Phase Equilibria of the Binary Systems 1-Hexene with *o*-Xylene, *m*-Xylene, *p*-Xylene, Toluene, and Ethylbenzene at 101.3 kPa

C. Díaz, A. Dominguez, and J. Tojo*

Departamento de Ingeniería Química, Facultad de Ciencias, Universidad de Vigo, 36200 Vigo, Spain

Isobaric vapor-liquid equilibria are measured for 1-hexene + o-xylene, + m-xylene, + p-xylene, + toluene, and + ethylbenzene at 101.3 kPa, using a dynamic still with circulation in both of the phases. The experimental data are tested for thermodynamic consistency and could be represented well by the Wilson and UNIQUAC equations, with the latter being far better. A comparative analysis of the application of the group contribution methods ASOG, original UNIFAC, modified UNIFAC-Dortmund, and modified UNIFAC-Lyngby to the mixtures of this study showed that UNIFAC-Lyngby gives better results.

1. Introduction

Distillation is the most common operation used in the petroleum and chemical industries for the separation of liquid mixtures, and the accurate design of distillation columns requires a knowledge of phase equilibrium behavior. The planned research in this work aims to improve weaknesses of group contribution methods such as the description of isomeric compounds (e.g., xylenes). We determined isobaric (101.3 kPa) vapor—liquid equilibrium (VLE) data for the binary systems 1-hexene + o-xylene, + m-xylene, + p-xylene, + toluene, and + ethylbenzene. The results are correlated by means of models by Wilson¹ and UNIQUAC.² We are unaware of previously published VLE data for these systems. This work has also served to test the predictive capacity of the group contribution methods ASOG-KT,³ UNIFAC,⁴ UNIFAC-Dortmund,^{5,6} and UNIFAC-Lyngby,⁷

2. Experimental Section

Materials. The chemical substances employed were supplied by Aldrich, Fluka, and Merck and subjected to no further purification. The pure components were degassed ultrasonically, dried over molecular sieves of type 4 A (Aldrich catolog no. 20,8640-4), and kept in an argon (<3 ppmv in water) atmosphere, as soon as the bottles were opened. Purities of the chemicals were checked by gas chromatography. The physical properties of these components are compared with the literature data in Table 1.

Apparatus and Procedure. The apparatus used in this work was an all-glass, dynamic recirculating still, described by Walas,¹¹ equipped with a Cottrell pump. The still (Labodest model 602), manufactured by Fischer Labor und Verfahrenstechnik (Germany), is capable of handling pressures P from 0.25 to 400 kPa and temperatures T of up to 523.15 K. The vapor-liquid mixture flows through the Cottrell pump that guarantees an intense phase exchange and then enters a separation chamber shaped in such a manner as prevent an entrainment of liquid particles into the vapor phase.

The equilibrium temperature was measured with a Yokogawa 7563 digital thermometer with a precision of ± 0.01 K, and the pressure was measured with a Fischer digital manometer with a precision of ± 0.01 kPa. On the average, the systems reached equilibrium conditions after 1 h of op-

* To whom correspondence should be addressed. Fax: +34 986 812382. E-mail: jtojo@uvigo.es.

Table 1.	Densities	ρ, Refrac	tive Indio	ces n _D ,	and Norma
Boiling 7	Femperatu	res T _b of	the Pure	Comp	onents

	$\rho(298.15$	K)/kg∙m ⁻³	n _D (298	8.15 K)	$T_{\rm b}(101.3~{\rm kPa})/{\rm K}$		
component	exptl	lit.	exptl	lit.	exptl	lit.	
1-hexene <i>o</i> -xylene	668.5 875.5	668.48^b 875.82 ^a 875.90 ^b 875.49 ^c	1.38517 1.50177	$\begin{array}{c} 1.38502^b \\ 1.50252^a \\ 1.50295^b \\ 1.5029^c \end{array}$	336.64 417.55	336.635^b 417.579^b 417.55^c	
<i>m</i> -xylene	859.8	860.00 ^b 859.66 ^c	1.49443	1.49464 ^b 1.49466 ^c	412.22	412.45^a 412.27^b	
<i>p</i> -xylene	856.5	856.70^{b} 856.55^{c}	1.49286	1.49325 ^b 1.4930 ^c	411.38	411.509 ^b 411.15 ^c	
toluene ethylbenzene	862.3 862.6	862.20 ^b 862.60 ^b	$\begin{array}{c} 1.49413 \\ 1.49298 \end{array}$	1.49396^b 1.49320^b	383.77 409.31	383.78^b 409.352^b	

