Property Changes of Mixing for the 1-Butanol + Methanol + 2-Methoxy-2-methylbutane System at 298.15 K and Atmospheric Pressure

Alberto Arce,* Eva Rodil, and Ana Soto

Department of Chemical Engineering, University of Santiago de Compostela, E-15706 Santiago, Spain

Densities, refractive indices, and speeds of sound at 298.15 K and atmospheric pressure for the 1-butanol + methanol + 2-methoxy-2-methylbutane ternary system have been measured. Excess molar volumes, molar refraction, and isentropic compressibility changes of mixing were determined from experimental measurements. The results were fitted to the Redlich–Kister equation to obtain the coefficients. These property changes were also predicted using several empirical equations from the values of their constituent binary subsystems, and the best results were obtained with the Kohler equation.

Introduction

Reformulated gasolines generally require high proportions of oxygenated compounds. Most of those oxygenates are alcohols or ethers containing one to six carbons. 2-Methoxy-2-methylbutane (TAME) has a high blending octane number and appears to be a good candidate for use in gasolines. As part of an ongoing study of the thermophysical properties of mixtures containing TAME, we present some data for the ternary system 1-butanol + methanol + TAME.

Molar volume, molar refraction, and isentropic compressibility changes of mixing were calculated from experimental measurements of densities, refractive indices, and speeds of sound at 298.15 K and atmospheric pressure for the 1-butanol + methanol + 2-methoxy-2-methylbutane (TAME) ternary system and for the 1-butanol + TAME binary system. No comparable data in the surveyed literature for the ternary and this binary system have been found. In previous works we have published these properties for TAME + methanol and 1-butanol + methanol systems.^{1,2}

We will also evaluate several empirical equations that allow the prediction of the properties of the ternary system from the corresponding properties of the constituent binary subsystems. If this approach works, an enormous experimental effort could be saved.

Experimental Section

Materials. Methanol was supplied by Merck with nominal purity >99.8 mass %. 1-Butanol was supplied by Aldrich with nominal purity >99.9 mass %, and TAME was supplied by Fluka with nominal purity >98.9 mass %. They were degassed using ultrasound. The water contents of the methanol, 1-butanol, and TAME (determined with a Metrohm 737 KF coulometer) were 0.03, 0.1, and 0.02 mass %, respectively.

Table 1 lists the densities, speeds of sound, and refractive indices measured for the pure components, together with published values for these properties.³⁻⁵

Apparatus and Procedure. The mixtures were prepared by mass, using a Mettler AE240 balance, having a repeatibility of ± 0.0001 g. The densities and speeds of sound of the mixtures were measured to within ± 0.0001 g·cm⁻³ and ± 1 m·s⁻¹, respectively, in an Anton Paar DSA-48 densimeter and sound analyzer calibrated with air and

Table 1.	Densities ρ ,	Refractive	Indices	<i>n</i> D, and	Speeds
of Sound	l <i>u</i> of the Pu	ire Compon	ents at 2	298.15 K	and
Atmosph	eric Pressu	re			

com-	$ ho/{ m g}{ m \cdot cm^{-3}}$		n _D		$u/m \cdot s^{-1}$	
ponent	exptl	lit.	exptl	lit.	exptl	lit.
1-butanol	0.8060	0.805 75(3)	1.3975	1.397 41(3)	1241	1240(3)
methanol	0.7866	0.786 37(3)	1.3264	1.326 52(3)	1102	1102(4)
TAME	0.7658	0.765 77(5)	1.3858	1.385 80 ⁽⁵⁾	1115	not found

water. Refractive indices were measured to within ±0.0001 in an Atago RX-1000 refractometer. A Hetotherm thermostat was used to maintain the temperature at (298.15 \pm 0.02) K.

Results

The measured densities (ρ), speeds of sound (u), and refractive indices (n_D) of the 1-butanol + methanol + TAME ternary system and the 1-butanol + TAME binary system at 298.15 K and atmospheric pressure are listed in Table 2, together with the quantities calculated from them: excess molar volumes (V^E), molar refraction (ΔR), and isentropic compressibility changes of mixing ($\Delta \kappa_s$).

