordance with the instructions.

The apparatus for the liquid–liquid equilibrium determination consists of a glass cell with a water jacket in order to maintain a constant temperature. Temperature was controlled within  $\pm 5 \times 10^{-2}$  K inside the cell. The cell was connected to a controller bath Polyscience model 9010, with a stability of  $\pm 10^{-2}$  K. The temperature in the cell was measured with an Anton Paar MKT-100 digital thermometer (precision  $\pm 10^{-2}$  K) over the entire range of temperatures. The estimated uncertainty in the mole fraction for the equilibrium data was  $3 \times 10^{-3}$  in the cyclohexane rich region (phase I) and  $2 \times 10^{-3}$  in the methanol rich region (phase II).

#### 3. Results and Discussion

Density, refractive index, speed of sound, excess molar volume, changes of refractive index on mixing, isentropic compressibility (determined by means of the Laplace equation,  $\kappa_{\rm S} = \rho^{-1}u^{-2}$ , where *u* is the speed of sound), and deviation in isentropic compressibility of the miscibility region for the binary and ternary mixtures are reported in Tables 2 and 3, respectively. Excess molar volumes, changes of refractive indices on mixing, and deviations in isentropic compressibility for binary and ternary mixtures were derived, respectively, from

$$V_{\rm m}^{\rm E} = \sum_{i=1}^{N} x_i M_i (\rho^{-1} - \rho_i^{\rm o^{-1}})$$
(1)

$$\Delta n_{\rm D} = n_{\rm D} - \sum_{i=1}^{N} x_i n_{{\rm D},i}^{\circ} \tag{2}$$

$$\Delta \kappa_{\rm S} = \kappa_{\rm S} - \sum_{i=1}^{N} x_i \kappa_{{\rm S},i} \tag{3}$$

In these equations,  $\rho$  and  $n_D$  are the density and refractive index of the mixture,  $\rho_i^{\circ}$  and  $n_{D,i}^{\circ}$  are the densities and refractive indexes of the pure components,  $\kappa_S$  is the isentropic compressibility of the mixture, and  $\kappa_{S,i}$  are the isentropic compressibilities of the pure components.

The binary values were fitted to a Redlich–Kister type equation:

$$\Delta X_{ij} = x_i x_j \sum_{p=0}^{m} B_p (x_i - x_j)^p$$
(4)

where  $\Delta X_{ij}$  is the excess property, *x* is the mole fraction,  $B_{\rm P}$  is the fitting parameter, and *m* is the degree of the polynomic expansion. For ternary mixtures the corresponding equation is

$$\Delta X_{123} = \Delta X_{12} + \Delta X_{13} + \Delta X_{23} + x_1 x_2 (1 - x_1 - x_2) (C_1 + C_2 x_1 + C_3 x_2)$$
(5)

where  $\Delta X_{12}$ ,  $\Delta X_{13}$ , and  $\Delta X_{23}$  are the parameters representing the binary interactions in accordance with the Redlich– Kister expression and  $C_1$ ,  $C_2$ , and  $C_3$  are the fitting parameters. Applying the F-test,<sup>9</sup> the degree of the polynomial expression was optimized. The correlation parameters calculated using eqs 4 and 5 are listed in Table 4, together with the root-mean-square deviation  $\sigma$ . This deviation is calculated by applying the following expression:

$$\sigma = \left(\sum_{i}^{n_{\text{DAT}}} (z_{\text{exp}} - z_{\text{cale}})^2 / n_{\text{DAT}}\right)^{1/2}$$
(6)

where experimental and calculated data are represented by  $z_{exp}$  and  $z_{calc}$ , respectively, and the number of experimental data is represented by  $n_{DAT}$ .

Figure 1 shows the excess molar volumes; they are positive in the entire composition range. Dimethyl carbonate (1) + cyclohexane (3) are miscible over the whole composition range.

