Excess Molar Enthalpies and Excess Molar Volumes of Binary Mixtures Containing 1,3-Dioxolane or 1,4-Dioxane + Pine Resins at (298.15 and 313.15) K and at Atmospheric Pressure

Romolo Francesconi* and Carlo Castellari

Dipartimento di Chimica "G. Ciamician", Università degli Studi, via Selmi 2, I-40126 Bologna, Italy

Fabio Comelli

Centro di Studio per la Fisica delle Macromolecole del CNR, via Selmi 2, I-40126 Bologna, Italy

Excess molar enthalpies, $H_{\rm m}^{\rm E}$, and excess molar volumes, $V_{\rm m}^{\rm E}$, of binary mixtures containing 1,3-dioxolane or 1,4-dioxane + α -pinene, + β -pinene, or + p-cymene were determined at (298.15 and 313.15) K and at atmospheric pressure over the entire composition range using a flow microcalorimeter and a digital density meter. $H_{\rm m}^{\rm E}$ and $V_{\rm m}^{\rm E}$ are always positive, and the temperature dependence is more marked for $V_{\rm m}^{\rm E}$ values. Results were fitted to the Redlich–Kister polynomials to obtain the binary adjustable parameters and the standard deviations

Introduction

Continuing our research program involving the study of physical properties of binary mixtures containing pine resins,^{1,2} we report in this paper the excess molar enthalpies, $H_{\rm m}^{\rm E}$, and the excess molar volumes, $V_{\rm m}^{\rm E}$, of 1,3-dioxolane or 1,4-dioxane + α -pinene (2,6,6-trimethylbicyclo-[3.1.1]hept-2-ene), + β -pinene (6,6-dimethyl-2-methylene bicyclo[3.1.1]heptane, or + *p*-cymene [1-methyl-4-(1-methylethyl)benzene] at (298.15 and 313.15) K and at atmospheric pressure. Pine resins and their derivatives are used in pharmaceutical and in cosmetic industries,³⁻⁵ in synthetic resins, and in terpenic surfactants.⁶ Particularly, α -pinene proved to be an exceptionally successful solvent for many programs in asymmetric synthesis, with asymmetric reductions being the most desirable method for synthesizing optical pure materials via chiral organoboranes.^{7,8}

There are several papers regarding this subject and its pharmaceutical importance. However, only few liquid–vapor equilibrium measurements are reported in the literature, but no enthalpic or volumetric data were found. The main purpose of this paper is to extend our investigations on the binary mixtures containing pine resins + two cyclic ethers and to provide qualitative information on the interactions between the molecules of the mentioned chemicals from the measurements of H_m^E and V_m^E data.

Materials and Methods

1,3-Dioxolane (Aldrich >99.8%) and 1,4-dioxane (Fluka >99.8%) were used without further purification. α -Pinene (Fluka >99%), β -pinene, and *p*-cymene (both Aldrich >99%) were purified following the procedure described elsewhere.³ The final products were obtained by removing the upper 10% and the lower 15% fractions of distillate. The purities of pine resins were checked with the aid of a gas chromatograph (Hewlett-Packard, model 5890) using an HP (cross-

* Corresponding author. Fax: + 39 0512094325. E-mail: romolo@ ciam.unibo.it.

Table 1.	Densities	s, ρ, of Pu1	re Components	s and
Compari	son with	Literatur	e Values	

		$ ho/g\cdot cm^{-3}$			
component	<i>T</i> /K	exptl	lit.		
1,3-dioxolane	298.15	1.058 81	1.058 65 ⁹		
	313.15	1.040 08	1.039 97 ^{9,a}		
1,4-dioxane	298.15	1.027 97	1.027 929		
	298.15		1.027 97 ¹⁰		
	313.15	1.010 95	1.010 94 ^{9,a}		
α-pinene	298.15	0.853 90	0.853 910		
-			0.854 8 ¹¹		
	313.15	0.841 40	0.842 911		
β -pinene	298.15	0.866 66	0.866 710		
			0.865 511		
	313.15	0.854 55	0.853 8 ¹¹		
p-cymene	298.15	0.852 90	0.853 310		
	298.15		0.852 111		
	313.15	0.840 85	0.840 611		

^a Interpolated from ref 9.

linked 5% siloxane) capillary column. The impurity contents were less than 1 mass % for α -pinene and 0.8 mass % for β -pinene and *p*-cymene. The gas cromatograph analysis confirmed the stated purities of cyclic ethers from purchasers, showing a water impurity < 0.05% for all components. Prior to use, pure chemicals were degassed by ultrasound (ultrasonic bath, Hellma, type 460, Milan, Italy), kept in dark bottles, and dried over molecular sieves (Union Carbide, type 4A, 1/16 in. pellets). α -Pinene, as suggested by the purchaser, was placed in a freezer at 4 °C.

