Solubility as a Function of Temperature of Selected Chlorophenols and Nitrophenols in Aqueous Solutions Containing Electrolytes or Surfactants

Mohammed Jaoui, Christian Achard, and Marek Rogalski*

Laboratoire de Thermodynamique et d'Analyse Chimique, Université de Metz, Ile du Saulcy, 57045 Metz Cedex, France

The solubility of phenol, 4-chlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol, 2-nitrophenol, and 4-nitrophenol, was measured in aqueous solutions containing small concentrations of electrolytes or surfactants in the temperature range from 280 K to 345 K. The experimental determination of the solubility was performed using a light transmission technique. The results show that small amounts of surfactants or electrolytes can modify significantly the aqueous solubility of these compounds.

Introduction

Chlorinated phenols and nitrophenols are long-lived pollutants frequently found in industrial effluents. Their aqueous solubility is low and decreases with increasing number of hydrophobic chlorine or nitro groups. Reliable data of chlorophenol and nitrophenol solubility in pure water are reported in the literature.^{1–6} However, measurements were usually performed at normal temperature (273 K or 298 K). Recently, Huang et al.⁷ demonstrated the strong influence of pH at T = 298 K on the solubility of selected chlorophenols. Indeed, physical and chemical properties of chlorophenols and nitrophenols are strongly influenced by their capacity to form hydrogen bonds and by their partly ionic character in aqueous solutions. The acidity constant of chlorophenols increases with the number of chlorine atoms. Pentachlorophenol is an acid comparable in strength to acetic acid.

Numerous thermodynamic properties of aqueous solutions of chlorophenols are reported in the literature. Anderson et al.⁸ studied the aqueous solubility of parasubstituted phenols. Kojima and Davis⁹ and Wenhui et al.¹⁰ showed that the molecular transfer of chlorophenols in polyphase systems is strongly influenced by the presence of electrolytes. All of these results were reported at 298.15 K. Moreover, solubility and partition coefficients of chlorophenols were determined in the presence of large concentrations of salts.

In the present work, we investigated the influence of electrolytes (NaCl, NaOH, and HCl) on the solubility of selected phenols (phenol, 4-chlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol, 2-nitrophenol, and 4-nitrophenol) as a function of temperature. Temperature ranges and electrolyte concentrations concerned in this study were selected according to characteristic values of these parameters observed in river water. Thus, the influence of small concentrations of salts on the nitrophenol and chlorophenol aqueous solubility was dealt with.

Chlorophenols and nitrophenols are only slightly soluble in water. Atwood and Florence¹¹ discussed the mechanism of the micellar solubilization of hydrophobic solutes in

 \ast Corresponding author. E-mail: rogalski@bridoux.sciences.univmetz.fr.

aqueous solutions. Pramauro et al.¹² and Busserolles et al.¹³ studied the micellar solubilization of phenol and chlorophenols. This phenomenon can be achieved when micelles are formed and the surfactant concentration is higher than the critical micellar concentration (cmc). Therefore, the aqueous solubilities reported by these authors were determined with relatively high concentrations of surfactants.

In ground or river water, small quantities of surfactants from domestic or industrial wastes are often present. Because their concentration is lower than the cmc, the usual micellar solubilization of hydrophobic pollutants cannot occur. The surfactants can aggregate, however, with pollutants and in certain cases may form mixed micelles. Consequently, the aqueous solubility of pollutants may be increased, and thermodynamic conditions of their environmental transfer can be seriously modified. In this work, we studied the solubility enhancement of nitrophenols and chlorophenols in aqueous solutions containing small quantities of selected surfactants. Sodium dodecyl sulfate (SDS), *N*-hexadecyl-*N*,*N*-dimethyl-3-ammonio-1-propanesulfonate (SB-16), poly(oxyethylene-4-lauryl ether) (Brij-30), and poly(glycol ether) (tergitol or NP-10) were used. The first of the group (SDS) is anionic, the second one (SB-16) is amphoteric, and the last two compounds (Brij-30 and NP-10) are nonionic. Some properties of these surfactants are given in Table 1. The cmc values were either taken from the literature or measured by ourselves using a KSV-5000 tensiometer (KSV, Finland).

Experimental Section

Materials. Deionized water was used, the purity of which was checked by determining the electrical conductivity. It was found to be $1-1.8 \,\mu\text{S}\cdot\text{cm}^{-1}$. Phenol, 4-chlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol, 2-nitrophenol, and 4-nitrophenol were from Merck. NaCl, SB-16, SDS, Brij-30, and NP-10 were from Sigma. Other chemicals were from Aldrich. The mass fraction purity of all compounds used was higher than 0.99, as checked by high-performance liquid chromatography.

