Vapor Pressures of Hydrofluoroethers

Junji Murata,* Shiro Yamashita, and Minoru Akiyama

Research Institute of Innovative Technology for the Earth (RITE), c/o AIST Tsukuba Central 5-2, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan

Shinichiro Katayama

Toray Research Center, Inc., 3-3-7 Sonoyama, Otsu, Shiga 520-8567, Japan

Toshihiko Hiaki

Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University, 1-2-1 Izumi-cho, Narashino, Chiba 275-8575, Japan

Akira Sekiya

National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5-2, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan

Vapor pressures for 50 hydrofluoroethers have been measured from pressures of less than 30 kPa to 101.3 kPa. Measurements were made by the isoteniscope method. The Antoine constants for each compound were derived using the experimental data.

Introduction

Hydrogen-containing fluorinated ethers have been developed as alternatives to chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs).¹ Hydrofluoroethers have almost zero ozone depleting potential (ODP) because of the absence of chlorine atoms in the molecules.² Some hydrofluoroethers have low global warming potential and are expected to be environmentally friendly alternatives for use as refrigerants, blowing agents, and cleaning solvents.

Vapor pressure is one of the most important properties in the development of new alternative compounds. The vapor pressures of some hydrofluoroethers whose boiling points are comparatively low have been reported.^{3–7} In this paper, the vapor pressures for 50 compounds whose boiling points are higher than 313 K have been measured by the isoteniscope method. The boiling points and vapor pressures at 298.15 K of some of these hydrofluoroethers have been reported previously in the literature.¹

Experimental Section

Materials. All hydrofluoroether reagents were prepared in this work according to the literatures.^{8–14} Gas-chromatographic analysis of most materials indicated that each had a purity of at least 99.5 mol %. The minimum purities and densities of the compounds are listed in Table 1 along with their IUPAC names.

 \ast To whom correspondence should be addressed. E-mail: jmurata@mx6.nisiq.net.

Vapor Pressures. Vapor pressures were measured directly by means of an isoteniscope and a vacuum system using the standard techniques.¹⁵⁻¹⁶ The pressure was determined using the calibrated Baratron pressure sensor (MKS Instruments, USA) with 690A12TRA in the range less than 13.3 kPa and 690A13TRA in the range from 13.3 kPa to 133 kPa, with an uncertainty of $\pm 0.05\%$. The temperature was measured with a calibrated platinum resistance thermometer (Pt 100 Ω) with an uncertainty of ± 0.03 K. Two baths were used in these experiments. A water bath with a stability of ± 0.03 K was used for temperatures less than 368 K. An oil bath with a stability of ± 0.1 K was used for temperatures higher than 368 K. The overall temperature uncertainty is ± 0.06 K for temperatures less than 368 K, and ± 0.13 K for temperatures higher than 368 K. The meniscus was adjusted with 1 mm accuracy.

Densities. Density was measured using a calibrated pycnometer having a bulb volume of 5 cm³. A water bath was kept at 296.15 K with a stability of ± 0.02 K. A Shimazu AEU-210 balance with a precision of ± 0.0001 g was used for mass measurements. The density values were reproducible within ± 0.0001 g·cm⁻³.

Results and Discussion

Water was chosen for verification of the apparatus and the procedure. The vapor pressure data for water obtained in this work are presented in Table 2 along with the literature values.

Table 1. Formulas, IUPAC Names, Minimum Purities, and Densities, ρ , of Compounds