Excess molar volumes were calculated using the expression

$$V^E = V - \sum_i x_i V_i \tag{1}$$

where V is the molar volume of the mixture and V_i and x_i are the molar volume and mole fraction, respectively, of component *i*.

The molar refractions (R) were calculated using the Lorentz–Lorenz equation

$$R = \frac{n_{\rm D}^2 - 1}{n_{\rm D}^2 + 2}V$$
 (2)

with n_D and *V* being the refractive indices and the molar volume, respectively, and the molar refraction changes of mixing (ΔR) were obtained from

$$\Delta R = R - \sum_{i} x_i R_i \tag{3}$$

where R_i is the molar refraction of pure component *i*.

Table 2. Densities ρ , Speeds of Sound *u*, Isentropic Compressibilities K_s , Refractive Indices n_D , Excess Molar Volumes V^E , and Changes of Mixing ΔK_s and ΔR for Mixtures of 1-Butanol (1) + Methanol (2) + TAME (3) at 298.15 K and Atmospheric Pressure

<i>X</i> 1	<i>X</i> ₂	$ ho/{ m g}{\cdot}{ m cm}^{-3}$	$u/m \cdot s^{-1}$	$\kappa_{\rm s}/{\rm T}~{\rm Pa}^{-1}$	n _D	$V^{\mathbb{E}}/\mathrm{cm}^{3}\cdot\mathrm{mol}^{-1}$	$\Delta \kappa_{\rm s}/{\rm T}~{\rm Pa}^{-1}$	$\Delta R/cm^3 \cdot mol^{-1}$
0.9267	0.0000	0.7691	1126	1026	1.3870	-0.207	-11	-0.006
0.8825	0.0000	0.7710	1132	1013	1.3877	-0.297	-17	-0.009
0.8392	0.0000	0.7748	1137	1001	1.3882		-21	-0.013
0.7396	0.0000	0.7766	1144	975	1 3894	-0.468	-27	-0.021
0.6731	0.0000	0.7792	1157	959	1.3902	-0.508	-29	-0.025
0.6452	0.0000	0.7803	1160	953	1.3905	-0.520	-30	-0.027
0.5751	0.0000	0.7830	1168	936	1.3913	-0.537	-31	-0.031
0.5297	0.0000	0.7848	1173	926	1.3918	-0.541	-32	-0.033
0.5243	0.0000	0.7869	1180	913	1.3924	-0.537	-32	-0.035
0.4405	0.0000	0.7883	1184	904	1.3928	-0.529	-32	-0.036
0.3627	0.0000	0.7907	1192	886	1.3934	-0.308	-31	-0.030
0.2994	0.0000	0.7941	1203	870	1.3943	-0.453	-29	-0.034
0.2687	0.0000	0.7953	1207	863	1.3947	-0.427	$-\tilde{28}$	-0.033
0.1904	0.0000	0.7985	1218	845	1.3955	-0.337	-23	-0.027
0.1615	0.0000	0.7996	1221	838	1.3958	-0.297	-20	-0.024
0.1135	0.0000	0.8015	1227	829	1.3963	-0.221	-15	-0.019
0.0579	0.0000	0.8037	1234	817	1.3969	-0.119	-8	-0.010
0.1034	0.8900	0.7899	1120	996	1 3529	-0.163	-14	0.001
0.0832	0.7212	0.7840	1132	996	1.3611	-0.298	-23	0.001
0.0734	0.6366	0.7815	1132	999	1.3673	-0.396	-26	0.002
0.0641	0.5559	0.7792	1131	1003	1.3719	-0.461	-28	0.002
0.0555	0.4812	0.7773	1130	1007	1.3752	-0.497	-28	0.002
0.0442	0.3837	0.7750	1129	1012	1.3787	-0.510	-27	0.002
0.0354	0.3066	0.7732	1128	1017	1.3809	-0.489	-25	0.002
0.0203	0.2284	0.7695	1123	1024	1 3842	-0.433	-15	0.001