Apparatus and Procedures. The laser light transmission technique was used to determine the aqueous solubility. A schematic diagram of the experimental setup is shown in Figure 1. Samples of known composition were

surfactant	designation	formula	$M_{ m w}~({ m g}{ m \cdot mol^{-1}})$	cmc (mol·L ⁻¹)
anionic	SDS	$C_{12}H_{25}SO_4Na$	288.4	$\begin{array}{l} \textbf{8.1}\times10^{-3}(\text{ref 14})\\ \textbf{8.3}\times10^{-3}(\text{ref 15})\\ \textbf{(8.25}\pm0.07)\times10^{-3}{}^{a}\end{array}$
amphoteric	SB-16	CH ₃ (CH ₂) ₁₅ N(CH ₃) ₂ [(CH ₂) ₃ SO ₃)]	391.7	$(2.14 \pm 0.05) imes 10^{-4}$ a
nonionic	Brij-30	C ₁₂ H ₂₅ (OCH ₂ CH ₂) ₄ OH	362.4	$4.6 imes 10^{-5}({ m ref}14)\ (4.50\pm 0.06) imes 10^{-5}a$
	NP-10	$C_9H_9(C_6H_4)(OCH_2CH_2)_{10}OH$	650.0	$13.7 imes 10^{-5} ({ m ref} 15) \ (7.19\pm 0.11) imes 10^{-5} {}^a$

Table 1. Selected Properties of Surfactants at T = 298 K

^a Determined in this work from surface tension measurements.

Table 2. Correlation of the Solubility in Pure Water of Selected Chlorophenols and Nitrophenols Using Experimental Data of Jaoui et al.⁶ and Achard et al.¹⁸ $\ln(S^{\circ}/S) = A + B/T$ Where $S = 1 \mod kg^{-1}$

solute	temp range (K)	а	<i>b</i> (K)	$R^{2 a}$	no. of data points
phenol	288-313	7.3013	-853.62	0.9784	9
	313-332	10.731	-1931.7	0.9966	
4-chlorophenol	282 - 342	5.6451	-716.81	0.9828	7
2,4-dichlorophenol	288 - 298	11.846	-3025.1	1.0005	8
-	298 - 347	5.0497	-981.37	0.9925	
2,4,6-trichlorophenol	292-303	23.367	-7096.7	0.9847	6
-	303 - 334	6.6069	-2029.9	0.9964	
2-nitrophenol	288 - 308	16.237	-4672.3	0.9989	5
•	308-332	6.9022	-1784.4	0.9807	
4-nitrophenol	288 - 314	17.110	-4273.4	0.9923	5

 $^{a} R^{2}$ is the correlation coefficient of the linear regression.

Figure 1. Scheme of the apparatus for solubility measurements: 1, He–Ne laser; 2, light sensor, selenium cell; 3, equilibrium vessel; 4, platinum resistance; 5, sealing system; 6, digital multimeter; 7, stirring bar; 8, acquisition computer.

prepared by mass, using a OHAUS AS 120 balance with a precision of ± 0.0001 g (purchase from Fisher Bioblock, France). Then, they were placed in a Pyrex cell (V = 300 mL) equipped with a magnetic stirrer and closed using a Swagelock fitting. The resulting concentration of compounds was given in moles of compound per kilogram of solution.

A platinum resistance Pt-100 probe, calibrated according to the ITS-90 scale at the triple point of water, was used for temperature measurements. This was connected with a Hewlett-Packard digital multimeter 34401A. The uncertainty of the temperature determination was ± 0.1 K, and the resolution was ± 0.01 K. The temperature of the cell was controlled with water circulating between the thermostat and the measuring system. The optical system was purchased from Optilas, France. It consisted of a light source (a He–Ne laser model GLG 5090 from NEC Co.; Max, 1 mW; CW, 632.8 nm) and a light sensor (selenium photocell model SM5-30A). Variations of the intensity of light transmitted through the solution contained in the cell were registered as a function of temperature using a

Figure 2. Light transmission plotted against temperature for a water + phenol mixture.

Figure 3. Liquid–liquid equilibria for the system water (1) + phenol (2): \bigcirc , ref 6; +, ref 16; \triangle , laser light transmission method.

personal computer. The solubility was determined as follows: first, the temperature was increased above the

Table 3. Solubility (in Moles of Solute per Kilogram of Solution) of Selected Chlorophenols and Nitrophenols in Pure
Water (S°) and in Electrolyte Aqueous Solutions (S) as a Function of Temperature ^a