Figure 2 exhibits the excess molar volumes for dimethyl carbonate (1) + methanol (2) + cyclohexane (3). Excess molar volumes are positive over most of the composition

| Table 3. | Density $\rho$ , Refractive Index $n_{\rm D}$ , | Excess Molar Volume   | V <sup>E</sup> , Change of Refractive | e Index on Mixing $\Delta n_{D_2}$ | , Speed of  |
|----------|-------------------------------------------------|-----------------------|---------------------------------------|------------------------------------|-------------|
| Sound u  | , Isentropic Compressibility K <sub>S</sub> ,   | and Deviation in Isen | tropic Compressibility $\Delta k$     | α <sub>s</sub> for Ternary Mixture | s at 298.15 |
| K        |                                                 |                       |                                       |                                    |             |

\_

|                       |            | ρ                  |                  | и                                           | $V_{\mathrm{m}}^{\mathrm{E}}$      |                    | KS                 | $\Delta \kappa_{\rm S}$                      |
|-----------------------|------------|--------------------|------------------|---------------------------------------------|------------------------------------|--------------------|--------------------|----------------------------------------------|
| <i>X</i> <sub>1</sub> | <i>X</i> 2 | g·cm <sup>-3</sup> | n <sub>D</sub>   | $\overline{\mathbf{m}}\cdot\mathbf{s}^{-1}$ | cm <sup>3</sup> ·mol <sup>-1</sup> | $\Delta n_{\rm D}$ | T•Pa <sup>-1</sup> | $\overline{\mathrm{T}}\cdot\mathrm{Pa}^{-1}$ |
|                       |            | Din                | nethyl Carbonate | e (1)+ Methar                               | nol (2) + Cyclohexa                | ne (3)             |                    |                                              |
| 0.0587                | 0.0624     | 0.7833             | 1.416 12         | 1220                                        | 0.630                              | 0.0019             | 858                | 32                                           |
| 0.0471                | 0.9072     | 0.8060             | 1.338 37         | 1106                                        | 0.186                              | 0.0056             | 1015               | -3                                           |
| 0.1011                | 0.0923     | 0.7920             | 1.411 42         | 1202                                        | 0.894                              | 0.0025             | 873                | 48                                           |
| 0.0849                | 0.1946     | 0.7912             | 1.407 33         | 1190                                        | 0.705                              | 0.0075             | 893                | 42                                           |
| 0.1129                | 0.2993     | 0.8011             | 1.398 79         | 1170                                        | 0.733                              | 0.0107             | 912                | 42                                           |
| 0.1106                | 0.3839     | 0.8035             | 1.393 02         | 1160                                        | 0.670                              | 0.0130             | 924                | 35                                           |
| 0.1153                | 0.4527     | 0.8072             | 1.387 17         | 1150                                        | 0.686                              | 0.0141             | 937                | 33                                           |
| 0.1087                | 0.5858     | 0.8102             | 1.375 48         | 1133                                        | 0.691                              | 0.0150             | 961                | 26                                           |
| 0.1074                | 0.7004     | 0.8167             | 1.362 54         | 1119                                        | 0.599                              | 0.0131             | 978                | 17                                           |
| 0.0973                | 0.7967     | 0.8212             | 1.350 59         | 1111                                        | 0.399                              | 0.0100             | 980                | 2                                            |
| 0.1980                | 0.0938     | 0.8130             | 1.404 09         | 1164                                        | 1.200                              | 0.0015             | 870                | 07                                           |
| 0.2075                | 0.1603     | 0.8245             | 1.390 01         | 1107                                        | 1.100                              | 0.0050             | 090                | 55                                           |
| 0.1990                | 0.3039     | 0.8245             | 1.391 77         | 1155                                        | 1.011                              | 0.0091             | 912                | 55<br>61                                     |
| 0.1135                | 0.6229     | 0.8405             | 1 371 08         | 1197                                        | 0.674                              | 0.0038             | 967                | 25                                           |
| 0.1690                | 0.6329     | 0.8379             | 1 364 86         | 1127                                        | 0.627                              | 0.0144             | 946                | 10                                           |
| 0.2069                | 0.6798     | 0.8620             | 1 355 79         | 1120                                        | 0.413                              | 0.0121             | 923                | -18                                          |
| 0.3810                | 0.0711     | 0.8595             | 1.394 36         | 1173                                        | 1.472                              | -0.0006            | 846                | 72                                           |