^a Tanaka et al.⁸ ^b TRC Thermodynamic Tables.⁹ ^c Lores et al.¹⁰

eration; the experimental method was difficult because of the highly differing relative volatility values of the components. The compositions of the liquid and condensed vapor samples were determined by measuring their refractive indices at 298.15 K with an automatic refractometer ABBE-MAT-HP Dr. Kernchen (accuracy of ± 0.00005) and thermostated with a PolyScience controller bath model 9010 with a temperature stability of $\pm 10^{-2}$ K. The composition dependence of refractive indices has previously been reported.^{12,13} The estimated uncertainty in the determination of both liquid and vapor phase mole fractions is ± 0.002 .

3. Results and Discussion

The temperature, *T*, liquid-phase, *x*₁, and vapor-phase, *y*₁, mole fraction measurements, activity coefficients, γ_{i} , excess free energies, g^{E} , and fugacity coefficients, φ_{i} , at *P* = 101.3 kPa are shown in Table 2. The activity coefficients, γ_{j} , were calculated by taking into account the nonideality of the vapor phase, from the following equations:

$$\gamma_{i} = \frac{y_{i}P}{x_{i}P_{i}^{0}} \exp\left[\frac{(B_{ii} - v_{i}^{L})(P - P_{i}^{0}) + (1 - y_{i})^{2}P\delta_{ij}}{RT}\right]$$
(1)

$$\delta_{ij} = 2B_{ij} - B_{ii} - B_{jj} \tag{2}$$

Here x_i and y_i are the liquid- and vapor-phase compositions, P is the total pressure, P_i^0 is the pure-component vapor pressure calculated using the Antoine equation

$$\log P_i^0 \text{ (kPa)} = A_i - \frac{B_i}{T(\mathbf{K}) + C_i}$$
(3)

Table 2.	Experimental VLE Data:	Temperature T, Liquid	Phase x ₁ , and Vapor-P	hase y1 Mole Fraction, Activity
Coefficie	ent γ_{i} Excess Free Energie	g ^E , and Vapor Fugacity	y Coefficient φ_{i} , for the	Binary Systems at 101.3 kPa