(2) / and 11 21000	i olyte liqueous		<i>)</i> u u u u		P	-			
		Water +	- NaCl (5.817	$9 imes 10^{-3} \text{ mol}^{-3}$	·kg ⁻¹)				
phenol	T/K	296.1	300.2	305.8	313.3	326	6.8	333.6	
F	S/mol·kg ⁻¹	0.8233	0 8427	0.8716	0.9	624	2225	1 3927	
	\mathcal{O} /mol \log^{-1}	0.0200	0.0427	0.0710	1.0	1021 1	0100	1 4000	
	S'/mol·kg	0.8816	0.9170	0.9660	1.0	328	1.3180	1.4868	
	<i>k</i> _s /kg·mol ⁻¹	5.11	6.31	7.68	5.2	27 5	5.61	4.88	
4-chlorophenol	T/K	298.0	305.2	315.3	319.7	323	3.8	332.7	341.2
-	S/mol·kg ⁻¹	0.1760	0.1856	0.2020	0.2	2125 ().2178	0.2346	0.2477
	$S^{mol}kg^{-1}$	0 1985	0 2101	0 2266	0.2	338 (2405	0 2552	0 2692
	ly /lag mol-1	0.1505	0.2101	0.2200	7.1	,000 (7.400	0.2002	0.2002
	K _s /Kg·III01	0.90	9.20	0.00	7.1	3	(.40	0.28	0.21
2,4-dichlorophenol	7/K	294.6	303.1	311.5	322.4	336	3.7		
	<i>S</i> /mol·kg ⁻¹	0.0264	0.0308	0.0342	0.0	388 (0.0454		
	$S^{mol} k \sigma^{-1}$	0.0297	0.0376	0.0410	0.0	456 (0519		
	k/kg, mol ⁻¹	8 70	14.0	12.5	19.1	(100 (0010		
	As/ Kg·III01	0.79	14.9	13.3	16.1		0.99		
2,4,6-trichlorophenol	1/K	294.9	304.6	308.6	314.6	320).9		
	S/mol·kg ⁻¹	0.0020	0.0040	0.0045	0.0	053 ().0060		
	$S^{\circ}/mol \cdot kg^{-1}$	0.0025	0.0048	0.0052	0.0	059 (0.0067		
	k/kg·mol ⁻¹	16.6	13.6	10.8	8.0	1 5	2 21		
9 mitmonhonol		200 5	204.4	210.0	0.0		J.~ 1		
2-mtrophenoi		290.5	304.4	310.0	322.1				
	S/mol·kg ⁻¹	0.0074	0.0158	0.0202	0.0	269			
	$S^{\circ}/mol \cdot kg^{-1}$	0.0084	0.0175	0.0226	0.0	284			
	$k/ka \cdot mol^{-1}$	9.46	7 63	8 38	4.0	5			
4 mitmonly on al		905 0	201.00	200.00	207.7	01	1.0		
4-murophenoi	$1/\mathbf{R}$	200.9	291.3	290.8	307.7	314	t.2		
	S/mol∙kg ⁻¹	0.0494	0.0658	0.0826	0.1	.374 (J.1826		
	$S^{\circ}/\text{mol}\cdot kg^{-1}$	0.0625	0.0825	0.1082	0.1	.803 (0.2403		
	$k/ka \cdot mol^{-1}$	17.6	16.9	20.2	20.2	90) 5		
	A _s / Kg ⁻ 11101	17.0	10.5	20.2	20.3	۵ ^۵).5		
		Watan	LICI (1 6919	0×10^{-3} mol.	$l_{ra}=1$				
		water -			Kg -)	~ .			
phenol	T/K	292	2.5	300.2	30	8.4	313.3		326.8
	S/mol·kg ⁻¹	().6711	0.7256	(0.8089	0.886	32	1.1450
	S'mol·kg-	1 (8509	0 9170		0 9890	1.039	28	1 3180
	k /kg.mol=1	60		69.7	5	0.0000	40.0		077
	K _s /Kg·III01	03	5.0	02.7	5	3.8	40.9		37.7
4-chlorophenol	77K	298	3.0	305.2	31	5.3	332.7		339.5
	S/mol·kg ⁻¹	().1723	0.1856	(0.2052	0.234	41	0.2524
	S/mol·kg-	1 (1985	0 2101		0 2266	0.25	52	0 2664
			1.1000	0.2101	0	0.2200	0.200	12	144
	$K_{\rm s}/{\rm kg}\cdot{\rm mol}$	31	.9	32.2	2	0.0	23.1		14.4
2,4-dichlorophenol	<i>T</i> /K	295	5.2	303.7	31	2.4	318.1		323.2
•	S/mol·kg ⁻¹	(0.0271	0.0330		0.0375	0.039	99	0.0428
	S/moleka-	1 0	0303	0.0378		0.0414	0.049	28	0.0450
			0.0000	0.0370		0.0414	0.04	00	0.0433
	$K_{\rm s}/{\rm kg}\cdot{\rm mol}^{-1}$	28	9.9	36.4	2	9.5	25.0		18.7
2,4,6-trichlorophenol	<i>T</i> /K	29 4	1.9	297.7	30	2.4	307.5		313.7
	S/mol·kg ⁻¹	(0.0019	0.0026		0.0035	0.004	45	0.0053
	S/mol.kg	1 0	0.0010	0.0020		0.0046	0.00	10	0.0050
	3 /IIIOI·Kg	- (0.0020	0.0032	-	0.0040	0.000)1	0.0056
	k _s /kg•mol ^{−1}	73	3.5	55.6	73	3.2	33.5		24.1
2-nitrophenol	<i>T</i> /K	290).5	303.2	31	0.7	322.7		
1	S/mol·kg ⁻¹	(0082	0.0154		0.0190	0.024	59	
	S/mol.kg	1 0	0000	0.0104		0.0100	0.020	54	
	S/mor-kg	. (0.0084	0.0104		0.0229	0.028	54	
	k _s /kg•mol ^{−1}	6	ö.45	16.8	4	9.9	24.7		
4-nitrophenol	T/K	287	7.8	292.8	29	8.5	306.7		312.4
1	S/mol·kg ⁻¹	(0527	0.0712		0 0945	0.135	18	0 1763
	S/mol.kg	1 0	0,0021	0.0712		0 1175	0.170	22	0.2221
	S /mor-kg	. (0.0690	0.0889	_	0.1175	0.174	13	0.2221
	ks/kg•mol ^{−1}	72	2.1	59.4	5	8.3	63.7		61.8
					1				
		NaC	m ph (5.6230 $ imes$	10 ⁻³ mol·kg ⁻	<u>')</u>				
	7/K	296.4	302.7	31	5.5	330.6			
	S/mol·kg ⁻¹	1.0192	1.02	286	1.1632	1.48	92		
	S'/mol·ko-1	0 8842	0.0	388	1.0666	1 410	07		
	k/ka	11.0	7.0	2000 I	6 70	1.11			
	$-K_{\rm s}/Kg$ ·III01	11.0	7.00	0	0.70	4.10			
		NaC	$H(1.0000 \times$	10^{-4} mol·kg ⁻	1)				
		200 1	× 00001) 11		í	015 0			
		299.1	302.9	304	4.9	315.2			
	S/mol·kg ⁻¹	0.9958	1.00	052	1.0147	1.12	19		
	$S^{\circ}/mol \cdot kg^{-1}$	0.9075	0.94	405	0.9581	1.06	04		
	$-k/kg\cdot mol^{-1}$	403	289	24	9	245			
	ns/ng mon	100	200	24	0	~10			
		Water +	NaOH (1.090	$65 imes 10^{-5}$ mol	$l \cdot kg^{-1}$)				
phenol	7/K	296.3	302 7	31	5.4	322 4	3	31.3	
Priorioi	S/molelco-1	0 0 C 0 7	002.7	760	1 1000	1 904	S/I 0	1 /699	
	\mathcal{A}	0.9027	0.9	103	1.1000	1.23	50	1.4033	
	S [×] /mol·kg ⁻¹	0.8833	0.93	388	1.0645	1.21	59	1.4282	
	$-k_{\rm s}/{\rm kg}\cdot{\rm mol}^{-1}$	3410	1576	158	7	662	9	62	
4-chlorophenol	T/K	298 3	309.3	21	58	324.8	2	29.0	341.9
· childrophichol	S/mol-leg-1	0.00 0.00 0.00 0.00	000.0	0/1 JI	0.0000	0~1.0	3 9	0.9540	0.9704
	S/IIIOI'Kg	0.2052	0.22	£41	0.2320	0.240	02	0.2340	0.2764
	S'/mol·kg ⁻¹	0.1990	0.2	168	0.2274	0.242	21	0.2491	0.2704
	$-k_{\rm s}/{ m kg}\cdot{ m mol}^{-1}$	1215	1312	75	3	665	7	72	870
2.4-dichlorophenol	<i>T</i> /K	291.4	302.0	30	8.8	321.0	.3	37.7	
, · uterior opticitor	S/mol.kg-1	0 0300	0.00	302	0.0433	0.044	95	0.0565	
	\mathcal{A}	0.0309	0.0	JJL	0.0432	0.04	55	0.0000	
	S'/mol·kg ⁻¹	0.0265	0.03	371	0.0399	0.04	50	0.0523	
	$-k_{ m s}/ m kg\cdot mol^{-1}$	6086	2181	314	9	3776	30	60	