| 0.2825                | 0.1885     | 0.8404             | 1.393 54         | 1161                                        | 1.301                              | 0.0044             | 882                | 65                                           |
| 0.3080                | 0.2813     | 0.8557             | 1.385 61         | 1151                                        | 1.135                              | 0.0069             | 882                | 48                                           |
| 0.2870                | 0.4064     | 0.8612             | 1.377 25         | 1139                                        | 0.892                              | 0.0095             | 895                | 29                                           |
| 0.2884                | 0.4981     | 0.8728             | 1.368 93         | 1134                                        | 0.699                              | 0.0102             | 892                | 6                                            |
| 0.3043                | 0.5909     | 0.8952             | 1.358 10         | 1132                                        | 0.380                              | 0.0093             | 871                | -33                                          |
| 0.3624                | 0.1026     | 0.8567             | 1.393 78         | 1169                                        | 1.437                              | 0.0009             | 854                | 69                                           |
| 0.3941                | 0.1795     | 0.8732             | 1.386 98         | 1161                                        | 1.270                              | 0.0033             | 850                | 53                                           |
| 0.3942                | 0.2934     | 0.8866             | 1.378 96         | 1152                                        | 0.991                              | 0.0064             | 850                | 28                                           |
| 0.3512                | 0.4327     | 0.8895             | $1.370\ 44$      | 1142                                        | 0.723                              | 0.0090             | 863                | 2                                            |
| 0.3683                | 0.5129     | 0.9112             | 1.361 61         | 1141                                        | 0.409                              | 0.0089             | 843                | -34                                          |
| 0.4473                | 0.1105     | 0.8825             | 1.388 12         | 1167                                        | 1.357                              | 0.0008             | 832                | 59                                           |
| 0.4853                | 0.1786     | 0.9031             | 1.381 64         | 1164                                        | 1.128                              | 0.0031             | 817                | 35                                           |
| 0.4607                | 0.3101     | 0.9141             | 1.373 24         | 1156                                        | 0.790                              | 0.0061             | 818                | 3                                            |
| 0.4807                | 0.4034     | 0.9406             | 1.364 22         | 1156                                        | 0.394                              | 0.0073             | 796                | -38                                          |
| 0.5854                | 0.0928     | 0.9249             | 1.381 32         | 1172                                        | 1.147                              | 0.0002             | 787                | 41                                           |
| 0.5700                | 0.2038     | 0.9379             | 1.374 74         | 1170                                        | 0.822                              | 0.0035             | 778                | 5                                            |
| 0.5711                | 0.3251     | 0.9637             | 1.365 37         | 1108                                        | 0.351                              | 0.0060             | /61                | -39                                          |
| 0.0000                | 0.1130     | 0.9374             | 1.3/3 44         | 11/8                                        | 0.841                              | 0.0011             | 132                | 14                                           |
| 0.0910                | 0.1999     | 0.9003             | 1.300 17         | 1101                                        | 0.400                              | 0.0030             | 707                | -20                                          |
| 0.7634                | 0.1108     | 1.0027             | 1.309.37         | 1107                                        | 0.424                              | 0.0013             | 685                | -10                                          |
| 0.0731                | 0.0723     | 0.8295             | 1 386 08         | 11/6                                        | 0.224                              | 0.0010             | 00J<br>017         | -9                                           |
| 0.1933                | 0.5072     | 0.8276             | 1 375 28         | 1133                                        | 0.810                              | 0.0110             | 930                | 43<br>97                                     |
| 0.2976                | 0.0907     | 0.8382             | 1 398 40         | 1174                                        | 1 436                              | 0.0006             | 865                | 73                                           |
| 0.0637                | 0.7809     | 0.8026             | 1.356 32         | 1113                                        | 0.513                              | 0.0122             | 1005               | 18                                           |
|                       |            |                    |                  |                                             |                                    |                    |                    |                                              |