Values of the densities, ρ , of pure chemicals were measured using a digital density meter (Anton Paar, DMA 60/602, Graz, Austria) and are reported in Table 1 and compared with literature data.^{9–11} Measurements of the excess molar enthalpies, H_m^E , were carried out using a flow microcalorimeter (LKB Producer AB, model 2107, Bromma, Sweden) at (298.15 and 313.15) K, and the temperature of the apparatus was maintained within ± 0.01 K. Details of the equipment and its operating procedure were described previously.^{12,13}

<i>X</i> 1	$H_{\rm m}^{\rm E}/{ m J}{ m \cdot mol^{-1}}$	- m X1	$H_{\rm m}^{\rm E}/{ m J}\cdot{ m mol}^{-1}$	X1	$H_{ m m}^{ m E}/ m J{\cdot}mol^{-1}$	<i>X</i> 1	$H_{ m m}^{ m E}/{ m J}{ m \cdot mol^{-1}}$		
	1,3-Dioxolane (1) + α -Pinene (2)								
	T/K =	298.15			T/K =	313.15			
0.0868	464	0.7738	1271	0.0865	534	0.7733	1349		
0.1597	815	0.8202	1088	0.1593	906	0.8197	1164		
0.2218	1095	0.8725	825	0.2213	1178	0.8721	901		
0.2754	1290	0.9012	638	0.2747	1366	0.9009	734		
0.3631	1542	0.9319	463	0.3624	1594	0.9317	521		
0.4318	1675	0.0010	358	0.4311	1714	0.0017	385		
0.4310	1750	0.0400	949	0.4311	1714	0.0475	202		
0.0021	1704	0.9047	240 100	0.0024	1700	0.9040	203		
0.6031	1704	0.9821	128	0.6024	1/45	0.9820	147		
0.6952	1528			0.6945	1590				
1,3-Dioxolane (1) + β -Pinene (2)									
0.0050	$I/\mathbf{K} =$	298.13	1000	0.0050	I/K = 0	313.13	1104		
0.0856	370	0.7712	1028	0.0853	403	0.7706	1164		
0.1577	642	0.8180	870	0.1572	703	0.8174	1007		
0.2193	839	0.8691	641	0.2186	923	0.8704	778		
0.2719	1016	0.8999	501	0.2717	1091	0.8995	620		
0.3597	1232	0.9310	351	0.3588	1336	0.9307	446		
0.4282	1326	0.9473	269	0.4273	1433	0.9471	341		
0.5291	1402	0.9642	184	0.5281	1514	0.9641	241		
0.5996	1371	0.9850	77	0 5987	1/95	0.9817	126		
0.5550	1945	0.3030	11	0.6012	1935	0.3017	120		
0.6920	1245		1.2 Discusions	(1) + n Company (2)	1370				
	T/K =	298.15	1,3-Dioxolarie	(1) + p -Cymene (2)	T/K =	313.15			
0.0857	149	0.7714	561	0.0854	205	0.7708	635		
0 1578	293	0.8181	484	0 1573	352	0.8176	553		
0.2195	£00 /13	0.8709	385	0.2188	467	0.8705	441		
0.2133	413	0.0703	919	0.2100	407	0.0705	240		
0.2720	300	0.9000	515	0.2719	347	0.8990	549		
0.3599	628	0.931	222	0.3591	670	0.9308	262		
0.4285	693	0.9473	169	0.4276	722	0.9472	200		
0.5293	743	0.9643	123	0.5284	785	0.9642	141		
0.5998	722	0.9818	65	0.5990	777	0.9818	74		
0.6922	659			0.6915	730				
			1,4-Dioxane	(1) + α-Pinene (2)					
	T/K =	298.15			T/K =	313.15			
0.0720	383	0.7364	1259	0.0718	352	0.7360	1253		
0.1343	676	0.7883	1111	0.1340	630	0.7879	1099		
0.1888	915	0.8481	867	0.1885	842	0.8479	847		
0.2366	1074	0.8816	695	0.2379	1042	0.8814	715		
0.3176	1314	0.9178	497	0.3172	1270	0.9177	491		
0 3829	1/66	0.9371	406	0 3846	1/33	0 9370	304		
0.3023	1557	0.0572	977	0.4816	1549	0.0571	974		
0.4021	1557	0.9372	211	0.4810	1542	0.9371	2/4 140		
0.5538	1501	0.9781	145	0.5532	1556	0.9781	143		
0.6506	1460			0.6501	1463				
	T'K -	208 15	1,4-Dioxar	le (1) + β -Pinene	<i>τ</i> /κ –	313 15			
0.0710	200	0 7225	1095	0.0708	200	0 7220	1090		
0.0710	500	0.7333	1085	0.0708	500	0.7550	1009		
0.1326	548	0.7858	948	0.1323	546	0.7853	945		
0.1865	731	0.8442	742	0.1861	731	0.8459	732		
0.2341	893	0.8800	606	0.2351	880	0.8798	599		
0.3144	1098	0.9167	440	0.3138	1076	0.9165	435		
0.3794	1205	0.9362	344	0.3788	1196	0.9360	334		
0.4784	1311	0.9565	238	0.4777	1302	0.9564	243		
0 5501	1323	0 9778	124	0 5493	1214	0 9777	127		
0.6472	1944	0.0770	161	0.6466	1949	0.0777	1.27		
0.0472	1244		1 A Diamana	$(1) \perp n C_{1} (2)$	1646				
	7/K =	298.15	1,4-Dioxane	(1) + p-Cymene (2)	7/K =	313.15			
0.0711	117	0 7337	528	0 0709	133	0 7332	546		
0 1 2 9 7	910	0.7960	175	0.0700	920	0.7956	107		
0.1367	210 204	0.7800	4/0	0.1024	205 205	0.7800	497		
0.100/	294	0.0404	303	0.1863	323	0.8400	3/3		
0.2350	381	0.8802	304	0.2353	389	0.8799	312		
0.3146	478	0.9168	219	0.3141	505	0.9166	223		
0.3797	547	0.9363	166	0.3791	567	0.9361	182		
0.4786	612	0.9566	120	0.4780	622	0.9565	127		
0.5504	621	0.9778	62	0.5497	638	0.9778	67		
0.6475	597			0.6468	616				