<i>T</i> /K	<i>X</i> 1	y_1	γ_1	γ2	$g^{\mathrm{E}}/\mathrm{J}\cdot\mathrm{mol}^{-1}$	φ_1	φ_2	<i>T</i> /K	<i>X</i> 1	y1	γ_1	γ_2	$g^{\mathrm{E}}/\mathrm{J}\cdot\mathrm{mol}^{-1}$	φ_1	φ_2
		1-H	exene (1) + <i>o</i> -X	ylene (2)					1-H	exene (1) + Tol	uene (2)		
414.60	0.0094	0.0830	1.476	0.998	7.2	0.9788	0.9596	381.30	0.0222	0.0881	1.258	0.998	9.7	0.9687	0.9624
413.18	0.0161	0.1218	1.296	0.999	9.9 32.5	0.9785	0.9591	380.27	0.0312	0.1207	1.255	0.999	20.2 31.4	0.9686	0.9621
398.01	0.0876	0.4611	1.190	0.999	47.6	0.9757	0.9532	375.31	0.0430	0.2753	1.208	1.000	51.1	0.9681	0.9600
393.87	0.1118	0.5345	1.172	0.999	56.2	0.9748	0.9514	373.51	0.1039	0.3259	1.185	1.004	65.9	0.9679	0.9592
390.95	0.1295	0.5813	1.166	1.000	64.5 71.0	0.9741	0.9501	371.10	0.1334	0.3918	1.174	1.005	79.8	0.9675	0.9581
378.99	0.1038	0.0349	1.138	1.001	80.5	0.9729	0.9478	366.91	0.1052	0.4502	1.149	1.009	102.3	0.9666	0.9560
377.10	0.2448	0.7622	1.086	1.009	84.1	0.9706	0.9434	364.56	0.2302	0.5528	1.123	1.014	112.6	0.9661	0.9547
372.61	0.2897	0.8065	1.076	1.013	93.0	0.9694	0.9409	362.31	0.2708	0.6027	1.100	1.020	120.6	0.9655	0.9535
369.62	0.3248	0.8330	1.063	1.018	101.7	0.9667	0.9393	358.43	0.3486	0.6398	1.089	1.023	125.5	0.9651	0.9525
361.33	0.4393	0.8945	1.032	1.037	103.0	0.9658	0.9342	356.27	0.3921	0.7227	1.063	1.036	133.8	0.9638	0.9500
357.09	0.5086	0.9202	1.022	1.046	97.9	0.9644	0.9315	353.77	0.4493	0.7668	1.051	1.044	135.3	0.9630	0.9485
352.93	0.5844	0.9419	1.015	1.054	90.0 84.4	0.9629	0.9286	350.90	0.5250	0.8143	1.032	1.061	130.0	0.9620	0.9467
346.80	0.7140	0.9682	1.010	1.066	72.5	0.9605	0.9240	345.57	0.6800	0.8928	1.012	1.093	104.9	0.9600	0.9432
343.25	0.8059	0.9809	1.002	1.089	52.3	0.9590	0.9211	344.00	0.7315	0.9139	1.007	1.106	91.4	0.9593	0.9421
340.12	0.8924	0.9904	1.001	1.124	37.1	0.9577	0.9185	341.98	0.7981	0.9388	1.005	1.124	77.4	0.9585	0.9407
337.27	0.9792	0.9983	1.000	1.162	9.6	0.9564	0.9160	337.37	0.9715	0.9920	0.999	1.232	13.4	0.9564	0.9373
		1-He	exene (1)) + <i>m</i> -X	ylene (2)					1-Hexe	ene (1) -	⊦ Ethylł	oenzene (2)		
408.23	0.0195	0.1171	1.122	0.999	5.6	0.9775	0.9584	403.55	0.0290	0.1666	1.109	0.998	9.7	0.9764	0.9573
404.11	0.0403	0.2243	1.121	1.001	18.7	0.9768	0.9568	400.85	0.0457	0.2367	1.095	1.000	16.3	0.9760	0.9562
400.00	0.0628	0.3226	1.118	1.001	27.6	0.9760	0.9552	395.72	0.0774	0.3586	1.091	1.001	26.0	0.9750	0.9540
394.57	0.0971	0.4381	1.090	1.002	40.6	0.9749	0.9529	386.83	0.1395	0.5358	1.067	1.002	44.8	0.9731	0.9500
389.54	0.1311	0.5328	1.087	1.005	47.9	0.9738	0.9506	377.62	0.2203	0.6813	1.055	1.006	59.5	0.9707	0.9455
383.74	0.1748	0.6268	1.082	1.006	59.9 69.1	0.9724	0.9479	371.35	0.2870	0.7609	1.049	1.009	67.4 74 1	0.9690	0.9421
370.59	0.3041	0.7912	1.054	1.017	84.5	0.9688	0.9410	363.88	0.3831	0.8375	1.036	1.019	80.4	0.9667	0.9378
367.03	0.3476	0.8258	1.047	1.021	89.2	0.9677	0.9390	361.71	0.4151	0.8566	1.032	1.022	83.1	0.9660	0.9365
360.36	0.4413	0.8810	1.037	1.028	94.4 91.9	0.9655	0.9350	359.41	0.4516	0.8755	1.025	1.026	84.7 85.7	0.9652	0.9350
352.33	0.5854	0.9332	1.020	1.045	87.9	0.9627	0.9296	352.81	0.5711	0.9224	1.017	1.039	83.0	0.9628	0.9306
348.32	0.6728	0.9542	1.013	1.058	78.0	0.9611	0.9267	350.61	0.6174	0.9359	1.010	1.045	78.5	0.9620	0.9290
347.05	0.7030	0.9602	1.010	1.065	74.1	0.9606	0.9257	348.69	0.6626	0.9469	1.006	1.056	72.1	0.9613	0.9276
341.90	0.8412	0.9821	0.999	1.100	41.5	0.9585	0.9216	342.34	0.8263	0.9779	1.000	1.000	45.0	0.9586	0.9227
339.60	0.9074	0.9903	0.999	1.123	28.0	0.9574	0.9197	340.11	0.8900	0.9870	1.000	1.112	33.4	0.9577	0.9209
338.26	0.9490	0.9948	0.999	1.156	16.7	0.9568	0.9186	338.61	0.9356	0.9925	1.000	1.164	27.6 14.7	0.9570	0.9196
557.50	0.5775	0.5577 1 LL	0.000	(1.220)	vlono (2)	0.5504	0.5170	557.55	0.5705	0.5500	1.000	1.157	14.7	0.0000	0.5107
408 91	0 0128	0.0765	1 103	1 000	4 Q	0 9775	0 9591								
402.51	0.0464	0.2467	1.103	1.000	16.5	0.9764	0.9566								
398.80	0.0676	0.3338	1.099	1.001	25.5	0.9757	0.9552								
397.03	0.0790	0.3727	1.088	1.003	29.9	0.9753	0.9544								
388.40	0.1361	0.4033	1.087	1.003	47.8	0.9745	0.9524								
381.15	0.1929	0.6547	1.083	1.005	61.0	0.9717	0.9473								
376.99	0.2322	0.7109	1.071	1.008	68.3 78.1	0.9706	0.9452								
370.17	0.2054	0.7452	1.052	1.015	85.2	0.9686	0.9435								
367.35	0.3382	0.8169	1.056	1.016	89.0	0.9678	0.9400								
364.28	0.3824	0.8445	1.041	1.027	96.3	0.9668	0.9382								
354.94	0.4744	0.8921	1.031	1.037	98.9	0.9636	0.9343								
349.98	0.6353	0.9434	1.013	1.064	92.8	0.9618	0.9289								
346.79	0.7089	0.9595	1.008	1.079	83.3	0.9605	0.9266								
342.02	0.7851	0.9732	1.000	1.089	49.9	0.9585	0.9243								
339.83	0.8990	0.9889	1.000	1.126	34.3	0.9575	0.9211								
338.05	0.9549	0.9953	0.999	1.149	15.1	0.9567	0.9196								