				minimum	
			CAS registry	purity	ρ^b
no.	formula	IUPAC name	number ^a	mol %	g∙cm ^{−3}
1	CF ₃ CF ₂ CF ₂ CF ₂ OCH ₂ CH ₂ CH ₃	1,1,1,2,2,3,3,4,4-nonafluoro-4-propoxybutane	72372-80-6	99.7	1.3664
2	CF ₃ CF ₂ CF ₂ CF ₂ CF ₂ OCH ₃	1,1,1,2,2,3,3,4,4,5,5-undecafluoro-5-methoxypentane	181214-74-4	99.9	1.5753
3	CF ₃ CF ₂ CF ₂ CF ₂ CF ₂ OCH ₂ CH ₃	1-ethoxy-1,1,2,2,3,3,4,4,5,5,5-undecafluoropentane	181214-75-5	99.7	1.4903
4	CF ₃ CF(OCF ₃)CH ₂ CH ₃	1,1,1,2-tetrafluoro-2-trifluoromethoxybutane	200501-98-0	99.8	1.3469
5	(CF ₃) ₃ COCH ₃	1.1.1.3.3.3-hexafluoro-2-methoxy-2-trifluoromethylpropane	66670-22-2	99.9	1.5585
6	(CF ₃) ₂ CFCF ₂ CF ₂ OCH ₃	1.1.1.2.3.3.4.4-octafluoro-4-methoxy-2-trifluoromethylbutane	203783-56-6	99.6	1.6081
7	(CF ₃) ₂ CFCF ₂ CF ₂ OCH ₂ CH ₃	1-ethoxy-1.1.2.2.3.4.4.4-octafluoro-3-trifluoromethylbutane	203783-57-7	99.9	1.5194
8	CF ₃ CF(OCF ₃)CH ₂ CHF ₂	1.1.1.2.4.4-hexafluoro-2-trifluoromethoxybutane		99.5	1.5403
9	(CF ₃) ₃ COCH ₂ CH ₃	2-ethoxy-1.1.1.3.3.3-hexafluoro-2-trifluoromethylpropane	186493-82-3	99.9	1.4504
10	CF ₃ CF(OCF ₃)CH ₂ CF ₃	1.1.1.2.4.4.4-heptafluoro-2-trifluoromethoxybutane	347148-74-7	99.8	1.5647
11	CF ₃ CHFCF ₂ OCH ₂ CF ₃	1.1.1.2.3.3-hexafluoro-3-(2.2.2-trifluoroethoxy)propane	993-95-3	99.9	1.5319
12	CF ₃ CHFCF ₂ OCH ₂ CF ₂ CHF ₂	1.1.1.2.3.3-hexafluoro-3-(2.2.3.3-tetrafluoropropoxy)propane	65064-78-0	99.9	1.5739
13	CF ₃ CHFCF ₂ OCH ₂ CF ₂ CF ₃	1.1.1.2.3.3-hexafluoro-3-(2.2.3.3.3-pentafluoropropoxy)propane	290-28-8	99.9	1.5749
14	CHF ₂ CF ₂ CH ₂ OCF ₂ CHF ₂	1.1.2.2-tetrafluoro-3-(1.1.2.2-tetrafluoroethoxy)propane	16627-68-2	99.9	1.5323
15	CHF ₂ CF ₂ CF ₂ CF ₂ CH ₂ OCH ₂	1,1,2,2,3,3,4,4-octafluoro-5-methoxypentane	77527-96-9	99.5	1.4850
16	CH ₂ FCF ₂ OCH ₂	1.1.2-trifluoro-1-methoxyethane	428-66-0	99.9	1.2031
17	CF ₂ CF ₂ CH ₂ OCH ₂	1.1.1.2.2-pentafluoro-3-methoxypropane	378-16-5	99.5	1.2816
18	CHF ₂ CF ₂ CH ₂ OCHF ₂	3-difluoromethoxy-1 1 2 2-tetrafluoronronane	35042-99-0	99.5	1 4749
19	CF ₂ CF ₂ CH ₂ OCHF ₂	3-difluoromethoxy-1,1,1,2,2 certailuoropropane	56860-81-2	99.9	1 4688
20	(CF ₂) ₂ CHOCH ₂	1 1 1 3 3 3-bexafluoro-2-methoxypronane	13171-18-1	99.6	1 3802
21	CHF ₂ CF ₂ OCH ₂ CH ₂	1-ethoxy-1122-tetrafluoroethane	512-51-6	99.9	1 2022
22	CF2CH2OCF2CH2F	1 1 1-trifluoro-2-(1 1 2-trifluoroethoxy)ethane	25449-61-0	99.9	1 4239
23	CHF ₂ CF ₂ OCH ₂ CF ₂	1 1 2 2-tetrafluoro-1-(2 2 2-trifluoroethoxy)ethane	406-78-0	99.9	1 4789
24	CE ₂ CH ₂ OCH ₂ CE ₂	1 1 1-trifluoro-2-(2 2 2-trifluoroethoxy)ethane	333-36-8	99.9	1 4045
25	CHF ₂ CF ₂ OCH ₂ CHF ₂	1-(1 1-difluoroethoxy)-1 1 2 2-tetrafluoroethane	50807-77-7	99.4	1 4659