Pure chemicals were pumped into the cell of the microcalorimeter by two automatic burets (ABU, Radiometer, Copenhagen, Denmark), and mole fractions x_1 of cyclic ethers were determined by the flow rates covering the whole mole fraction range. The uncertainties in the reported mole fractions, x_1 , and excess molar enthalpies, $H_{\rm m}^{\rm E}$, are $\pm 2 \times 10^{-4}$ and <1%, respectively. The reliability of the apparatus and the method was established by measuring the excess molar enthalpies, $H_{\rm m}^{\rm E}$, of the test mixture cyclohexane + hexane over the entire composition range at 298.15 K: our results are in agreement with the literature¹⁴ data within $\pm 1\%$.

Table 3. Densities, ρ , and Experimental Excess Volumes, $V_{\rm m}^{\rm E}$, of Binary Mixtures Containing 1,3-Dioxolane or 1,4-Dioxane + Pine Resins

<i>X</i> 1	$ ho/{ m g}{ m \cdot cm^3}$	$V_{\rm m}^{\rm E}/{ m cm^3 \cdot mol^{-1}}$	<i>X</i> 1	$\rho/{\rm g}{\boldsymbol{\cdot}}{\rm cm}^{-3}$	$V_{\rm m}^{\rm E}/{ m cm^3 \cdot mol^{-1}}$	<i>X</i> 1	$ ho/{ m g}{\cdot}{ m cm}^3$	$V_{\rm m}^{\rm E}/{\rm cm^3 \cdot mol^{-1}}$	<i>X</i> 1	$\rho/{\rm g}{\boldsymbol{\cdot}}{\rm cm}^{-3}$	$V_{\rm m}^{\rm E}/{\rm cm^3 \cdot mol^{-1}}$
			000 15		1,3-Dioxolane (1)	,3-Dioxolane (1) + α -Pinene (2)					
0.0000	0.050.04	I/K =	298.15	0.000.07	0.007	0.0407	0.044.14	I/K =	313.15	0.010.00	0 700
0.0369	0.856.64	0.118	0.5852	0.926 27	0.687	0.0437	0.844 14	0.118	0.5852	0.910 89	0.793
0.1121	0.862 80	0.320	0.0021	0.942 70	0.626	0.1121	0.849 94	0.354	0.0021	0.926 80	0.726
0.2530	0.87677	0.578	0.72686	0.958 65	0.551	0.2536	0.863 17	0.663	0.7269	0.942 29	0.640
0.3502	0.888 38	0.677	0.7980	0.978 87	0.446	0.3502	0.874 32	0.775	0.7980	0.961 90	0.526
0.3902	0.894 02	0.702	0.8901	1.010 35	0.273	0.3902	0.880.31	0.808	0.8901	0.992 40	0.334
0.4830	0.908 25	0.720	0.9708	1.044 55	0.076	0.4800	0.893 44	0.831	0.9708	1.020 00	0.093
		T K =	208 15		1,3-Dioxolane (1)	$+\beta$ -Pine	ne (2)	T K =	313 15		
0.0638	0 871 46	0 149	0 6996	0 959 58	0 488	0.0638	0 859 08	0 173	0 6996	0 943 64	0 570
0.0000	0.878.07	0.302	0.0000	0.974 30	0.400	0.0000	0.865 34	0.346	0.0000	0.957.90	0.500
0.2310	0.886.54	0.429	0.7972	0.984.65	0.381	0.2310	0.873 41	0 493	0.7972	0.967.92	0.447
0.3940	0.905 61	0.566	0.8611	1.004 20	0.286	0.3940	0.891 68	0.648	0.8611	0.986 87	0.338
0.4845	0.918 73	0.576	0.9493	1.036 67	0.112	0.4845	0.904 18	0.676	0.9493	1.018 50	0.133
0.5563	0.930 56	0.574	0.9818	1.050 45	0.045	0.5563	0.915 22	0.667	0.9818	1.031 95	0.052
0.6233	0.943 15	0.546	010010	11000 10		0.6233	0.927 75	0.637	010010	11001 00	01002
					1,3-Dioxolane (1)	+ p-Cyme	ene (2)				
		T/K =	298.15			1 5		T/K =	313.15		