Table 3. Physical Properties of the Pure Components: Critical Presure P_C , Mean Gyration Radius R_D , Dipole Moment μ , Critical Temperature T_C , Critical Compressibility Factor Z_C , and Antoine Parameters A, B, and C

							Antoir	ne constants ^{c}	
component	$P_{\rm C}/{\rm MPa}^a$	$10^{10} R_{\rm D}{}^{b}\!/{ m m}$	10 ³⁰ µ ^a /C∙m	$T_{\rm C}/{f K}^a$	$Z_{\mathrm{C}}{}^{b}$	Α	В	С	range T/K
1-hexene	3.1720	3.6600	1.67	504.03	0.265	5.93649	1073.08	-63.779	335.15-499.15
o-xylene	3.7330	3.8360	2.07	630.37	0.263	6.12644	1476.39	-59.278	336.15 - 418.15
<i>m</i> -xylene	3.5410	3.9370	1.33	617.05	0.259	6.13399	1462.270	-58.039	302.15 - 439.15
<i>p</i> -xylene	3.5110	3.8310	0.00	616.26	0.260	6.11543	1453.43	-57.840	300.15 - 439.15
toluene	4.1090	3.4720	1.20	591.79	0.264	6.07577	1342.31	-53.963	246.15 - 384.15
ethylbenzene	3.6090	3.8970	1.93	617.17	0.263	6.09070	1429.55	-59.383	263.15 - 409.15

^{*a*} Prausnitz et al.¹⁴ ^{*b*} Daubert and Danner.¹⁵ ^{*c*} Gmehling et al.¹⁶

where the constants A_{i} , B_{i} , and C_{i} are reported in Table 3, B_{ii} and B_{jj} are the second virial coefficients of the pure gases, and B_{ij} is the cross second virial coefficient. Second virial coefficients were estimated by the Hayden and

O'Connell method.¹⁷ The values used for the critical constants, acentric factor, dipole moment, and association parameter are listed in Table 3. The liquid molar volume, $v_i^{\rm L}$, was calculated by the Yen and Woods¹⁸ equation.

Figure 1. Experimental y-x diagram for the binary systems at 101.3 kPa: •, this work; -, UNIQUAC equation; (a) 1-hexene (1) + o-xylene (2); (b) 1-hexene (1) + m-xylene (2); (c) 1-hexene (1) + p-xylene (2); (d) 1-hexene (1) + toluene (2); (e) 1-hexene (1) + ethylbenzene (2).