26	CH ₂ FCF ₂ OCHF ₂	1-difluoromethoxy-1 1 2-trifluoroethane	69948-24-9	99.9	1 4262
27	CE ₂ CHECE ₂ OCH ₂	1 1 1 2 3 3-beyafluoro-3-methovypronane	382-34-3	99.8	1 3979
28	CHF ₂ CH ₂ OCHF ₂	2-difluoromethoxy-1 1-difluoroethane	32778-16-8	99.9	1 3705
29	CHF ₂ CF ₂ CF ₂ OCH ₂	1 1 2 2 3 3-beyafluoro-1-methoxypronane	160620-20-2	99.9	1 4157
30	(CF ₀) ₀ CHOCHF ₀	2-difluoromethoxy-1 1 1 3 3 3-hexafluoronronane	26103-08-2	99.6	1 5481
31	CE ₂ CE ₂ CH ₂ OCE ₂ CHE ₂	1 1 1 2 2-pentafluoro. 3. (1 1 2 2-tetrafluoroethovy) propane	50807-74-4	99.0	1 5200
32	CHF ₂ CF ₂ CH ₂ OCF ₂	1 1 2 2-tetrafluoro-3-trifluoromethoxypropane	1683-81-4	99.8	1 4697
33	(CF ₂) ₂ CHOCH ₂ F	1,1,2,2 tertainable of trinderomethoxypropane	28523-86-6	99.9	1 5111
34	CE ₂ CE ₂ OCH ₂ CHE ₂	1.(2.2-difluoroethovy) 1.1.2.2.2. enertafluoroethone	171182-05-0	99.9	1 // 30
35	(CFa) CHCFaOCHa	1 1 1 3 3-pantafluoro-3-methovy-2-trifluoromethylpropape	382-26-3	99.9	1 / 965
36	CE ₂ CHECE ₂ CH ₂ OCE ₂	1,1,1,0,0 pentalluoro o methoxy 2 trinuoromethylpropule 1,1,1,2,3,3-beyafluoro-4-trifluoromethoxybutane	69948-43-2	96.3	1 5299
37	CF ₂ CF ₂ CF ₂ CCH ₂ CCH ₂ CCH ₂	1-ethoxy-1122333-hentafluoronronane	22052-86-4	99.9	1 3222
38	CF ₂ CF ₂ CF ₂ OCH ₂ CF ₂	1 1 1 2 2 3 3-hentafluoro-3-(2 2 2-trifluoroethoxy)propane	142469-08-7	99.9	1 5261
39	CF ₂ CF ₂ CF ₂ OCH ₂ CF ₃	1, 1, 1, 2, 2, 3, 3-includito-3-(2, 2, 2, 2-influorocitioxy)propane 1, 1, 1, 2, 2, 3, 3-heptafluoro-3-(2, 2, 3, 3-tetrafluoropropovy)propane	176310-29-5	99.7	1.5201
40	CF ₂ CF ₂ CH ₂ OCF ₂ CF ₂ CF ₂	1 1 1 2 2-nentafluoro-3-nentafluoroethovynronane	155653-44-4	97.8	1 5075
41	CHF ₂ CF ₂ CH ₂ OCF ₂ CF ₂	1 1 2 2-tetrafluoro-3-nentafluoroethoxypropane	176310-27-3	99.9	1 5086
42	CE ₂ CE ₂ CE ₂ OCH ₂ CE ₂ CE ₃	1-(2 2-difluoroethoxy)-1 1 2 2 3 3 3-heptafluoropropane	176310-28-4	99.9	1 5195
12	CE ₂ CE ₂ CE ₂ CCH ₂ CE	1 (2,2) and $1000000000000000000000000000000000000$	176310-30-8	99.7	1 57/1
13	CHE ₂ CH ₂ OCH ₂	1 1.difluoro-2-methovyothano	161-57-4	99.9	1.0735
15	CHE	1,1 2,2-tetrafluoro-3-methoxymonane	60598-17-6	99.9	1 2518
46	CE ₂ CE ₂ CE ₂ CE ₂ OCH ₂ OCH ₂	1 1 1 2 2 3 3-hentafluoro-4-methoxybutane	376-98-7	99.9	1 3945
47	CF ₂ CHFCF ₂ CH ₂ OCH ₂	1 1 1 2 3 3-hexafluoro-4-methoxybutane	58705-93-4	99.9	1 3526
48	CHF ₂ CF ₂ OCH ₂ F	1 1 2 2-tetrafluoro-1-fluoromethoxyethane	37031-31-5	99.3	1 4545
49	CF2CF2CF2CH2F	1 1 1 2 2 3 3-hentafluoro-3-fluoromethovypronane	184899-81-8	99.5	1 5233
50	CF2CF2CF2CF2CF2OCH2CH2	1-ethoxy-1 1 2 2 3 3 4 4 4-nonafluorobutane	163702-05-4	99 N	1 4168
00	, , , ,		100108 00 1	00.0	1.1100