0.0678	0.859 10	0.044	0.6092	0.935 59	0.178	0.0678	0.846 73	0.067	0.6092	0.920 39	0.250
0.1320	0.865 53	0.084	0.6585	0.946 35	0.168	0.1328	0.852 90	0.119	0.6585	0.930 80	0.238
0.2136	0.874 32	0.122	0.7231	0.961 98	0.152	0.2136	0.861 31	0.176	0.7231	0.945 89	0.220
0.3464	0.891 01	0.166	0.8177	0.988 69	0.118	0.3464	0.877 36	0.233	0.81772	0.971 80	0.170
0.3882	0.896 97	0.171	0.8922	1.013 79	0.079	0.3882	0.883 07	0.246	0.8922	0.996 20	0.114
0.4830	0.911 88	0.183	0.9446	1.03424	0.040	0.4830	0.897 46	0.261	0.9446	1.016 09	0.062
0.5594	0.925 64	0.181				0.5594	0.910 76	0.257			
					1,4-Dioxane (1) -	- α-Pinen	ne (2)				
		T/K =	298.15					T/K =	313.15		
0.451	0.857 38	0.152	0.5604	0.918 45	0.798	0.0451	0.844 82	0.163	0.5604	0.903 89	0.871
0.1117	0.862 97	0.343	0.6910	0.942 89	0.692	0.1117	0.850 18	0.370	0.6910	0.927 70	0.755
0.1817	0.869 46	0.502	0.7492	0.955 55	0.611	0.1817	0.856 42	0.547	0.7492	0.940 05	0.668
0.3188	0.884 19	0.721	0.8132	0.971 00	0.497	0.3188	0.870 66	0.782	0.8132	0.955 15	0.543
0.3882	0.892 83	0.782	0.9357	1.006 03	0.198	0.3882	0.879 03	0.847	0.9357	0.989 43	0.218
0.4561	0.902 18	0.807	0.9665	1.016 21	0.107	0.4561	0.888 09	0.879	0.9665	0.999 41	0.118
0.5272	0.913 00	0.808				0.5272	0.898 61	0.879			
		TV -	909 15		1,4-Dioxane (1) -	$\vdash \beta$ -Pinen	ie (2)	TW –	010 15		
0.0502	0 970 41	1/K -	290-15	0 0 97 79	0.601	0.0509	0 959 15	0.145	0 5690	0 0 1 2 4 1	0 750
0.0002	0.070 41	0.135	0.3029	0.927 73	0.691	0.0002	0.000 15	0.145	0.3029	0.913 41	0.750
0.1271	0.07007	0.314	0.0404	0.942 09	0.041	0.1271	0.004 13	0.338	0.0404	0.927 32	0.099
0.1905	0.002 09	0.445	0.7103	0.933 33	0.370	0.1903	0.070 13	0.470	0.7103	0.940 22	0.019
0.2711	0.092.01	0.574	0.0127	0.97375	0.430	0.2010	0.070 90	0.020	0.0127	0.900 01	0.479
0.3744	0.001 85	0.033	0.9230	1.004 40	0.205	0.3744	0.803.03	0.700	0.9230	1 007 26	0.220
0.4137	0.900 00	0.699	0.3005	1.024 10	0.035	0.4137	0.035.05	0.759	0.3005	1.007 20	0.030
0.0020	0.010 01	0.000			1 1 Diavana (1)	0.0020	0.004.00	0.700			
		T/K =	298.15		1,4-Dioxalle (1) +	<i>p</i> -Cylliel	lie (2)	T/K =	313.15		
0.0699	0.859 01	0.070	0.6140	0.931 72	0.297	0.0699	0.847 09	0.081	0.6140	0.917 21	0.337
0.1379	0.866 20	0.128	0.6801	0.944 39	0.283	0.1379	0.853 66	0.147	0.6801	0.929 50	0.322
0.2240	0.875 49	0.195	0.7558	0.960 45	0.252	0.2240	0.862 63	0.224	0.7558	0.945 2	0.278
0.2833	0.882 45	0.230	0.8663	0.987 58	0.167	0.2833	0.869 38	0.263	0.8663	0.971 6	0.186
0.3362	0.889 05	0.256	0.9075	0.999 02	0.125	0.3362	0.875 78	0.293	0.9075	0.982 75	0.137
0.4147	0.899 63	0.287	0.9591	1.014 58	0.059	0.4147	$0.886\ 07$	0.323	0.9591	0.997 89	0.066
0.5107	$0.914\ 00$	0.312				0.5107	$0.900\ 06$	0.343			