#### Table 4. Parameters and Root-Mean-Square Deviations $\sigma$

| Dimethyl Carbonate $(1) + Cyclohexane (3)$              |                 |                      |                    |                 |                |                    |
|---------------------------------------------------------|-----------------|----------------------|--------------------|-----------------|----------------|--------------------|
| $V_{\rm m}^{\rm E}/({\rm cm}^3 \cdot {\rm mol}^{-1})$   | $B_0 = 5.7889$  | $B_1 = -1.2193$      | $B_2 = 1.2518$     | $B_3 = -0.8412$ |                | $\sigma = 0.006$   |
| $\Delta n_{\rm D}$                                      | $B_0 = -0.0140$ | $B_1 = 0.0041$       | $B_2 = -0.0077$    | $B_3 = 0.0014$  | $B_4 = 0.0052$ | $\sigma = 0.00003$ |
| $\Delta \kappa_{\rm S}/({\rm T}\cdot{\rm Pa}^{-1})$     | $B_0 = 305.43$  | $B_1 = -44.95$       | $B_2 = 20.65$      | $B_3 = -33.35$  |                | $\sigma = 0.2$     |
|                                                         |                 | Methanol             | (2) + Cyclohexane  | 3)              |                |                    |
| $V_{\rm m}^{\rm E}/({\rm cm}^3 \cdot {\rm mol}^{-1})$   | $B_0 = 0.2942$  | $B_1 = 3.9063$       | $B_2 = 4.4812$     | $B_3 = -4.1331$ |                | $\sigma = 0.003$   |
| $\Delta n_{\rm D}$                                      | $B_0 = 0.0764$  | $B_1 = 0.0240$       |                    |                 |                | $\sigma = 0.00004$ |
| $\Delta \kappa_{\rm S}/({\rm T}\cdot{\rm Pa}^{-1})$     | $B_0 = -47.36$  | $B_1 = 145.72$       | $B_2 = 423.98$     |                 |                | $\sigma = 0.2$     |
|                                                         | Dir             | nethyl Carbonate (1) | + Methanol (2) + C | Cyclohexane (3) |                |                    |
| $V_{\rm m}^{\rm E}/({\rm cm}^3 \cdot {\rm mol}^{-1})$   | $C_1 = 29.394$  | $C_2 = -33.696$      | $C_3 = -26.133$    | •               |                | $\sigma = 0.005$   |
| $\Delta n_{\rm D}$                                      | $C_1 = -0.0504$ | $C_2 = 0.0220$       | $C_3 = -0.0789$    |                 |                | $\sigma = 0.00007$ |
| $\Delta \kappa_{\rm S} / ({\rm T} \cdot {\rm Pa}^{-1})$ | $C_1 = 2742.9$  | $C_2 = -4304.5$      | $C_3 = -379.9$     |                 |                | $\sigma = 0.6$     |
|                                                         |                 |                      |                    |                 |                |                    |

diagram, except when they are close to those of the binary mixture dimethyl carbonate (1) + methanol (2), where a change in sign occurs.

The liquid-liquid equilibrium for the ternary mixture has been determined at atmospheric pressure and 298.15 K. Table 5 gives the liquid-liquid composition of both phases. Figure 3 shows the experimental tie lines, the binodal curve obtained by applying the UNIQUAC equation, and the extrapolated plait point at 298.15 K. The composition of this point is  $x_1 = 0.086$  and  $x_2 = 0.422$  for dimethyl carbonate and methanol, respectively. Table 6 shows a comparison between the experimental results and literature values of mutual solubility data for the binary methanol (2) + cyclohexane (3) mixture at 298.15 K. In Table 7 the correlated parameters for the UNIQUAC equation and the root-mean-square deviation from the results of the UNIQUAC model at 298.15 K are shown.



**Figure 1.** Curves of excess molar volumes  $V_m^E$  from Redlich– Kister eq 4 at 298.15 K for methanol (2) + cyclohexane (3) ( $\diamond$ , this work; +, Arce et al.<sup>4</sup>) and dimethyl carbonate (1) + cyclohexane (3) ( $\triangle$ , this work;  $\bigtriangledown$ , García de la Fuente et al.;<sup>5</sup>  $\bigcirc$ , Negadi et al.<sup>6</sup> and fitted curves).