^{*a*} Provided by the authors. ^{*b*} At 296.15 K.

Table 2. Vapor Pressure, P, of Water

Т	P_{expt}	$P_{\rm lit.}^{17}$	δP^a	Т	P_{expt}	$P_{\rm lit.}^{17}$	δP^a
K	kPa	kPa	kPa	K	kPa	kPa	kPa
293.15	2.34	2.34	0.00	333.15	19.97	19.95	0.02
303.15	4.25	4.25	0.00	343.15	31.21	31.20	0.01
313.15	7.39	7.39	0.00	353.15	47.41	47.41	0.00
323.15	12.36	12.35	0.01				

 $^{a} \delta P = P_{\text{expt}} - P_{\text{lit.}}$

The vapor pressures for the 50 compounds are reported in Table 3 along with values calculated with the Antoine equation,

$$\log(P/kPa) = A - \frac{B}{(T/K) + C}$$

where P is the vapor pressure, T is the absolute temperature, and A, B, and C are adjustable constants. The Antoine constants, which were reported in Table 3, were determined on the basis of the experimental data. The fit was made by weighting all data equally. The average absolute deviations (AADs) between calculated and experi-

Table 3.	Experimental	Vapor Pressures,	P, of 50 H	ydrofluoroethers
			· · · · · · · · · · · · · · · · · · ·	-/