Т	ab	le	3	(Continued)	
---	----	----	---	-------------	--

2,4,6-trichlorophenol	<i>T</i> /K	292.8	302.2	308.0	317.2	
1	S/mol·kg ⁻¹	0.0034	0.0054	0.0062	0.0071	
	$S^{\circ}/\text{mol·kg}^{-1}$	0.0021	0.0045	0.0051	0.0062	
	$-k_{\rm s}/{ m kg}\cdot{ m mol}^{-1}$	19093	7224	7739	5371	
2-nitrophenol	T/\mathbf{K}	290.5	304.4	310.0	322.7	
	S/mol⋅kg ⁻¹	0.0105	0.0245	0.0271	0.0350	
	$S^{\circ}/\text{mol·kg}^{-1}$	0.0084	0.0175	0.0226	0.0284	
	$-k_{\rm s}/{\rm kg}\cdot{ m mol}^{-1}$	8842	13333	7195	8280	
4-nitrophenol	T/\mathbf{K}	284.3	289.0	296.3	307.7	313.8
	S∕mol·kg ⁻¹	0.0690	0.0945	0.1380	0.2179	0.2714
	$S^{\circ}/\mathrm{mol}\cdot\mathrm{kg}^{-1}$	0.0575	0.0734	0.1056	0.1803	0.2361
	$-k_{ m s}/{ m kg}\cdot{ m mol}^{-1}$	7224	10012	10603	7505	5521

^{*a*} The salting coefficient k_s is given in kg·mol⁻¹.

equilibrium temperature to obtain a single phase; then, the sample was slowly cooled. The rate of cooling in the vicinity of the phase-splitting temperature was controlled to within 0.1 K·min⁻¹. The sharp decrease of the transmitted light intensity observed at the phase splitting is shown in Figure 2. The equilibrium temperature corresponds to the starting point of the transmitted light decrease. It was determined graphically with the intersection of two straight lines. Three determinations of the transition temperature were performed for each sample, and average values were calculated. Results were reproducible to within ± 0.15 K. The resulting solubility uncertainty was calculated using the slope of the solubility curve versus temperature and the temperature uncertainty { $\Delta S = (dS/dT) \Delta T$ }. The uncertainty in solution composition due to mass weighting was negligible. The highest solubility uncertainty was observed with phenol (0.0020 mol·kg⁻¹) and the lowest one with 2,4,6-trichlorophenol (0.0002 mol·kg⁻¹).