0.2000	0.8000	0.7926	1144	965	1.3510	0.062	5	0.002
0.1788	0.7153	0.7891	1145	966	1.3606	-0.162	-15	0.001
0.1603	0.6412	0.7862	1145	971	1.3667	-0.302	-24	0.001
0.1465	0.5861	0.7841	1143	976	1.3703	-0.380	-28	0.001
0.1233	0.4932	0.7808	1140	986	1.3750	-0.469	-30	0.000
0.1036	0.4144	0.7766	1137	994	1.3781	-0.509	-30	-0.000
0.0771	0.3082	0.7751	1133	1005	1.3812	-0.511	-28	-0.001
0.0559	0.2235	0.7726	1129	1015	1.3831	-0.463	$-\tilde{23}$	-0.001
0.0380	0.1519	0.7706	1125	1025	1.3843	-0.377	-18	-0.001
0.3131	0.6869	0.7954	1164	928	1.3614	0.074	5	0.004
0.2795	0.6132	0.7917	1162	936	1.3682	-0.166	-15	-0.001
0.2496	0.5475	0.7883	1158	945 956	1.3723	-0.314 -0.405	-20 -20	-0.004
0.1926	0.4858	0.7825	1134	968	1.3783	-0.403 -0.477	-29	-0.000
0.1606	0.3524	0.7795	1144	980	1.3806	-0.517	-31	-0.008
0.1359	0.2982	0.7774	1140	990	1.3820	-0.525	-30	-0.009
0.1098	0.2408	0.7752	1136	999	1.3833	-0.510	-27	-0.008
0.0855	0.1877	0.7732	1132	1009	1.3842	-0.468	-24	-0.007
0.0511	0.1122	0.7704	1120	1024	1.3852	-0.352	-17	-0.005
0.3429	0.5348	0.7928	1170	919	1.3070	-0.198	-19	-0.013
0.3073	0.4792	0.7895	1166	931	1.3760	-0.338	-28	-0.019
0.2699	0.4208	0.7862	1160	945	1.3785	-0.438	-31	-0.023
0.2367	0.3692	0.7834	1154	958	1.3802	-0.495	-32	-0.023
0.2084	0.3250	0.7811	1150	968	1.3815	-0.522	-32	-0.022
0.1720	0.2682	0.7754	1144	981	1.3829	-0.529	-31	-0.019
0.1323	0.2003	0.7727	1130	1009	1 3849	-0.439 -0.430	-27	-0.014
0.0667	0.1041	0.7707	1128	1021	1.3853	-0.345	$-\tilde{1}\tilde{7}$	-0.006
0.4812	0.5188	0.7988	1189	886	1.3738	0.069	2	0.002
0.4310	0.4647	0.7949	1183	899	1.3772	-0.158	-16	-0.003
0.3768	0.4062	0.7908	1175	916	1.3799	-0.340	-28	-0.008
0.3335	0.3596	0.7877	1168	931	1.3816	-0.438	-32	-0.011
0.2937	0.3107	0.7848	1101	945	1.3827	-0.494 -0.525	-33	-0.012 -0.013
0.2136	0.2303	0.7794	1149	972	1.3845	-0.529	-31	-0.013
0.1562	0.1684	0.7758	1140	991	1.3853	-0.498	-28	-0.012
0.1254	0.1352	0.7739	1136	1001	1.3856	-0.460	-25	-0.011
0.0663	0.0714	0.7703	1127	1022	1.3860	-0.323	-16	-0.007
0.5975	0.4025	0.8010	1204	862	1.3807	0.055	1	-0.001
0.53/3	0.3620	0.7971	1196	8/8 800	1.3826	-0.166	-16	-0.008
0.4038	0.3124	0.7923	1100	099 907	1.3041	-0.349	-20 -30	-0.015
0.3593	0.2421	0.7858	1168	933	1.3855	-0.492	-33	-0.021
0.2840	0.1913	0.7815	1157	956	1.3861	-0.528	-32	-0.022
0.2411	0.1624	0.7791	1151	969	1.3863	-0.523	-31	-0.021
0.1808	0.1218	0.7758	1142	988	1.3864	-0.482	-27	-0.018
0.1339	0.0902	0.7733	1136	1002	1.3864	-0.417	-23	-0.015
0.0004	0.0342	0.7704	1120	1020	1.3803	-0.298	-13	-0.010