I UDIC (. Lapern	incincui	Tupor 1	icosuic	3 , 1 , 01 0	• my un v	JIIGOIO								
Т	P_{expt}	$P_{\rm ca/c}$	δP^a	Т	P_{expt}	P_{calc}	δP^a	Т	$P_{\rm expt}$	$P_{\rm ca/c}$	δP^a	Т	P_{expt}	P_{calc}	δP^a
Κ	kPa	kPa	kPa	K	kPa	kPa	kPa	К	kPa	kPa	kPa	K	kPa	kPa	kPa
$\begin{array}{c} (1) \ CF_{3}{}^{\prime}\\ 288.15\\ 298.15\\ 303.15\\ 313.15\\ 323.15\\ 333.15\\ 343.15\\ 353.15\\ 363.15\\ \end{array}$	$\begin{array}{c} CF_2CF_2CF_2\\ 3.52\\ 6.05\\ 7.77\\ 12.50\\ 19.45\\ 29.17\\ 42.54\\ 60.41\\ 83.77 \end{array}$	2OCH ₂ C 3.52 6.04 7.78 12.52 19.43 29.16 42.52 60.39 83.78	$\begin{array}{c} H_2 C H_3 \\ 0.00 \\ -0.01 \\ -0.01 \\ -0.02 \\ 0.02 \\ 0.01 \\ 0.02 \\ 0.02 \\ -0.01 \end{array}$	(9 288.15 298.15 313.15 328.15 340.27) (CF ₃) ₃ C(12.50 20.06 37.96 66.99 101.325	OCH ₂ CH 12.51 20.05 37.98 66.97 101.33	$\begin{matrix} I_3 \\ -0.01 \\ 0.01 \\ -0.02 \\ 0.02 \\ 0.00 \end{matrix}$	(17 283.15 293.15 298.15 303.15 313.15 321.55	7) CF ₃ CF ₂ 20.52 32.67 40.65 50.12 74.36 101.325	CH ₂ OCI 20.52 32.67 40.64 50.11 74.38 101.31	$\begin{array}{c} H_3 \\ 0.00 \\ 0.00 \\ 0.01 \\ 0.01 \\ -0.02 \\ 0.02 \end{array}$	(25) 288.15 298.15 313.15 333.15 352.13	CHF ₂ CF ₂ 6.01 10.29 21.47 50.40 101.325	OCH ₂ C 6.00 10.31 21.47 50.32 101.39	$\begin{array}{c} HF_2 \\ 0.01 \\ -0.02 \\ 0.00 \\ 0.08 \\ -0.06 \end{array}$
369.30	101.325 F=CF=CF=C	101.37 E-CE-C	-0.05	(10)	CE.CE(O	сЕ-)сн.	CF.	(18)	CHE.CE	CH.0C	HF.	(96	S) CH.FC	F.OCHI	7
288.15 298.15 313.15 333.15 353.15 358.08	5.55 9.33 18.88 42.74 86.43 101.325	5.55 9.34 18.88 42.72 86.43 101.34	$\begin{array}{c} 0.00\\ -0.01\\ 0.00\\ 0.02\\ 0.00\\ -0.02\end{array}$	288.15 298.15 303.15 313.15 323.64	23.75 37.27 46.17 68.81 101.325	23.74 37.31 46.14 68.80 101.32	$\begin{array}{c} 0.01 \\ -0.01 \\ -0.04 \\ 0.03 \\ 0.01 \\ 0.01 \end{array}$	283.15 293.15 298.15 308.15 323.15 340.15 348.60	$\begin{array}{c} 6.12 \\ 10.39 \\ 13.29 \\ 21.20 \\ 40.05 \\ 75.87 \\ 101.325 \end{array}$	6.12 10.38 13.30 21.21 40.01 75.83 101.38	$\begin{array}{c} 0.00\\ 0.01\\ -0.01\\ -0.01\\ 0.04\\ 0.04\\ -0.05 \end{array}$	283.15 288.15 293.15 298.15 308.15 313.15 316.20	24.87 31.55 39.69 49.30 74.53 90.46 101.325	24.86 31.56 39.66 49.36 74.49 90.41 101.38	$\begin{array}{c} 0.01 \\ -0.01 \\ 0.03 \\ -0.06 \\ 0.04 \\ 0.05 \\ -0.05 \end{array}$