Results and Discussion

At first, the liquid–liquid solubility diagram of the water + phenol system was established to validate the experimental method. Results obtained were compared with literature data^{6,16} and are shown in Figure 3. The average deviation of the present results with the data of Campbell and Campbell¹⁶ is 3.5%. This confirms the utility of the experimental method to determine the liquid–liquid solubility.

Solubility data of phenol, 4-chlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol, 2-nitrophenol, and 4-nitrophenol in aqueous solutions of selected electrolytes and surfactants were obtained in the temperature range from 280 K up to 345 K.

Influence of Electrolytes on the Aqueous Solubility of Chlorophenols and Nitrophenols. The salting out (or salting in) effect on the solubility is usually taken into account using the Setschenow¹⁷ equation:

$$\log \frac{S^{\circ}}{S} = k_{\rm s}C\tag{1}$$

where S°/S corresponds to the ratio of solubility in pure water and in salt solution at concentration *C* and at the same temperature. The salting coefficient k_s is positive for the salting out ($S^{\circ} > S$) and negative for the salting in ($S^{\circ} < S$). Values of S° were not available at all temperatures studied. Experimental data of Jaoui et al.⁶ and Achard et al.¹⁸ were used to establish a linear correlation of $\ln(S^{\circ})$ as a function of temperature. Corresponding parameters are listed in Table 2. The solubility curve of certain compounds shows a characteristic slope change. In this case, two linear relationships are needed to represent S° as a function of temperature.

Figure 4. Salting parameter (k_s) of selected electrolytes measured in phenol aqueous solutions plotted against temperature: \triangle , NaCl (5.8179 × 10⁻³ mol·kg⁻¹); \bigcirc , HCl (1.6218 × 10⁻³ mol·kg⁻¹).

Figure 5. Salting parameter (k_s) of selected electrolytes measured in phenol aqueous solutions plotted against temperature: \diamond , NaOH (1.0965 × 10⁻⁵ mol·kg⁻¹); \bullet , NaOH (1.0000 × 10⁻⁴ mol·kg⁻¹); \bullet , NaOH (5.6230 × 10⁻³ mol·kg⁻¹).

Salting coefficients calculated from eq 1 are reported in Table 3 together with solubility data for each temperature. The evolution of the salting parameter of phenol as a function of temperature is plotted in Figures 4 and 5. The absolute value of the salting parameter is large and decreases significantly with temperature in the case of NaOH and HCl. It is negative in the former case and positive in the latter case. The value of k_s is small and positive with NaCl, and only a weak decrease is observed with increasing temperature. The same behavior is observed with all substituted phenols investigated in this work. The effect of low concentrations of electrolytes