**Figure 2.** Curves of constant excess molar volumes  $V_m^E$  from Cibulka eq 5 at 298.15 K for dimethyl carbonate (1) + methanol (2) + cyclohexane (3).

Table 5. Liquid–Liquid Equilibrium of the Ternary System at 298.15 K

| x <sub>1</sub> <sup>I</sup> | $x_2^{\mathrm{I}}$ | $X_1^{\text{II}}$ | $x_2^{\mathrm{II}}$ |
|-----------------------------|--------------------|-------------------|---------------------|
| 0                           | 0.120              | 0                 | 0.827               |
| 0.005                       | 0.128              | 0.014             | 0.803               |
| 0.017                       | 0.157              | 0.034             | 0.760               |
| 0.030                       | 0.182              | 0.051             | 0.721               |
| 0.036                       | 0.192              | 0.058             | 0.698               |
| 0.046                       | 0.215              | 0.066             | 0.659               |
| 0.056                       | 0.249              | 0.074             | 0.623               |

The predictive methods<sup>7</sup> for excess properties of Kohler, Jacob, and Fitzner; Colinet, Tsao, and Smith; Toop; and Scatchard are based on additive binary contributions that determine ternary excess properties. For the ternary mixture Table 8 gives the difference between experimental and estimated excess values as a root-mean-square differ-



**Figure 3.** Experimental liquid–liquid equilibrium data of the ternary mixture dimethyl carbonate (1) + methanol (2) + cyclohexane (3) at 298.15 K:  $\bigcirc -\bigcirc$ , experimental tie lines and the binodal curve modeling by UNIQUAC;  $\triangle$ , plait point extrapolated.

Table 6. Comparison of Experimental Data withLiterature of Mutual Solubility for Methanol (2) +Cyclohexane (3) at 298.15 K

| 5                  | ·                   |                                |
|--------------------|---------------------|--------------------------------|
| $X_2^{\mathrm{I}}$ | $X_2^{\mathrm{II}}$ | refs                           |
| 0.120              | 0.827               | this work                      |
| 0.128              | 0.825               | Jones <sup>13</sup>            |
| 0.1248             | 0.8280              | Kiser <sup>14</sup>            |
| 0.1250             | 0.8281              | Yasuda et al. <sup>15</sup>    |
| 0.1291             | 0.8284              | Takeuchi et al. <sup>16</sup>  |
| 0.1244             | 0.8285              | Nagata and Katoh <sup>17</sup> |
|                    |                     |                                |

Table 7. Correlating Parameters of the UNIQUAC Equation for the Ternary Mixture at 298.15 K and Root-Mean-Square Deviations  $\sigma$ 

|                                              | $\Delta u_{ij}$       | $\Delta u_{ji}$      |
|----------------------------------------------|-----------------------|----------------------|
| system                                       | kJ∙mol <sup>−1</sup>  | kJ∙mol <sup>−1</sup> |
| dimethyl carbonate $(1)$ + methanol $(2)$    | -1364                 | -160                 |
| dimethyl carbonate $(1)$ + cyclohexane $(3)$ | -1338                 | 152                  |
| methanol $(2)$ + cyclohexane $(3)$           | 1272                  | 21                   |
| $\sigma(x_1) = 0.007$                        | $\sigma(x_2) = 0.001$ |                      |

ence. The ternary excess properties of mixtures may be estimated from binary values applying

$$\Delta X_{ijk} = \sum_{i < j} (x_i x_j / x_i' x_j) \Delta X_{ij} (x_i' x_j')$$
(7)

For each ternary mixture the mole fraction x' may be obtained from a triangular diagram by projecting the point representing the ternary mixture onto the corresponding binary axis, using different symmetric or asymmetric binary contributions to the ternary value. According to these rules, symmetry is understood as the contributions of the three binaries to the ternary excess, all contributing equally. Asymmetry is understood to indicate the different individual contributions of one of the binaries, attributed to the presence in the mixture of polar components. In general for dimethyl carbonate + methanol + cyclohexane the best estimations are given when the type b Tao–Smith asymmetric equation is applied for every derived property.