(3) CF ₃ 288.15 298.15 308.15 323.15 343.15 363.15 373.00	$CF_2CF_2CF_2CF_2$ 2.85 4.97 8.27 16.59 37.08 74.35 -101.325	2CF2OC 2.85 4.97 8.29 16.56 37.05 74.36 101.35	$\begin{array}{c} H_2CH_3\\ 0.00\\ 0.00\\ -0.02\\ 0.03\\ 0.03\\ -0.01\\ -0.02\end{array}$	(11) 293.15 298.15 313.15 328.15 345.87	CF ₃ CHFC 11.02 14.21 28.64 53.17 101.325	CF ₂ OCH ₂ 11.02 14.21 28.63 53.18 101.32	2CF ₃ 0.00 0.00 0.01 -0.01 0.01	(19) 283.15 293.15 298.15 308.15 319.09	CF ₃ CF ₂ (22.84 36.17 44.88 67.37 101.325	CH ₂ OCH 22.84 36.17 44.88 67.35 101.33	IF ₂ 0.00 0.00 0.00 0.02 0.00	(27) 288.15 298.15 303.15 313.15 323.15 327.47	$\begin{array}{c} {\rm CF_3CHI}\\ {\rm 20.12}\\ {\rm 31.86}\\ {\rm 39.58}\\ {\rm 59.54}\\ {\rm 86.83}\\ {\rm 101.325} \end{array}$	FCF ₂ OC 20.11 31.88 39.58 59.52 86.82 101.34	$\begin{array}{c} H_3 \\ 0.01 \\ -0.02 \\ 0.00 \\ 0.02 \\ 0.01 \\ -0.02 \end{array}$
(4) (283.15 288.15 298.15 303.15 313.15 319.09	$CF_3CF(OC)$ 23.85 29.94 45.92 56.16 82.01 101.325	F ₃)CH ₂ C 23.85 29.95 45.92 56.14 82.00 101.33	CH ₃ 0.00 -0.01 0.00 0.02 0.01 0.00	(12) CF 293.15 298.15 313.15 328.15 348.15 379.07	3CHFCF ₂ 2.33 3.14 7.16 14.75 34.21 101.325	OCH ₂ CF 2.33 3.14 7.15 14.75 34.24 101.30	$\begin{array}{c} F_2 CHF_2 \\ 0.00 \\ 0.00 \\ 0.01 \\ 0.00 \\ -0.03 \\ 0.03 \end{array}$	(2 283.15 293.15 298.15 308.15 324.10	$\begin{array}{c} 20) \ ({\rm CF}_3)_2 \\ 17.81 \\ 28.81 \\ 36.05 \\ 55.08 \\ 101.325 \end{array}$	CHOCH 17.81 28.79 36.06 55.07 101.32	$\begin{matrix} & 0.00 \\ & 0.02 \\ -0.01 \\ & 0.01 \\ & 0.01 \end{matrix}$	(28 288.15 293.15 298.15 303.15 313.15 323.15 328.49	 CHF₂C 18.96 24.07 30.28 37.70 57.04 83.62 101.325 	$H_2OCH118.9524.0730.2737.7157.0383.59101.35$	$\begin{array}{c} F_2 \\ 0.01 \\ 0.00 \\ 0.01 \\ -0.01 \\ 0.01 \\ 0.03 \\ -0.02 \end{array}$
288.15 298.15 303.15 313.15 323.15 326.79	$\begin{array}{c} (5) \ ({\rm CF}_3)_{30} \\ 21.75 \\ 33.96 \\ 41.87 \\ 62.05 \\ 89.36 \\ 101.325 \end{array}$	COCH ₃ 21.75 33.96 41.86 62.07 89.34 101.32	$\begin{array}{c} 0.00\\ 0.00\\ 0.01\\ -0.02\\ 0.02\\ 0.01 \end{array}$	(13) Cl 293.15 298.15 318.15 338.15 360.64	F ₃ CHFCF 5.71 7.49 19.85 45.64 101.325	2OCH2C 5.71 7.49 19.87 45.61 101.34	$\begin{array}{c} F_2 C F_3 \\ 0.00 \\ 0.00 \\ -0.02 \\ 0.03 \\ -0.02 \end{array}$	(21) 283.15 293.15 298.15 313.15 329.80	CHF ₂ CF 14.23 23.13 29.05 54.57 101.325	20CH ₂ C 14.23 23.13 29.05 54.57 101.32	CH ₃ 0.00 0.00 0.00 0.00 0.00 0.01	(29) 288.15 293.15 298.15 303.15 313.15 323.15 333.15 341.02	CHF ₂ CF 11.23 14.39 18.29 23.04 35.54 53.09 77.04 101.325	C2CF2OC 11.21 14.40 18.30 23.04 35.54 53.07 77.01 101.36	H ₃ 0.02 -0.01 -0.01 0.00 0.00 0.02 0.03 -0.03