		Water + SD	S (3.8760 ×	10 ^{−3} mol·kg ^{−1})		
phenol	<i>T</i> /K	302.2	30	7.8	319.7	325.7	331.4
	S/mol⋅kg ⁻¹	0.975	69	1.0089	1.1851	1.3296	1.4706
	$S^{\circ}/\text{mol·kg}^{-1}$	0.934	4	0.9837	1.1559	1.2920	1.4307
	$C_{\rm m}$	10.7		6.50	7.53	9.70	10.3
4-chlorophenol	T/\mathbf{K}	296.9	30	6.6	312.1	319.9	331.0
	$S/mol \cdot kg^{-1}$	0.210)2	0.2276	0.2381	0.2496	0.2699
	$S^{\circ}/\text{mol·kg}^{-1}$	0.196	88	0.2124	0.2213	0.2341	0.2524
	$C_{\rm m}$	3.46		3.92	4.33	4.00	4.51
2,4-dichlorophenol	<i>T</i> /K	294.7	29	9.5	307.1	315.1	325.5
, i i i I	$S/mol \cdot kg^{-1}$	0.034	5	0.0383	0.0426	0.0464	0.0483
	$S^{\circ}/mol \cdot kg^{-1}$	0.029	8	0.0361	0.0392	0.0425	0.0469
	Cm	1.21		0.567	0.887	1.01	0.361
2.4.6-trichlorophenol	7/K	290.9	30	3.0	311.4	315.3	
,.,	$S/mol \cdot kg^{-1}$	0.002	26	0.0049	0.0061	0.0070	
	$S^{mol} k \sigma^{-1}$	0.001	8	0.0048	0.0055	0.0060	
	C	0.206	1	0 258	0 155	0.258	
2-nitrophenol	7/K	288.7	29	37	303.2	313 5	321 7
	S/mol·kg ⁻¹	0.012	20	0.0144	0.0215	0.0282	0.0312
	$S/mol kg^{-1}$	0.012	16	0.0111	0.0210	0.0202	0.0012
	C	1.16	0	1 1 2	1 21	1.06	0.0275
1 nitrophonol	T/K	286 7	20	1.13	207 5	305.2	211 7
4-mu opnenor	1/IX S/moleka-1	۵00.7 ۵ م م	29 26	1.9	6 1 2 0 7	0 1890	0.2406
	S/III01·Kg	0.083	0	0.0332	0.1207	0.1029	0.2400
	S/mol·kg	0.003	12	0.0850	0.1120	0.1009	0.2154
	\mathcal{L}_{m}	4.75		3.66	2.24	5.67	6.50
		Water + Brij	-30 (5.7250 ×	10^{-5} mol·kg	-1)		
phenol	7/K	293.8	299.1	307.2	317.2	324 8	329.3
pricitor	S/mol·kg ⁻¹	1 1725	1 1771	1 2590	1 3531	1 4807	1 5927
	$S/mol k \sigma^{-1}$	0.8619	0.9075	0.978/	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.1007	1 3785
	C	5425	4709	/901	/38/	3664	37/1
1 chlorophonol	\mathcal{U}_{m}	205 3	202 1	311.0	320 8	331 7	5741
4-chiorophenoi	Γ/Λ	29J.3 0.9916	0.2050	0 2070	320.0	0.2505	
	S/III01 Kg -	0.2010	0.2930	0.3078	0.3300	0.3303	
		0.1942	0.2007	0.2190	1040	0.2000	
		1320	1042	1344	1049	1094	
2,4-dichlorophenol	I/K	295.2	303.7	312.4	318.1	323.2	
	S/mol·kg ⁻¹	0.0505	0.0570	0.0635	0.0666	0.0689	
	S [°] /mol·kg ⁻¹	0.0303	0.0378	0.0414	0.0438	0.0459	
	$C_{\rm m}$	353	335	386	398	402	
2,4,6-trichlorophenol	7/K	295.3	303.7	313.3	319.9	327.0	
	S/mol·kg ⁻¹	0.0066	0.0078	0.0095	6 0.0105	0.0121	
	S°/mol·kg ⁻¹	0.0026	0.0047	0.0058	B 0.0066	0.0076	
	$C_{\rm m}$	69.9	54.1	64.6	68.1	78.6	
2-nitrophenol	<i>T</i> /K	290.5	294.5	305.7	311.8	323.4	
	S/mol·kg ⁻¹	0.0192	0.0209	0.0279	0.0314	0.0383	
	$S^{\circ}/\mathrm{mol}\cdot\mathrm{kg}^{-1}$	0.0084	0.0104	0.0186	6 0.0234	0.0287	
	$C_{\rm m}$	189	183	162	140	168	
4-nitrophenol	T/K	287.8	292.8	298.5	306.2	312.4	
	S∕mol•kg ⁻¹	0.1497	0.1614	0.1895	o 0.2346	0.2936	
	$S^{\circ}/mol \cdot kg^{-1}$	0.0690	0.0889	0.1175	0.1684	0.2221	
	$C_{\rm m}$	1409	1266	1258	1156	1249	
			10 (7 05 00	10-5 11	.1\		
nhanal	T U	water + NP-	10 (7.0500 ×		-) 	010 7	00F 7
phenoi	I/\mathbf{K}	۵۵۵۵ کې ۱ موو	7 1	5.2 L 0591	307.8	319.7	323.7
	S/mol·kg	1.028		1.0321	1.0733	1.2499	1.3974
		0.861	1 ().9344	0.9837	1.1559	1.2920
4 11 1 1	$C_{\rm m}$	2300	1008	1	1302	1333	1495
4-chlorophenol	I/K	296.9	306	5.6	312.1	319.9	331.0
	S/mol·kg ⁻¹	0.2388	S (J.2576	0.2665	0.2784	0.2986
	S [°] /mol·kg ⁻¹	0.1968	s (0.2124	0.2213	0.2341	0.2524
	$C_{\rm m}$	596	641		641	628	655
2,4-dichlorophenol	7/K	295.2	300).8	306.6	311.8	317.5
	S/mol·kg ⁻¹	0.0434	4 (0.0476	0.0499	0.0520	0.0546
	$S^{\circ}/\text{mol}\cdot\text{kg}^{-1}$	0.0303	3 (0.0366	0.0390	0.0411	0.0435
	$C_{\rm m}$	186	156	3	155	155	157
2,4,6-trichlorophenol	T/K	292.8	300).6	309.5	314.3	
	S∕mol•kg ⁻¹	0.0040) (0.0057	0.0067	0.0075	
	$S^{\circ}/\mathrm{mol}\cdot\mathrm{kg}^{-1}$	0.0021	1 (0.0040	0.0053	0.0059	
	$C_{\rm m}$	26.9	24	4.1	19.8	22.7	
2-nitrophenol	T/\mathbf{K}	286.1	291	1.8	303.2	312.1	323.1
-	$S/mol\cdot kg^{-1}$	0.0095	5 (0.0142	0.0211	0.0263	0.0314
	$S^{\circ}/mol \cdot kg^{-1}$	0.0065	5 (0.0090	0.0164	0.0235	0.0286
	$C_{\rm m}$	42.5	73	3.7	66.7	39.7	39.7
4-nitrophenol	<i>T</i> /K	291.0	294	1.6	301.5	306.1	310.4
r	$S/mol \cdot kg^{-1}$	0.089	[(0.1026	0.1572	0.1942	0.2304
	$S^{\circ}/mol \cdot kg^{-1}$	0.081	2 (0.0972	0.1355	0.1676	0.2034
	$C_{\rm m}$	112	76	3.6	308	377	383
	- 111						