Excess molar volumes, $V_{\rm m}^{\rm E}$, were calculated from the precise densities, ρ , of the samples measured by means of a vibrating glass tube densimeter (Anton Paar, model DM 60, Graz, Austria) equipped with a measuring cell (Anton Paar, type 602) and with two digital thermometers (Anton Paar DT-25 and DT-40). The procedure to prepare the samples, obtained by mass using a digital balance (Mettler, model AE 160, Switzerland), with a precision ± 0.0001 g, was described in detail elsewere.¹⁵ All masses were corrected for buoyancy and evaporation of components. All molar quantities were based on the relative atomic mass table by IUPAC.¹⁶ The temperature of the apparatus was controlled to ± 0.005 K using an external bath circulator (Heto, type 01 DTB 623, Birkeròd, Denmark). Densities, ρ , of mixtures were measured with an accuracy of $\pm 1 \times 10^{-5}$ g·m⁻³, and the excess molar volumes, $V_{\rm m}^{\rm E}$, were

accurate to ± 0.003 cm³·mol⁻¹. A calibration of the apparatus with twice distilled water¹⁷ and dry air¹⁸ was made for each set of measurements. Prior to measurements, the apparatus was checked by determining $V_{\rm m}^{\rm E}$ using the test mixture benzene + cyclohexane at 298.15 K, and our results agree with those of the literature¹⁹ within $\pm 1\%$.

Results and Discussion

Results of measurements of $H_{\rm m}^{\rm E}$ and $V_{\rm m}^{\rm E}$ at (298.15 and 313.15) K are listed in Tables 2 and 3 and graphically represented in Figures 1–4. Excess molar volumes, $V_{\rm m}^{\rm E}$, were calculated from densities, ρ , from the following equation

$$V_{\rm m}^{\rm E} = (x_1 M_1 + x_2 M_2)/\rho - x_1 M_1/\rho_1 - x_2 M_2/\rho_2 \qquad (1)$$