Table 2	2. (Con	tinued
---------	---------	--------

<i>X</i> ₁	<i>X</i> 2	$ ho/{ m g}{ m \cdot}{ m cm}^{-3}$	$u/m \cdot s^{-1}$	$\kappa_{\rm s}/{\rm T}~{\rm Pa}^{-1}$	n _D	V ^E /cm ³ ⋅mol ⁻¹	$\Delta \kappa_{\rm s}/{\rm T}~{\rm Pa}^{-1}$	$\Delta R/cm^3 \cdot mol^{-1}$
0.6763	0.3237	0.8021	1212	848	1.3846	0.043	0	-0.003
0.5892	0.2820	0.7971	1201	870	1.3860	-0.221	-20	-0.013
0.5328	0.2550	0.7939	1192	886	1.3865	-0.345	-27	-0.018
0.4730	0.2264	0.7906	1183	904	1.3869	-0.443	-32	-0.021
0.3984	0.1907	0.7865	1172	926	1.3872	-0.524	-34	-0.024
0.3364	0.1610	0.7833	1163	944	1.3874	-0.558	-34	-0.024
0.2976	0.1425	0.7813	1158	955	1.3874	-0.563	-33	-0.024
0.2242	0.1073	0.7776	1148	976	1.3873	-0.535	-30	-0.021
0.1615	0.0773	0.7744	1139	995	1.3871	-0.465	-25	-0.017
0.1090	0.0522	0.7717	1132	1011	1.3868	-0.365	-19	-0.013
0.8014	0.1986	0.8038	1225	830	1.3901	0.023	-0	-0.006
0.7049	0.1747	0.7991	1212	852	1.3904	-0.228	-18	-0.014
0.6303	0.1562	0.7954	1201	871	1.3903	-0.362	-26	-0.018
0.5576	0.1382	0.7918	1191	891	1.3901	-0.454	-31	-0.020
0.4779	0.1184	0.7879	1179	913	1.3898	-0.518	-32	-0.022
0.4272	0.1059	0.7856	1172	927	1.3895	-0.542	-33	-0.022
0.3473	0.0861	0.7819	1161	948	1.3891	-0.553	-32	-0.021
0.3072	0.0761	0.7801	1156	959	1.3888	-0.544	-30	-0.020
0.1926	0.0477	0.7749	1142	990	1.3880	-0.457	-25	-0.015
0.1124	0.0278	0.7713	1131	1013	1.3872	-0.326	-17	-0.001
0.8960	0.1040	0.8049	1233	818	1.3938	0.010	-0	-0.006
0.7943	0.0922	0.8004	1220	840	1.3934	-0.215	-16	-0.013
0.7099	0.0824	0.7968	1208	859	1.3930	-0.366	-25	-0.017
0.6243	0.0725	0.7930	1196	881	1.3924	-0.471	-30	-0.020
0.5508	0.0639	0.7897	1186	900	1.3918	-0.523	-32	-0.022
0.4659	0.0541	0.7859	1175	922	1.3910	-0.546	-32	-0.022
0.3812	0.0442	0.7823	1164	944	1.3902	-0.540	-31	-0.021
0.2774	0.0322	0.7779	1151	970	1.3892	-0.501	-28	-0.018
0.2168	0.0252	0.7755	1144	985	1.3886	-0.458	-25	-0.015
0.1182	0.0137	0.7714	1132	1013	1.3875	-0.334	-17	-0.009

The speeds of sound through the mixtures (*u*) and the corresponding densities (ρ) were used to calculate isentropic compressibilities (κ_s) using the equation

$$\kappa_{\rm s} = u^{-2} \rho^{-1} \tag{4}$$

and the isentropic compressibility changes of mixing $(\Delta \kappa_s)$ were obtained using the expression

$$\Delta \kappa_{\rm s} = \kappa_{\rm s} - \sum_{i} \phi_{i} \kappa_{si} \tag{5}$$

where κ_s and κ_{si} are the isentropic compressibilities of the mixture and component *i*, respectively, and ϕ_i is the volume fraction of component *i* in the mixture as given by

$$\phi_i = x_i V_i \sum_j x_j V_j \tag{6}$$

where *j* refers to all components of the mixture.