The systems present positive deviations from ideality, and the excess free energies, calculated from activity coefficients, are positive over the entire range of composition.

The VLE data were found to be thermodynamically consistent by means of the point-to-point test of Van Ness et al.¹⁹ as modified by Fredenslund et al.⁴ Consistency criteria were met using a three-parameter Legendre polynomial. Table 4 presents the mean absolute deviations in vapor-phase composition, Δy , and in pressure, ΔP . The L/W point-to-point method of Wisniak²⁰ showed good consistency

(all of the values of L/W are between 0.9 and 1.0 for the binary systems), and according to the McDermott–Ellis method,²¹ as modified by Wisniak and Tamir,²² all experimental points were considered to be thermodynamically consistent. In terms of consistency criteria ($D < D_{max}$), for the experimental data reported here, *D* never exceeded 0.006, while the smallest value of D_{max} was 0.029.

Correlation. The activity coefficients were correlated with both the Wilson¹ and UNIQUAC² equations. An automatic implementation of thermodynamic models, a

Figure 2. Temperature composition diagram for the binary systems at 101.3 kPa: •, this work; -, UNIQUAC equation; (a) 1-hexene (1) + o-xylene (2); (b) 1-hexene (1) + m-xylene (2); (c) 1-hexene (1) + p-xylene (2); (d) 1-hexene (1) + toluene (2); (e) 1-hexene (1) + ethylbenzene (2).

computational package Thermath extended by Castier,²³ was used. This program allows the generation of a code that is compatible with the Schenepper and Stadtherr²⁴ version of the INTLIB/INTBIS²⁵ for interval arithmetic and guarantees that the global minimum of the objective function was achieved within an initially specified range for each model parameter. Estimation of the parameters for the equations studied was based on minimization of the objective function F in terms of experimental and

Table 4. Consistency Test for the Binary Systems

system	$100\Delta y_1^a$	$100\Delta P/kPa^b$
1-hexene $(1) + o$ -xylene (2)	0.22	0.24
1-hexene $(1) + m$ -xylene (2)	0.08	0.19
1-hexene $(1) + p$ -xylene (2)	0.10	0.16
1-hexene (1) + toluene (2)	0.09	0.13
1-hexene (1) + ethylbenzene (2)	0.07	0.16

^{*a*} Average absolute deviation in vapor-phase composition. ^{*b*} Average absolute deviation in pressure.

Table 5. Interaction Parameters and Root-Mean-Square Deviations from the UNIQUAC and Wilson Equations at 101.3 kPa

model	parameters/J·mol ⁻¹	rms T	rms y_1	
Wilson UNIQUAC	1-Hexene (1) + $\Delta \lambda_{12} = -70.71$ $\Delta u_{12} = 31.17$	- o-Xylene (2) $\Delta \lambda_{21} = 525.76$ $\Delta u_{21} = -11.80$	0.82 0.80	0.008 0.007
Wilson UNIQUAC	1-Hexene (1) + $\Delta \lambda_{12} = 1740.29$ $\Delta u_{12} = -113.05$	<i>m</i> -Xylene (2) $\Delta \lambda_{21} = 746.55$ $\Delta u_{21} = 82.17$	1.17 0.52	0.020 0.013
Wilson UNIQUAC	1-Hexene (1) + $\Delta \lambda_{12} = -433.09$ $\Delta u_{12} = -158.91$	p-Xylene (2) $\Delta \lambda_{21} = 667.22$ $\Delta u_{21} = 107.07$	0.37 0.28	0.012 0.012
Wilson UNIQUAC	1-Hexene (1) $+$ $\Delta \lambda_{12} = -278.32$ $\Delta u_{12} = 144.64$	Toluene (2) $\Delta \lambda_{21} = 815.71$ $\Delta u_{12} = 92.55$	0.32 0.25	0.010 0.009
Wilson UNIQUAC	1-Hexene (1) + E $\Delta \lambda_{12} = -945.25$ $\Delta u_{12} = -39.75$	thylbenzene (2) $\Delta \lambda_{12} = 1484.99$ $\Delta u_{21} = 26.94$	0.83 0.64	0.015 0.013