Lable 4 (Continueu)

		Water + SB-16 (4	$.8450 imes 10^{-5} \text{ mol}$	kg ⁻¹)		
phenol	T/\mathbf{K}	298.2	303.4	317.4	323.5	331.0
-	S/mol⋅kg ⁻¹	1.0099	1.0334	1.2318	1.3753	1.5284
	$S^{\circ}/\text{mol·kg}^{-1}$	0.8997	0.9449	1.1064	1.2409	1.4207
	Cm	2274	1827	2588	2774	2222
4-chlorophenol	T/\mathbf{K}	298.4	303.4	308.8	318.5	333.2
-	S/mol⋅kg ⁻¹	0.2220	0.2310	0.2420	0.2571	0.2810
	$S^{\circ}/\mathrm{mol}\cdot\mathrm{kg}^{-1}$	0.1992	0.2072	0.2160	0.2318	0.2560
	$C_{\rm m}$	471	491	537	522	516
2,4-dichlorophenol	T/\mathbf{K}	294.7	299.5	307.1	315.1	325.5
	S/mol∙kg ⁻¹	0.0365	0.0403	0.0446	0.0484	0.0503
	$S^{\circ}/\text{mol}\cdot kg^{-1}$	0.0298	0.0361	0.0392	0.0425	0.0469
	Cm	138	86.7	111	122	70.2
2,4,6-trichlorophenol	T/\mathbf{K}	293.3	303.0	311.4	323.0	
	S/mol∙kg ⁻¹	0.0034	0.0049	0.0061	0.0078	
	$S^{\circ}/\mathrm{mol}\cdot\mathrm{kg}^{-1}$	0.0022	0.0046	0.0055	0.0070	
	$C_{\rm m}$	24.8	6.19	12.4	16.5	
2-nitrophenol	T/\mathbf{K}	293.1	298.4	303.2	313.4	327.4
	S∕mol∙kg ⁻¹	0.0142	0.0174	0.0211	0.0278	0.0331
	$S^{\circ}/\mathrm{mol}\cdot\mathrm{kg}^{-1}$	0.0097	0.0128	0.0164	0.0241	0.0307
	$C_{\rm m}$	92.9	94.9	97.0	76.4	49.5
4-nitrophenol	T/\mathbf{K}	288.7	293.9	299.5	307.2	313.7
	S∕mol•kg ⁻¹	0.0875	0.1112	0.1358	0.1942	0.2543
	$S^{o}/mol \cdot kg^{-1}$	0.0723	0.0939	0.1232	0.1762	0.2351
	$C_{\rm m}$	314	357	260	371	396

^{*a*} The capacity coefficient $C_{\rm m}$ is dimensionless.

observed in this study is significant and depends on the chemical properties of a given compound.

The variation of the solubility due to electrolytes can be determined from the values of *S* and *S*° reported in Table 3. This variation is between 10 and 30%. Huang et al.⁷ demonstrated that a larger enhancement of the solubility of chlorophenols at T = 298 K can be observed at pH higher than p K_a (p K_a is about 6 for 2,4,6-trichlorophenol). However, the pH of solutions investigated in our study was less than 7. In the case of NaOH solutions, the alkaline effect was weak at concentrations studied and was balanced by the acidic character of phenol derivatives. The pH encountered in ground and river water is usually acid and less than the p K_a of most of chlorophenols. Consequently, an increase of the solubility observed in natural conditions is comparable with the results presented in this work.

Influence of Surfactants on the Aqueous Solubility of Chlorophenols and Nitrophenols. All surfactants were used in this study at concentrations lower than the cmc. Consequently, the solubility enhancement of phenol derivatives is not due to the micellar solubilization. That could be tentatively explained either by hydrophobic aggregation or by formation of mixed micelles. To estimate the quantitative influence of a surfactant on the solubility of chlorophenols and nitrophenols, we defined capacity coefficient $C_{\rm m}$, analogous to the salting coefficient, by

$$C_{\rm m} = \frac{S - S^{\circ}}{C} \tag{2}$$

 $C_{\rm m}$ is given in moles of solute per moles of surfactant. It expresses an increase of the number of solute molecules present in the solution $(S - S^{\circ})$ induced by one molecule of surfactant (*C* is the surfactant concentration in moles per kilogram). Values of the capacity coefficients are reported in Table 4 together with solubility data for each temperature. Figure 6 gives plots of $C_{\rm m}$ as a function of temperature for aqueous solutions of phenol. As is illustrated with these plots, $C_{\rm m}$ is not highly dependent on temperature, but it depends strongly on the nature of the surfactant. We hypothesize that formation of mixed surfactant–solute aggregates is responsible for this effect. The smallest effect is observed with SDS (the solubility in-

Figure 6. Capacity coefficient (C_m) of selected surfactants measured in phenol aqueous solutions plotted against temperature: \bigcirc , SDS (3.8760 × 10⁻³ mol·kg⁻¹); \bullet , Brij-30 (5.7250 × 10⁻⁵ mol·kg⁻¹); \diamond , NP-10 (7.0500 × 10⁻⁵ mol·kg⁻¹); \triangle , SB-16 (4.8450 × 10⁻⁵ mol·kg⁻¹).

creases between 5 and 40%). A larger enhancement of the solubility can be noted with NP-10 (20-50%) and SB-16 (15-50%). The strongest effect is induced by Brij-30 (40-150%).