For the ternary system, Figure 1 shows the plotted density and refractive index isolines versus the mole fraction of the mixture and the plotted sound velocity isolines versus volume fraction. Figure 2 shows excess molar volume isolines versus mole fraction and isentropic compressibility changes of mixing isolines versus volume fraction.

Correlation. The V^{E} , ΔR , and $\Delta \kappa_s$ data were correlated with the composition data by means of the Redlich–Kister polynomial,⁶ which for binary mixtures is

$$\Delta M = x_i x_j \sum_{K} A_K (x_i - x_j)^k \tag{7}$$

where ΔM is V^{E} or ΔR and x is the mole fraction, or ΔM is $\Delta \kappa_{\text{s}}$ and x is the volume fraction, A_{K} is the polynomial coefficient, and K is the number of the polynomial coef-

ficient. For ternary systems the corresponding equation is

$$\Delta M_{123} = \Delta M_{12} + \Delta M_{32} + \Delta M_{13} + x_1 x_2 x_3 (A + B(x_1 - x_2) + C(x_3 - x_2) + D(x_1 - x_3) + E(x_1 - x_2)^2 + F(x_3 - x_2)^2 + G(x_1 - x_3)^2 + \dots$$
(8)

where ΔM_{123} is V^E , $\Delta \kappa_s$, or ΔR ; x_i is the mole fraction or volume fraction of component *i*, according to the parameter being correlated as previously indicated; and ΔM_{ij} is the value of the Redlich–Kister polynomial for the same property fitted to the data for the binary system (*i*, *j*).

Equations 7 and 8 were fitted to the appropriate parameter-composition data for the binary and ternary systems by least-squares regression, applying Fisher's *F*-test to establish the number of coefficients. These coefficients and their mean standard deviations are listed in Table 3 for the binary systems (data for TAME + methanol and 1-butanol + methanol systems were taken from previously papers^{1,2}) and in Table 4 for the ternary system.

Prediction. Although it would be desirable to be able to estimate the thermodynamic properties of multicomponent systems from the properties of their pure components, in practice such estimates are often inaccurate due to the effects of mixing. An attractive alternative that limits experimental work to binary mixtures is to evaluate the property changes of mixing of the multicomponent system from the properties of its constituent binary subystems. To assess the viability of this approach for the ternary system studied here, their $V^{\rm E}$, ΔR , and $\Delta \kappa_{\rm s}$ values were predicted from the properties of their constituent binary subsystems by means of empirical equations available in the literature. The equations used were from refs 7–14. These equations are common in the bibliography, have been used in previous papers,¹⁵ and are not therefore repeated unnecessarily.

For each ternary system, Table 5 lists the standard deviations in the values of V^{E} , ΔR , and $\Delta \kappa_{s}$ predicted by each equation.

Figure 1. Density $(g \cdot cm^{-3})$ -mole fraction (a), refractive index-mole fraction (b), and speed of sound $(m \cdot s^{-1})$ -volume fraction (c) isolines for 1-butanol + methanol + TAME mixtures at 298.15 K and atmospheric pressure.

Figure 2. Excess molar volumes $(cm^{-3} \cdot mol^{-1})$ - mole fraction (a) and isentropic compressibility (T Pa⁻¹) changes of mixing (b) isolines for 1-butanol + methanol + TAME mixtures at 298.15 K and atmospheric pressure.

Conclusions

A thermodynamic contribution to the study of 1-butanol + methanol + TAME mixtures has been carried out with the determination of molar volume, molar refraction, and isentropic compressibility changes of mixing from experimental measurements of densities, refractive indices, and speeds of sound at 298.15 K and atmospheric pressure.

Excess molar volumes were negative, reaching a minimum around $-0.56 \text{ cm}^3 \cdot \text{mol}^{-1}$; only the binary system 1-butanol + methanol shows positive but very low values