_,	,										
function	a_0	a_1	a_2	A3	$\sigma(Q_{\rm m}^{\rm E})$	function	a_0	a_1	a_2	a_3	$\sigma(Q_{\rm m}^{\rm E})$
				1.3	-Dioxolane (1)	$+ \alpha$ -Pinene (2)					
		T/K = 298.	15	, -		,	T/K = 313.1	15			
$H_{\rm m}^{\rm E}/{ m J}{ m \cdot mol^{-1}}$	6964.6	883.0	-545.0		6.4	$H_{\rm m}^{\rm E}/{ m J}{ m \cdot mol^{-1}}$	7101.7	823.7	533.6		7.7
$V_{ m m}^{ m E}$ /cm ³ ·mol ⁻¹	2.8693	-0.2847	0.1971		0.001	$V_{ m m}^{ m E}$ /cm ³ ·mol ⁻¹	3.3101	-0.3408	0.2345	0.3987	0.005
1,3-Dioxolane (1) + β -Pinene (2)											
		T/K = 298.	15					T/K = 313.1	15		
$H_{\rm m}^{\rm E}/{ m J}{ m \cdot mol^{-1}}$	5592.1	936.4	-656.4	-616.7	7.7	$H_{\rm m}^{\rm E}/{ m J}\cdot{ m mol}^{-1}$	6027.7	1057.4			6.6
$V_{ m m}^{ m E}/ m cm^3\cdot mol^{-1}$	2.3268	-0.0718	0.1829		0.003	$V_{ m m}^{ m E}/ m cm^3\cdot mol^{-1}$	2.7028	-0.0281	0.2101		0.002
				1.3-	Dioxolane (1)	+ p-Cymene (2)					
		T/K = 298.	15	,		1 5 ()	,	T/K = 313.1	15		
$H_{\rm m}^{\rm E}/J\cdot {\rm mol}^{-1}$	2923.2	522.2	-362.3	606.5	4.3	$H_{\rm m}^{\rm E}/J\cdot {\rm mol}^{-1}$	3080.6	801.4	302.2		4.3
$V_{\rm m}{}^{\rm E}/{ m cm^3}\cdot{ m mol^{-1}}$	0.7335	0.0440	0.0500		0.002	$V_{\mathrm{m}}^{\mathrm{E}}/\mathrm{cm}^{3}\cdot\mathrm{mol}^{-1}$	1.0383	0.0683	0.1269		0.002
				1,4	4-Dioxane (1)	$+ \alpha$ -Pinene (2)					
		T/K = 298.	15				,	T/K = 313.1	15		
$H_{\rm m}^{\rm E}/{ m J}{ m \cdot mol^{-1}}$	6272.6	549.1	-16.2		7.5	$H_{\rm m}^{\rm E}/{ m J}{ m \cdot mol^{-1}}$	6216.4	801-1	-352.0		9.2
$V_{ m m}^{ m E}$ /cm ³ ·mol ⁻¹	3.2499	-0.1011	0.1965		0.001	$V_{ m m}^{ m E}$ /cm ³ ·mol ⁻¹	3.5375	-0.8114	0.2207		0.001
				1.	4-Dioxane (1)	$+\beta$ -Pinene (2)					
		T/K = 298.	15	_,	(-)	· / ()	,	T/K = 313.1	15		
$H^{\rm E}/J\cdot { m mol}^{-1}$	5288.9	612.0	-89.6		4.6	$H_{-}^{\rm E}/J\cdot { m mol}^{-1}$	5235.9	45.1			4.8
$V_{\rm m}^{\rm E}/{ m cm^3 \cdot mol^{-1}}$	2.7949	0.0321	0.1073		0.001	$V_{\rm m}^{\rm E}/{ m cm^3 \cdot mol^{-1}}$	3.0311	0.0734	0.1232		0.002
				14	-Dioxane (1) -	+ p-Cymene (2)					
		T/K = 298.	15	1,1		p officie (2)	,	7/K = 313.1	15		
$H^{\rm E}/\rm I\cdot mol^{-1}$	2467.6	631.5	-188.6		5.1	$H^{\rm E}/\rm I\cdot mol^{-1}$	2526.7	590.4			6.1
$V_{\rm m}^{\rm E}/{\rm cm^3 \cdot mol^{-1}}$	1.2197	0.2323	0.0776		0.003	$V_{\rm m}^{\rm E}/{ m cm^3 \cdot mol^{-1}}$	1.3709	0.2291	0.1095		0.002

Table 4. Least-Squares Parameters, a_{k} , Eq 2, and Standard Deviations, $\sigma(Q_{m}^{E})$, Eq 3, of Binary Mixtures Containing 1,3-Dioxolane or 1,4-Dioxane + Pine Resins

Figure 1. Excess molar enthalpies, H_m^E , for binary mixtures containing 1,3-dioxolane (1) + α -pinene (2) (\bullet), + β -pinene (2) (\blacktriangle), or + *p*-cymene (2) (\blacksquare). Closed and open points are for (298.15 and 313.15) K. The solid curves were drawn from eq 2.

where x_i , M_i , and ρ_i (i = 1, 2) are the mole fractions, molecular weights, and densities of pure components 1 and 2, respectively.