Table 6. Root-Mean-Square-Deviations in Equilibrium **Temperature and Vapor-Phase Composition from the** ASOG, UNIFAC, UNIFAC-Dortmund, and UNIFAC-Lyngby Group Contribution Methods

		rms <i>T</i> /K				rms y_1				
system	ASOG	ori- ginal UNI- FAC	UNI- FAC- Dort- mund	UNI- FAC- Lyn- gby	ASOG	original UNI- FAC	UNI- FAC- Dort- mund	UNI- FAC- Lyn- gby		
$\overline{1 - \text{hexene } (1) + o - \text{xylene } (2)}$	1.03	1.08	3.30	0.88	0.014	0.014	0.036	0.012		
1-hexene $(1) + m$ -xylene (2)	1.24	1.41	3.39	1.07	0.022	0.008	0.047	0.020		
1-hexene $(1) + p$ -xylene (2)	1.34	1.38	3.66	1.16	0.023	0.023	0.048	0.021		
1-hexene (1) + toluene (2)	0.46	1.06	1.56	0.51	0.012	0.019	0.025	0.012		
1-hexene (1) + ethyl- benzene (2)	1.24	2.25	2.02	1.40	0.020	0.030	0.027	0.021		

calculated γ_i values

$$F = \sum_{j=1}^{n_{\text{DAT}}} \sum_{i=1}^{N} \left(\frac{\gamma_{ij}^{\text{exp}} - \gamma_{ij}^{\text{calc}}}{\gamma_{ij}^{\text{exp}}} \right)^2$$
(4)

where n_{DAT} is the number of experimental data, γ^{exp} is the coefficient calculated from the experimental data, γ^{calc} is the activity coefficient calculated from the y and T correlations, and N is the number of components. Optimized parameter sets and the root-mean-square deviations of Tand y_1 from the equations of Wilson and UNIQUAC are shown in Table 5. The UNIQUAC equation represents the data better. Figures 1 and 2 show the $y_1 - x_1$ and $T - x_1 - y_1$ diagrams and the correlated line corresponding to the best model for each binary system.

Predictive Models. Prediction of VLE for the binary systems at 101.3 kPa has been carried out by the ASOG-KT³ and UNIFAC⁴ methods and their modifications by UNIFAC-Dortmund^{5,6} and UNIFAC-Lyngby. The group interaction parameters were those published by Kojima and Tochigi,³ Hansen et al.,²⁶ Gmehling et al.,⁶ and Larsen et al.7 for these methods. The root-mean-square deviations between the experimental VLE data and those predicted for the temperature, $\sigma(T)$, and the composition of the vapor phase, $\sigma(y_1)$, are shown in Table 6. It can be observed that the description of these systems by the UNIFAC-Lyngby method shows better agreement with the experimental data. The difficulties in representation of these systems are to be expected because a simple group contribution model like ASOG, UNIFAC, or modified UNIFAC is not able to account for isomeric effects (e.g., ortho, meta, or para substitution) in the case of the different benzene derivatives. Of course, new main groups can be included, which would improve the prediction results.