Table 3. Polynomial Coefficients (A_K) and Standard Deviations (σ) Obtained for the Fits of Eq 7 to the V^{E-} , $\Delta \kappa_s-$, and ΔR -Composition Data for the Binary Systems (for $\Delta \kappa_s$, System Compositions Were in Volume Fraction, ϕ_i)

property	A_0	A_1	A_2	A_3	A_4	σ
	1	-Butanol	+ Methan	ol		
V ^E /cm ³ ⋅mol ⁻¹	0.2673	-0.2032				0.001
$\Delta \kappa_s / T Pa^{-1}$	18.9	-19.7	-7.2			0.1
$\Delta R/cm^3 \cdot mol^{-1}$	0.0079	0.0445	-0.0582			0.001
		TAME +	Methanol			
V ^E /cm ³ ⋅mol ⁻¹	-1.8559	-0.1787	-0.3252	-0.2319		0.001
$\Delta \kappa_{\rm s}/{\rm T}~{\rm Pa}^{-1}$	-84.6	-52.6		-62.4	-128.4	0.2
$\Delta R/cm^3 \cdot mol^{-1}$	-0.0857					0.001
		1-Butano	l + TAME			
V ^E /cm ³ ⋅mol ⁻¹	-2.1579	0.1624	-0.6287	0.4640		0.001
$\Delta \kappa_{\rm s}/{\rm T}~{\rm Pa}^{-1}$	-126.1	19.0	-52.2	67.0		0.1
$\Delta R/cm^3 \cdot mol^{-1}$	-0.1366	-0.0620				0.001

Table 4. Polynomial Coefficients and Standard Deviations (σ) Obtained for the Fits of Eq 8 to the V^{E-} , Δk_s- , and ΔR -Composition Data for the Ternary System 1-Butanol (1) + Methanol (2) + TAME (3) (for Δk_s , System Compositions Were in Volume Fraction, ϕ_i)

property	Α	В	С	D	σ
$V^{E}/cm^{3}\cdot mol^{-1}$	-1.2775	0.6392	0.5977	0.0415	0.008
$\Delta \kappa_{\rm s}/{\rm T}~{\rm Pa}^{-1}$	-60.64	-12.04	23.84	-35.88	0.54
$\Delta R/cm^3 \cdot mol^{-1}$	0.3407	-0.2812	0.0284	-0.3096	0.005

Table 5. Standard Deviations in the Excess Molar Volumes and Changes of Mixing in Molar Refraction and Isentropic Compressibility Predicted for the Ternary Mixture at 298.15 K and Atmospheric Pressure

	V_{123}^{E}	$\Delta K_{\rm s123}^{\rm E}$	$\Delta R_{123}^{\rm E}$
	$\overline{\text{cm}^3 \cdot \text{mol}^{-1}}$	T Pa ⁻¹	cm ³ ⋅mol ⁻¹
Radojkovic	0.027	1	0.010
Rastogi	0.165	10	0.006
Kohler	0.011	2	0.010
Jacob and Fitzner	0.030	2	0.009
Tsao and Smith ^a	0.063	5	0.013
Tsao and Smith ^b	0.071	6	0.014
Tsao and Smith ^c	0.087	5	0.011
Colinet	0.231	14	0.013
Toop ^a	0.036	3	0.011
Toop ^b	0.037	4	0.011
Toop ^c	0.080	5	0.011
Scatchard ^a	0.164	10	0.017
Scatchard ^b	0.197	10	0.021
Scatchard ^c	0.111	7	0.011

 a 1-Butanol is the asymmetric component. b Methanol is the asymmetric component. c TAME is the asymmetric component.

of this property. Isentropic compressibility changes of mixing are also negative, reaching a minimum of approximately -34 T Pa⁻¹ except for the previously cited binary system. Values of molar refraction changes of mixing are so small that it is difficult to establish any conclusion.

In all cases the data were satisfactorily correlated with the composition data by the Redlich–Kister polynomial. The equation of Kohler, followed by those of Radojkovic and Jacob and Fitzner, is the most adequate for the prediction of the properties considered in this paper and usable in the absence of ternary data. The equations of Colinet, Rastogi, and Scatchard produce high deviations and are not recommended. Limitations are found using the equations of Toop and Tsao and Smith. The conclusions obtained for the prediction of the property changes of mixing (and therefore for the direct physical properties also) from the constituent binary systems are repetitive for mixtures with ethers and alcohols.^{2,15,16}