The results of $H_{\rm m}^{\rm E}$ and $V_{\rm m}^{\rm E}$ for each mixture were fitted to a Redlich-Kister polynomial

$$Q_{\rm m}^{\rm E} = x_1 x_2 \sum_{k \ge 0} a_k (x_1 - x_2)^k \tag{2}$$

where $Q_{\rm m}^{\rm E}$ refers to $H_{\rm m}^{\rm E}/J \cdot {\rm mol}^{-1}$ or $V_{\rm m}^{\rm E}/{\rm cm}^3 \cdot {\rm mol}^{-1}$, x_1 and x_2 are the molar fractions of cyclic ethers and component 2, and a_k are the adjustable parameters obtained by the least-squares method, with all points weighted equally. The a_k values are given in Table 4 together with the standard deviation $\sigma(Q_{\rm m}^{\rm E})$, defined as

$$\sigma(Q_{\rm m}^{\rm E}) = |\phi_{\rm min}/(N-n)|^{0.5}$$
(3)

Figure 2. Excess molar enthalpies, H_{m}^{E} , for binary mixtures containing 1,3-dioxane (1) + α -pinene (2) (\bullet), + β -pinene (2) (\blacktriangle), or + *p*-cymene (2) (\blacksquare). Closed and open points are for (298.15 and 313.15) K. The solid curves were drawn from eq 2.

with *N* and *n* the number of experimental points and of parameters, whereas ϕ_{\min} is the minimum value of the objective function ϕ , defined as

$$\phi = \sum_{k=1}^{N} \eta_k^2 \tag{4}$$

where $\eta_k = Q_{\text{m,calcd}}^{\text{E}} - Q_{\text{m}}^{\text{E}}$, Q_{m}^{E} is the experimental value, and $Q_{\text{m,calcd}}^{\text{E}}$ is evaluated through eq 2. Values of H_{m}^{E} are positive and in the order α -pinene >

Values of $H_{\rm m}^{\rm E}$ are positive and in the order α -pinene > β -pinene > p-cymene. The same trend is observed in the $V_{\rm m}^{\rm E}$ curves.

 $V_m^{\hat{E}}$ curves. The temperature dependence is positive and sensible for the volumetric data and almost negligible for the thermochemical data. These results are the same as those obtained in previous papers dealing with the same pine resins in mixture with phenetole, dimethyl carbonate, and diethyl

Figure 3. Excess molar volumes, V_{m}^{E} , for binary mixtures containing 1,3-dioxolane (1) + α -pinene (2) (\bullet), + β -pinene (2) (\blacktriangle), or + p-cymene (2) (**I**). Closed and open points are for (298.15 and 313.15) K. The solid curves were drawn from eq 2.

Figure 4. Excess molar volumes, V_m^E , for binary mixtures containing 1,4-dioxane (1) + α -pinene (2) (\bullet), + β -pinene (2) (\blacktriangle), or + p-cymene (2) (I). Closed and open points are for (298.15 and 313.15) K. The solid curves were drawn from eq 2.

carbonate,^{1,2} thus confirming the previous analysis on the thermodynamic interactions between molecules in the binary mixtures.

Particularly, if we refer to the approximated expression $H_{\rm m}^{\rm E} \propto E_{11} + E_{22} - 2E_{12}$, where E_{ij} is the interaction energy between molecules *i* and *j*, the $H_{\rm m}^{\rm E}$ curves imply a larger E_{12} interaction for β -pinene, with respect to α -pinene. This conclusion may find an explanation in the allyl character of β -pinene,²⁰ showing a double bond highly delocalized and then strongly interacting with the oxygen atoms of ethers, whereas α -pinene shows a sterically hindered localized double bond.

Acknowledgment

The authors thank Mr. Gianni Bragaglia (I.Co.C.E.A-C.N.R.–Bologna) for his valuable technical assistance in measurements.