(6) (288.15 298.15 313.15 323.15 333.15 343.15 353.15 357.90	$(F_3)_2 CFCI 5.83 9.72 19.41 29.49 43.45 62.26 87.06 101.325$	F ₂ CF ₂ OC 5.83 9.72 19.42 29.49 43.44 62.26 87.08 101.32	CH ₃ 0.00 0.00 -0.01 0.00 0.01 0.00 -0.02 0.01	(14) C 293.15 298.15 303.15 313.15 323.15 343.15 343.15 353.15 363.15 366.32	$HF_{2}CF_{2}C$ 4.15 5.51 7.23 12.05 19.24 29.68 44.37 64.42 91.18 101.325	$\begin{array}{c} H_2 OCF_{2'} \\ 4.15 \\ 5.52 \\ 7.24 \\ 12.05 \\ 19.26 \\ 29.70 \\ 44.38 \\ 64.45 \\ 91.24 \\ 101.37 \end{array}$	$\begin{array}{c} \text{CHF}_2 \\ 0.00 \\ -0.01 \\ -0.01 \\ 0.00 \\ -0.02 \\ -0.02 \\ -0.01 \\ -0.03 \\ -0.06 \\ -0.05 \end{array}$	(22) 283.15 298.15 308.15 323.15 338.18) CF ₃ CH ₂ 9.12 19.60 31.08 58.06 101.325	OCF ₂ CF 9.11 19.62 31.07 58.01 101.37	H_2F 0.01 -0.02 0.01 0.05 -0.05	(30 283.15 288.15 293.15 298.15 303.15 313.15 315.27	$\begin{array}{l} \text{(CF}_3)_2\text{(C}\\ 26.31\\ 33.25\\ 41.59\\ 51.61\\ 63.45\\ 93.67\\ 101.325 \end{array}$	CHOCHI 26.30 33.24 41.60 51.60 63.44 93.66 101.34	F_2 0.01 0.01 -0.01 0.01 0.01 0.01 -0.02
(7) (Cl 288.15 298.15 313.15 328.15 343.15 358.15 369.14 373.48	F ₃) ₂ CFCF ₂ (2.97 5.15 10.72 20.60 36.96 62.48 88.79 101.325	CF2OCH 2.98 5.13 10.72 20.61 36.96 62.45 88.79 101.33	$\begin{array}{c} I_2 CH_3 \\ -0.01 \\ 0.02 \\ 0.00 \\ -0.01 \\ 0.00 \\ 0.03 \\ 0.00 \\ 0.00 \end{array}$	 (15) CF 293.15 298.15 303.15 323.15 343.15 363.15 395.83 	IF ₂ CF ₂ CF 1.09 1.48 2.01 5.97 15.15 33.92 101.325	C ₂ CF ₂ CH 1.08 1.49 2.01 5.98 15.16 33.82 101.43	${}^{2}OCH_{3}$ ${}^{0.01}$ ${}^{-0.01}$ ${}^{0.00}$ ${}^{-0.01}$ ${}^{-0.01}$ ${}^{0.10}$ ${}^{-0.11}$	(23) 283.15 293.15 298.15 313.15 329.37) CHF ₂ CF 13.61 22.44 28.39 54.41 101.325	F ₂ OCH ₂ C 13.61 22.45 28.39 54.38 101.35	CF ₃ 0.00 -0.01 0.00 0.03 -0.02	(31) C 293.15 325.86 298.15 303.15 313.15 323.15 333.15 343.40	$F_3CF_2CF_{12.33}$ 101.325 15.80 20.09 31.56 47.82 70.30 101.325	$H_2OCF_2OCF_2OCF_2OCF_2OCF_2OCF_2OCF_2OCF$	$\begin{array}{c} \text{CHF}_2 \\ 0.01 \\ -0.02 \\ -0.02 \\ -0.01 \\ 0.01 \\ 0.00 \\ 0.02 \\ -0.03 \end{array}$
(8) C 283.15 293.15 298.15 303.15 313.15 323.15 331.78	CF ₃ CF(OCF 12.65 20.84 26.33 32.97 50.21 74.11 101.325	F ₃)CH ₂ C 12.65 20.84 26.33 32.95 50.23 74.12 101.31	$\begin{array}{c} HF_2 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.02 \\ -0.02 \\ -0.01 \\ 0.02 \end{array}$	(1 276.15 283.15 293.15 298.15 308.15 316.93	 16) CH₂F0 17.91 25.17 39.58 49.02 73.30 101.325 	CF ₂ OCH 17.89 25.18 39.63 49.02 73.17 101.42	$\begin{array}{r}3\\0.02\\-0.01\\-0.05\\0.00\\0.13\\-0.09\end{array}$	(24 283.15 298.15 308.15 323.15 336.91	 CF₃CH 9.77 20.80 32.81 60.94 101.325 	2OCH2C 9.77 20.82 32.81 60.89 101.37	$\begin{array}{c} F_3 \\ 0.00 \\ -0.02 \\ 0.00 \\ 0.05 \\ -0.05 \end{array}$	(32) 288.15 298.15 303.15 313.15 319.21	CHF ₂ CF 28.41 44.28 54.61 80.98 101.325	22CH2OC 28.41 44.30 54.59 80.96 101.34	F_3 -0.02 0.02 0.02 -0.02