Literature Cited

- (1) Arce, A.; Mendoza, J.; Ageitos, J.; Soto, A. Densities, Refractive Indices, Speeds of Sound, and Isentropic Compressibilities of Water + Methanol + 2-Methoxy-2-methylbutane at 298.15 K. J. Chem. Eng. Data 1996, 41, 724–727.
- (2) Arce, A.; Rodil, E.; Soto, A. Physical Properties of the Ternary System 1-Butanol + Methanol + 2-Methoxy-2-methylpropane at 298.15 K: Measurement and Prediction. *J. Chem. Eng. Data* **1999**, *44*, 1028–1033.
- Riddick, J. A.; Bunger, W. B.; Sakano, T. Organic Solvents, 4th. ed.; John Wiley: New York, 1986.
 Aminabhavi, T. M.; Aralaguppi, M. Y.; Harogoppad, Sh. B.;
- (4) Aminabhavi, Ť. M.; Aralaguppi, M. Y.; Harogoppad, Sh. B.; Balundgi, R. H. Densities, viscosities, refractive indices, and speeds of sound for methyl acetoacetate + aliphatic alcohols (C1– C8). J. Chem. Eng. Data **1993**, *38*, 31–39.
- (5) Linek, J. Excess volumes and refractive indices in benzene-*tert*amyl methyl ether and cyclohexane-*tert*-amyl methyl ether systems at 298.15 K. *Collect. Czech. Chem. Commun.* 1987, *52*, 2839–43.
- (6) Redlich, O. J.; Kister, A. T. Algebraic representation of thermodynamic properties and the classification of solutions. *Ind. Eng. Chem.* **1948**, 40 (2), 345–348.
- (7) Radojkovic, N.; Tasic, A.; Grozdanic, D.; Djordjevic, B.; Malic, M. Mixing cell indirect measurements of excess volume. J. Chem. Thermodyn. 1977, 9, 349–352.
- (8) Rastogi, Ř. P.; Nath, J.; Das, S. S. Thermodyamic properties of ternary mixtures. 2. The excess volumes of mixing of ternary mixtures of cyclohexane, aromatics, and halomethanes. J. Chem. Eng. Data 1977, 22, 249–252.
- (9) Kohler, F. Estimation of the thermodynamic data for ternary system from the corresponding binary systems. *Monatsh. Chem.* **1960**, *91*, 738–740.
 (10) Jacob, K. T.; Fitzner, K. The estimation of the thermodynamic
- (10) Jacob, K. T.; Fitzner, K. The estimation of the thermodynamic properties of ternary alloys from binary data using the shortest distance composition path. *Thermochim. Acta* **1977**, *18*, 197–206.
- distance composition path. *Thermochim. Acta* 1977, *18*, 197–206.
 (11) Tsao, C. C.; Smith, J. M. Heat of mixing of liquids. Applied thermodynamics. *Chem. Eng. Prog., Symp. Ser.* 1953, *49*, 107–117.
- (12) Colinet, C. Ph.D. Thesis, University of Grenoble, France, 1967.
 (13) Toop, G. W. Predicting ternary activities using binary data. *Trans. TMS-AIME* 1965, *223*, 850–855.
- *TMS-AIME* **1965**, *223*, 850–855. (14) Scatchard, G.; Ticknor, L. B.; Goates, J. R.; McCartney, E. R.
- Heats of mixing in some nonelectrolyte solutions. J. Am Chem. Soc. 1952, 74, 3721-4.
 (15) Arce, A.; Rodil, E.; Soto, A. Molar Volumes, Molar Refractions
- (15) Arce, A.; Rodii, E.; Soto, A. Molar Volumes, Molar Verracions and Isentropic Compressibilities of (Ethanol + Methanol + 2-Methoxy-2-methylpropane) and (Ethanol + Methanol + 2-Methoxy-2-methylbutane) at 298.15 K. J. Chem. Eng. Data 1997, 42, 721–726.
- (16) Arce, A.; Martínez-Ageitos, J.; Rodil, E.; Soto, A. Thermodynamic Behaviour of Ethanol + Methanol + 2-Ethoxy-2-Methylpropane System. Physical Properties and Phase Equilibria. *Fluid Phase* Equilib. **1999**, *165*, 121–139.

Received for review February 12, 2001. Accepted April 30, 2001. This work was partly supported by the Ministerio de Ciencia y Tecnología (Spain) under Project PPQ2000-0969.

JE010033+