Literature Cited

- Francesconi, R.; Comelli, F.; Castellari, C. Excess Molar Enthal-pies of Binary Mixtures Containing Phenetole + α-Pinene or + β-Pinene in the Range (288.15–313.15) K, and at Atmospheric Pressure. Application of an Extended Cell Model of Prigogine. *Thermochim. Acta*, in press. Comelli, F.; Francesconi, R.; Castellari, C. Excess Molar Enthal-
- (2)pies and Excess Molar Volumes of Binary Mixtures Containing Dialkyl Carbonates + Pine Resins at (298.15 and 313.15) K. J. Chem. Eng. Data, in press
- (3)Rodrigues, M. F.; Bernardo-Gil, M. G. Vapor-Liquid Equilibrium Data of α -Pinene + β -Pinene + Limonene at 80 kPa and 101 kPa. J. Chem. Eng. Data **1996**, 41, 581–585. Martindale, W. The Extra Pharmacopoeia; Pharmaceutical
- Press: London, 1989.
- (5)The Merck Index, 12th ed.; Merck & Co., Inc.: Whitehouse Station: NJ, 1989.
- (6)Costa, M. A. M.; Matos, H. A. S.; Nunes da Ponte, M.; Gomes de Azevedo, E. Binary and Ternary Phase Behavior of α -Pinene, β -Pinene, and Supercritical Ethene. J. Chem. Eng. Data 1996, *41*, 1104–1110.
- Brown, C. H.; Srebnik, M.; Ramanchandran, P. V. Chiral Synthesis via Organoboranes. 22. Selective Reductions. 44. The Effect of the Steric Requirements of the Alkyl Substituent in Isopinocampheylalkylchloroboranes for the Asymmetric Reduction of Representative Ketones. J. Org. Chem. 1989, 54, 1577-1583.
- Brown, H. C.; Chandrasekharan, J.; Ramachandran, P. V. Chiral Synthesis via Organoboranes. 14. Selective Reductions. 41. Diisopinocampheylchloroborane, an Exceptionally Efficient Chiral
- Reducing Agent. J. Am. Chem. Soc. **1988**, 110, 1539–1546. Inglese, A.; Grolier, J.-P. E.; Wilhelm, E. Excess Volumes of Mixtures of Oxolane, Oxane, 1,3-Dioxolane, and 1,4-Dioxane with n-Alkanes at 288.15, 308.15, and 318.15 K. J. Chem. Eng. Data 1983, 28, 124-127.
- (10)Riddick, J. A.; Bunger, W. B.; Sakano, T. K. Organic solvents, 4th ed.; Wiley-Interscience: New York, 1986
- Ribeiro, A.; Bernardo-Gil, G. Densities and Refractive Indices of (11)Components of Pine Resins. J. Chem. Eng. Data 1990, 35, 204-206
- (12) Monk, P.; Wadsö, I. A Flow Micro Reaction Calorimeter. Acta Chem. Scand. 1968, 22, 1842–1852.
- Francesconi, R.; Comelli, F. Liquid-Phase Enthalpy of Mixing for (13)the System 1,3-Dioxolane-Chlorobenzene in the Range 288.15-331.15 K. J. Chem. Eng. Data 1986, 31, 250-253.
- Gmehling, I. Excess Enthalpies for 1,1,1-Trichloroethane with Alkanes, Ketones, and Esters. *J. Chem. Eng. Data* **1993**, *38*, 143– (14) 146
- (15) Fermeglia, M.; Lapasin, J. Excess Volumes and Viscosities of Binary Mixtures of Organics. J. Chem. Eng. Data 1988, 33, 415-417
- (16) IUPAC Commission on Atomic Weights and Isotopic Abundances, 1985. Pure Appl. Chem. 1986, 58, 1677-1692
- (17)Wagenbreth, H.; Blanke, W. Die Dichte des Wassers in Internationalen Einheitensystem und in die Internationalen Practishen Temperaturskala von 1968. PTB-Mitteilungen 6/71, 412. (18) Kohlrausch, H. Density of Air. *Prakt. Phys.* **1968**, *3*, 40. (19) Wilhelm, E. *Int. DATA Ser., Sel. Data Mixtures, Ser. A* **1985**, 164.

- Ammann, C. J.; Pregosin, P. S.; Rüegger, H.; Albinati, A.; Lianza, F.; Kunz, R. W. Chemistry of Pd^{II} Complexes Containing Both BINAP (2'2'-bis(diphenylphosphino)binaphthyl) and a η^3 -Pinene (20)or -Allylligand. NMR Studies on [Pd(n3-C10H15){S(-)BINAP}](CF3-SO₃). The Crystal Structure of [Pd(η^3 -C₁₀H₁₅)(4,4'-dimethylbipyridine)]-(CF₃SO₃). J. Org. Chem. 1992, 57, 415-430.

Received for review October 9, 2000. Accepted January 4, 2001.

JE000337G