Literature Cited

- Wilson, G. M. Vapor-liquid equilibrium. 6. A New Expression (1)for the Excess Free Energy of Mixing. J. Am. Chem. Soc. 1964, 86, 127-130.
- (2) Abrams, D. S.; Prausnitz, J. M. Statistical Thermodynamics of Liquid Mixtures: A New Expression for the Excess Gibbs Energy of Partly of Completely Miscible Systems. AIChE J. 1975, 21, 116-118.
- (3) Kojima, K.; Tochigi, K. Prediction of Vapor-Liquid Equilibria by the ASOG Method; Elsevier: Tokyo, 1979.
- Fredenslund, Aa.; Gmehling, J.; Rasmussen, P. Vapor-Liquid (4)Equilibria Using UNIFAC; Elsevier: Amsterdam, The Netherlands, 1977.
- Weidlich, U.; Gmehling, J. A Modified UNIFAC Model. 1. Prediction of VLE, $h^{\rm E}$ and γ^{∞} . Ind. Eng. Chem. Res. **1987**, 26, 1372– (5)1381
- Gmehling, J.; Li, J.; Schiller, M. A Modified UNIFAC Model. 2. (6) Present Parameter Matrix and Results for Different Thermodynamic Properties. Ind. Eng. Chem. Res. 1993, 32, 178-193
- Larsen, B. L.; Rasmussen, P.; Fredenslund, Aa. A Modified UNIFAC Group Contribution Method for Prediction of Phase Equilibria and Heats of Mixing. Ind. Eng. Chem. Res. 1987, 26, 2274-2286.
- (8) Tanaka, R.; Kiyohara, O.; D'Arcy, P. J.; Benson, G. A. Micrometer syringe dilatometer. Application to the measurement of excess volumes of some ethylbenzene systems at 298.15 K. Can. J. Chem. Eng. 1975, 53, 2262–2267.
- (9) TRC Thermodynamic Tables, Thermodynamic Research Center, Texas A&M University: College Station, TX, 1996. (10) Lores, M. T.; De la Torre, J.; Burguet, M. C.; Monton, J. B. Vapor-
- Liquid Equilibria for the Binary Systems Isobutanol with m-Xylene, o-Xylene and p-Xylene at 101.3 kPa. J. Chem. Eng. Data 1999, 44, 869-872.
- (11) Walas, S. M. Phase Equilibria in Chemical Engineering; Butterworth: London, 1985.
- (12) Tojo, J.; Diaz, C. Densities and Refractive Indices for 1-Hexene o Xylene, + m-Xylene, + p-Xylene, and + Ethylbenzene. J. Chem. Eng. Data **1995**, 40, 96–98.
- (13) Díaz, C. Ĕquilibrio Líquido-Vapor de Ciclohexano, 1-Hexeno y n-Heptano con Hidrocarburos Aromáticos a 101.3 kPa. Doctoral
- Thesis, University of Vigo, Vigo, Spain, 2001. (14) Prausnitz, J.; Anderson, T.; Greens, E.; Eckert, C.; Hsieh, R.; O'Connell, J. Computer Calculations for Multicomponent Vapor-Liquid and Liquid–Liquid Equilibria; Prentice Hall: Englewood Cliffs, NJ, 1980.
- (15) Daubert, T. E.; Danner, R. P. Physical and Thermodynamic Properties of Pure Chemicals: Data Compilation; Hemisphere Publishing Corp.: New York, 1986.
- (16) Gmehling, J.; Rarey, J.; Menke, J.; Fischer, K. Manual of the Dortmund Data Bank Software Package (DDBSP); DDBST GmbH: Oldenburg, Germany, 1996.
- (17) Hayden, J. G.; O'Connell, J. P. A Generalized Method for Predicting Second Virial Coefficients. Ind. Eng. Chem. Process Des. Dev. **1975**, *14*, 209–216. (18) Yen, L. C.; Woods, S. S. A Generalized Equation for Computer
- Calculation of Liquid Densities. AIChE J. 1966, 12, 95-99.
- (19) Van Ness, H. C.; Byer, S. M.; Gibbs, R. E. Vapor-liquid equilibrium: Part I. An Appraisal of Data Reduction Methods. AIChE *J.* **1973**, *19*, 238–244.
- (20) Wisniak, J. A New Test for the Thermodynamic Consistency of Vapor–Liquid Equilibrium. Ind. Eng. Chem. Res. 1993, 32, 1531– 1533.
- (21) McDermott, C.; Ellis, S. R. M. A Multicomponent Consistency Test. *Chem. Eng. Sci.* **1965**, *20*, 293–296. Wisniak, J.; Tamir, A. Vapor–Liquid Equilibria in the Ternary
- (22)Systems Water-Formic Acid-Acetic Acid and Water-Acetic Acid-Propionic Acid. J. Chem. Eng. Data 1977, 22, 253-260.
- (23)Castier, M. Automatic Implementation of Thermodynamic Models Using Computer Algebra. Comput. Chem. Eng. 1999, 23, 1229 1236
- (24)Schenepper, C. A.; Stadtherr, M. A. Robust Process Simulation Interval Methods. Comput. Chem. Eng. 1996, 20, 187-192.
- (25)Kearfott, R. B.; Novoa, M. INTBIS, a Portable Interval Newton/ Bisection Package. ACM Trans. Math. Software 1990, 16, 152-157.
- (26) Hansen, H. K.; Rasmussen, P.; Fredenslund, Aa.; Schiller, M.; Gmehling, J. Vapor-Liquid Equilibria by UNIFAC Group Contribution. 5. Revision and Extension. Ind. Eng. Chem. Res. 1991, 30, 2352-2355.

Received for review November 5, 2001. Accepted May 15, 2002. JE010295B