The variation of $C_{\rm m}$ as a function of temperature is similar to that of all substituted phenols. However, it is strongly dependent on the number of chlorine atoms, *n*, and decreases as *n* increases. In the case of nitrophenols, the capacity coefficient $C_{\rm m}$ is significantly lower than that observed with phenol.

Conclusion

In the present work, we studied the influence of low concentrations of electrolytes or surfactants on the solubility of phenol and selected chlorophenols and nitrophenols in water. Special attention was paid to the evolution of this effect with temperature.

It was observed that the salting effect due to electrolytes is significant but decreases with temperature. The variation of the solubility in the presence of small amounts of electrolytes can be as high as 30%.

The solubility enhancement due to surfactants can be significant even below the cmc. This could be explained by aggregation phenomena occurring between surfactant and solute molecules. This hypothesis should be confirmed by an investigation of the solution structure. It was concluded that the influence of temperature was negligible in this case.

Literature Cited

- (1) Sidgwick, N. V.; Spurrell, W. L.; Davies, T. E. Solubility of the Nitrophenols and Other Isomeric Disubstitution Products of Benzene. J. Chem. Soc. 1915, 107, 1202-1209.
- (2) Sidgwick, N. V.; Turner, J. L. The Solubility of Chlorophenols. J. Chem. Soc. 1922, 2256-2263.
- Weast, R. C. Handbook of Chemistry and Physics, 61st ed.; CRC Press: Boca Raton, FL, 1981.
- (4) Shiu, W. Y.; Ma, K. C.; Varhanickova, D.; Mackay, D. Chlorophenols and Alkylphenols: A Review and Correlation of Environmentally Relevant Properties and Fate in a Evaluative Environment. *Čhemosphere* 1994, 29 (6), 1155-1224.
- (5) Jaoui, M. Thermodynamic Properties of Chlorophenols and Nitrophenols in Aqueous Solution. Ph.D. Thesis, University of Metz, Metz, France, 1998.
- (6) Jaoui, M.; Luszczyk, M.; Rogalski, M. Liquid-Liquid and Liquid-Solid Equilibria of Systems Containing Water and Selected Chlorophenols. *J. Chem. Eng. Data* 1999, 44 (6), 1269–1272.
 Huang, G. L.; Xiao, H.; Chi, J.; Shiu, W. Y.; Mackay, D. Effects
- (7) Huang, O. E., Machay, H., Chi, S., Shud, W. L., Machay, D. Enects of pH on the Aqueous Solubility of Selected Chlorinated Phenols. *J. Chem. Eng. Data* **2000**, *45* (3), 411–414.
 (8) Anderson, N. H.; Davis, S. S.; James, M.; Kojima, I. Thermody-namics of Distribution of p-Substituted Phenols Between Aqueous

Solution and Organic Solvents and Phospholipid Vesicles. J. *Pharm. Sci.* **1983**, *72* (4), 443–448. Kojima, I.; Davis, S. S. The Effect of Salt Concentration on the

- (9)Distribution of Phenol Between Aqueous Sodium Chloride and Carbon Tetrachloride. Int. J. Pharm. 1984, 20, 203-207.
- Wenhui, X.; Ziqin, Z.; Ming, T.; Dong, L.; Shiu, W. Y.; Mackay, D. Solubilities and Activity Coefficients of Chlorobenzenes and (10)Chlorophenols in Aqueous Salt Solutions. J. Chem. Eng. Data **1994**, *39*, 568–571.
- (11) Atwood, D.; Florence, A. T. Surfactant Systems: Their Chemistry, Pharmacy and Biology, Chapman and Hall: New York, 1983.
- (12) Pramauro, E.; Saini, G.; Pelizzetti, E. Interactions of Halophenols with Aqueous Micellar Systems. Anal. Chim. Acta 1984, 233-241.
- (13) Busserolles, K.; Roux-Desgranges, G.; Roux, A. H. Thermodynamic Study in Aqueous Micellar Solutions at 298.15K: Comparison of the Interactions Between Ionic Surfactants (SDS and CTAB) and 1-Alcohols or Phenol. Thermochem. Acta 1995, 259 (1), 49-56.
- (14) Clint, J. H. Surfactant Aggregation; Chapman and Hall: New York, 1990.
- (15) Tadros, T. F. Surfactants; Academic Press: London, 1984.
- (16) Campbell, A. N.; Campbell, J. R. Concentrations, Total and Vapor Pressures, Surface Tensions and Viscosities in the System Phenol-Water and Phenol-Water-4% Succinic Acid. J. Am. Chem. Soc. 1937, 59, 2481-2488.
- (17) Setschenow, J. Über die Konstitution der Salzlösungen auf Grund Ihres Verhaltens zu Kohlensäure. Z. Phys. Chem. 1889, 4, 117 125.
- Achard, C.; Jaoui, M.; Schwing, M.; Rogalski, M. Aqueous Solubilities of Phenol Derivatives by Conductivity Measurements. (18)J. Chem. Eng. Data 1996, 41, 504-507.

Received for review August 6, 2001. Accepted December 17, 2001.

JE0102309