In Table 9, values of limiting pure partial excess molar volumes at 298.15 K for the binary mixtures are shown. These partial molar quantities are important in the study of the dependence of an extensive property on phase

Table 8. Root-Mean-Square Differences of theExperimental Results from the Predictions from SeveralEmpirical Equations

|                         | $\sigma(V_{\rm m}^{\rm E})$        |                            | $\sigma(\Delta \kappa_{\rm S})$ |
|-------------------------|------------------------------------|----------------------------|---------------------------------|
| eq                      | cm <sup>3</sup> ·mol <sup>-1</sup> | $\sigma(\Delta n_{\rm D})$ | T•Pa <sup>−1</sup>              |
| Kohler                  | 0.215                              | 0.0017                     | 12                              |
| Jacob-Fitzner           | 0.246                              | 0.0016                     | 13                              |
| Colinet                 | 0.203                              | 0.0016                     | 11                              |
| Tsao-Smith <sup>a</sup> | 0.184                              | 0.0045                     | 15                              |
| Tsao-Smith <sup>b</sup> | 0.075                              | 0.0003                     | 5                               |
| Tsao-Smith <sup>c</sup> | 0.228                              | 0.0034                     | 21                              |
| Scatchard <sup>a</sup>  | 0.199                              | 0.0018                     | 15                              |
| Scatchard <sup>b</sup>  | 0.258                              | 0.0009                     | 16                              |
| Scatchard <sup>c</sup>  | 0.220                              | 0.0022                     | 9                               |
| Toop <sup>a</sup>       | 0.182                              | 0.0018                     | 13                              |
| Toop <sup>b</sup>       | 0.247                              | 0.0008                     | 16                              |
| Toop <sup>c</sup>       | 0.220                              | 0.0023                     | 9                               |

<sup>*a*</sup> Cyclohexane is the asymmetric component in the equation. <sup>*b*</sup> Methanol is the asymmetric component in the equation. <sup>*c*</sup> Dimethyl carbonate is the asymmetric component in the equation.

Table 9. Partial Excess Molar Volumes at InfiniteDilution of the Binary Mixtures at 298.15 K

|                                              | $V_1^{\mathrm{E},\infty}$          | $V_2^{\mathrm{E},\infty}$          |
|----------------------------------------------|------------------------------------|------------------------------------|
| system                                       | cm <sup>3</sup> ·mol <sup>-1</sup> | cm <sup>3</sup> ·mol <sup>-1</sup> |
| dimethyl carbonate (1) + methanol (2)        | -0.271                             | -0.232                             |
| dimethyl carbonate $(1)$ + cyclohexane $(3)$ | 9.101                              | 4.980                              |
| methanol $(2)$ + cyclohexane $(3)$           | 5.002                              | 4.549                              |

composition at constant pressure and temperature, showing its trend with the composition. The partial excess molar volumes of a component in a multicomponent system can be obtained from the correlated parameters of excess volumes applying the Redlich–Kister and Cibulka equations. The limiting pure partial excess molar volumes should be determined by considering infinite dilution in the equation

$$\bar{V}_{i}^{E} = V^{E} + (\Delta V^{E} / \Delta x_{i})_{P,T,x_{j}, j \neq i} - \sum_{k=1}^{N} x_{k} (\Delta V^{E} / \Delta x_{k})_{P,T,x_{j}, j \neq k}$$
(8)

The limiting values obtained by eq 8 depend only on the correlation parameters.

#### Acknowledgment

The authors wish to thank Carolina Cancela for its technical assistance in the experimental development of this paper.

**Registry Nos. Supplied by the Author:** Dimethyl carbonate, 616-38-6; methanol, 67-56-1; cyclohexane, 110-82-7.

# **Literature Cited**

- Rodríguez, A.; Canosa, J.; Tojo, J. Physical Properties of the Ternary Mixture Dimethyl Carbonate + Methanol + Benzene and Its Corresponding Binaries at 298.15 K. *J. Chem. Eng. Data* 1999, 44, 1298–1303.
- (2) Redlich, O.; Kister, A. T. Thermodynamics of Nonelectrolytic Solutions. Algebraic Representation of Thermodynamic Properties and the Classification of Solutions. *Ind. Eng. Chem.* **1948**, *40*, 345–348.
- (3) Cibulka, I. Estimation of Excess Volume and Density of Ternary Liquid Mixtures of Nonelectrolytes from Binary Data. *Collect. Czech. Commun.* 1982, 47, 1414–1419.
- (4) Arce, A.; Blanco, A.; Antorrena, G.; Quintela, M. D. Propiedes Físicas de Exceso de Mezclas Ternarias. An. Quím. 1980, 76, 405– 413.
- (5) García de la Fuente, I.; González, J. A.; Cobos, J. C.; Casanova, C. Excess Molar Volumes for Dimethyl Carbonate + Heptane, Decane, 2,2,4-Trimethylpentane, Cyclohexane, Benzene, Toluene, or Tetrachloromethane. *J. Chem. Eng. Data*. **1992**, *37*, 535–537.
- (6) Negadi, L.; Blondel, A.; Mokbel, I.; Ait-Kaci, A.; Jose, J. Int. DATA Ser.; Sel. Data Mixtures, Ser. A 1993, 21, 183.
- (7) Iglesias, M.; Orge, B.; Canosa, J.; Rodríguez, A.; Domínguez, M.; Piñeiro, M. M.; Tojo, J. Thermodynamic Behaviour of Mixtures Containing Methyl Acetate, Methanol and 1-Butanol at 298.15 K: Application of the ERAS Model. *Fluid Phase Equilib.* **1998**, *147*, 285–300.
- (8) Abrams, D. S.; Prausnitz, J. M. AIChE J. 1975, 21, 116-121.
- (9) Bevington, P. Data Reduction and Error Analysis for the Physical Sciences, McGraw-Hill: New York, 1969.
- (10) Pal, A.; Dass, G.; Kumar, A. Excess Molar Volumes, Viscosities, and Refractive Indices of Triethylene Glycol Dimethyl Ether with Dimethyl Carbonate, Diethyl Carbonate, and Propylene Carbonate at 298.15 K. *J. Chem. Eng. Data* **1998**, *43*, 738–741.
- (11) Das, A.; Frenkel, M.; Gadalla, N. M.; Marsh, K.; Wilhoit, R. C. *TRC Thermodynamic Tables*, Thermodynamic Research Center, Texas A&M University: College Station, TX, 1994.
- (12) Riddick, J. A.; Bunger, W. B.; Sakano, T. K. Organic Solvents Techniques of Chemistry, 4th ed.; Wiley: New York, 1986; Vol. II.
- (13) Jones, D. C.; Amstell, S. The critical solution temperature of the systems Methyl alcohol + cyclohexane as a means of detecting and estimating water in Methyl alcohol. *J. Chem. Soc.* **1930**, 1316–1321.
- (14) Kiser, R. W.; Jonson, G. D.; Shelter, M. D. Solubilities of various hidrocarbons in Methanol. J. Chem. Eng. Data 1961, 6, 338–342.
- (15) Yasuda, M.; Kawade, H.; Katayama, T. *Kagaku Kogaku Ronbunshu* **1975**, *1*, 172–176.
- (16) Takeuchi, S. T.; Nitta, T.; Katayama, T. Effect of selfassociation on liquid–liquid equilibrium. Correlation of mutual solubility for Methanol-saturated hidrocarbons systems. *J. Chem. Eng. Jpn.* **1975**, *8*, 248–256.
- (17) Nagata, I.; Katoh, K. Ternary Liquid–Liquid Equilibria for Acetonotruili-Ethanol-Cyclohexane and Acetonitrile-2-Propanol-Cyclohexane. *Thermochim. Acta* **1980**, *39*, 45–62.

Received for review October 9, 2000. Accepted March 9, 2001.

JE000336O