Т	P_{expt}	$P_{\rm ca/c}$	δP^a	Т	P_{expt}	P_{calc}	δP^a	Т	Pexpt	$P_{\rm ca/c}$	δP^a	Т	P_{expt}	P_{calc}	δP^a
К	kPa	kPa	kPa	K	kPa	kPa	kPa	K	kPa	kPa	kPa	K	kPa	kPa	kPa
(33	3) (CF ₃) ₂ (CHOCH	2F	(38)	CF ₃ CF ₂ C	F ₂ OCH ₂	CF ₃	(43) CI	F ₃ CF ₂ CF	2OCH2C	F ₂ CF ₃	(47) (CF ₃ CHFC	F ₂ CH ₂ C	CH ₃
288.15	15.89	15.89	0.00	288.15	22.53	22.54	-0.01	288.15	9.96	9.96	0.00	293.15	6.28	6.27	0.01
298.15	25.77	25.78	-0.01	293.15	28.41	28.39	0.02	293.15	12.84	12.84	0.00	298.15	8.13	8.14	-0.01
308.15	40.28	40.27	0.01	298.15	35.37	35.38	-0.01	298.15	16.37	16.36	0.01	303.15	10.43	10.44	-0.01
323.13	101 325	101 3/	-0.02	303.15	43.09 93 34	43.09	-0.00	303.15	20.04	20.05	-0.01	313.13	38 52	38 49	0.00
551.75	101.020	101.54	0.02	325.47	101.325	101.25	0.08	323.15	47.93	47.92	0.01	353.15	79.25	79.24	0.01
				020.11	101.020	101.20	0.00	333.15	69.70	69.68	0.02	360.65	101.325	101.35	-0.02
								343.95	101.325	101.34	-0.02				
(34)	CF ₃ CF ₂	OCH ₂ CH	${}^{1}F_{2}$	(39) CF	3CF2CF2	OCH ₂ CF	2CHF2	(4	4) CHF ₂	CH ₂ OCH	[₃	(43	8) CHF ₂ C	F ₂ OCH ₂	F
288.15	28.89	28.89	0.00	288.15	5.48	5.47	0.01	288.15	25.49	25.48	0.01	288.15	19.63	19.62	0.01
298.15	45.20	45.21	-0.01	293.15	7.17	7.17	0.00	293.15	32.08	32.10	-0.02	298.15	31.54	31.55	-0.01
303.15	55.80	55.79	0.01	298.15	9.28	9.30	-0.02	298.15	40.08	40.06	0.02	303.15	39.45	39.45	0.00
313.13	82.91 101 225	02.91 101 22	0.00	303.13	10.00	11.92	-0.01	303.13	49.54	49.54	0.00	313.13	00.10 99.77	00.09	0.01
516.55	101.323	101.55	0.00	323 15	29.32	29 28	0.02	313 15	73 89	73.89	0.00	326 74	101 325	101.36	-0.04
				333.15	43.72	43.66	0.06	318.15	89.21	89.20	0.00	020.71	101.020	101.00	0.00
				343.15	63.29	63.28	0.01	321.65	101.325	101.34	-0.02				
				353.15	89.37	89.39	-0.02								
				356.97	101.325	101.37	-0.05								
(35)	$(CF_3)_2C_2$	HCF ₂ OC	CH_3	(40)	CF ₃ CF ₂ C	H ₂ OCF ₂	CF_3	(45)	CHF ₂ CF	F2CH2OC	CH ₃	(49)) CF ₃ CF ₂	CF ₂ OCH	I_2F
288.15	10.47	10.46	0.01	288.15	27.77	27.77	0.00	293.15	10.95	10.95	0.00	283.15	25.37	25.37	0.00
298.15	17.05	17.08	-0.03	293.15	34.84	34.83	0.01	298.15	14.03	14.01	0.02	288.15	32.04	32.04	0.00
313.13	33.18	33.17	0.01	298.15	43.29	43.28	0.01	303.15	17.73	17.75	0.00	293.15	40.00	40.07	-0.01
333.15	101 325	101 36	-0.03	303.15	55.20 65.09	65.08	-0.02	313.15	27.71 41 84	41.83	0.00	296.15	49.05	49.05	0.00
010.07	101.020	101.00	0.00	313.15	78.87	78.86	0.01	333.15	61.29	61.30	-0.01	308.15	74.33	74.32	0.01
				318.15	94.85	94.84	0.01	343.15	87.49	87.47	0.02	313.15	89.86	89.86	0.00
				319.99	101.325	101.33	0.00	347.50	101.325	101.33	0.00	316.42	101.325	101.34	-0.02
(36) (CF ₃ CHFC	CF ₂ CH ₂ C	OCF_3	(41) (CHF ₂ CF ₂	CH ₂ OCF	$_2CF_3$	(46) (CF ₃ CF ₂ C	F ₂ CH ₂ O	CH_3	(50) Cl	F ₃ CF ₂ CF ₂	CF ₂ OCI	H ₂ CH ₃
288.15	13.03	13.02	0.01	288.15	13.69	13.69	0.00	293.15	12.69	12.68	0.01	293.15	10.69	10.69	0.00
298.15	21.09	21.11	-0.02	293.15	17.52	17.53	-0.01	298.15	16.16	16.18	-0.02	298.15	13.58	13.58	0.00
313.15	40.58	40.58	0.00	298.15	22.21	22.21	0.00	303.15	20.43	20.43	0.00	303.15	17.09	17.10	-0.01
323.15	60.24 96.95	60.21 96.91	0.03	303.15	21.81	21.81	0.00	313.15	31.68	31.68	0.00	313.15	26.36	26.37	-0.01
333.13	101 325	101 37	-0.04	323 15	42.73	42.72	0.01	323.15	47.J2 69.22	47.J2 69.18	0.00	323.15	57 19	57 18	0.02
007.02	101.020	101.57	0.00	333 15	91.30	91.31	-0.01	344 13	101 325	101.36	-0.03	343 15	80.88	80.89	-0.01
				336.14	101.325	101.32	0.01	011110	1011020	101100	0100	350.04	101.325	101.34	-0.02
(37)	CF ₃ CF ₂ C	F ₂ OCH ₂	CH₃	(42) (CF ₃ CF ₂ CF	F»OCH»C	CHF ₂								
288.15	22.84	22.84	0.00	288.15	11.28	11.28	0.00								
293.15	28.60	28.58	0.02	293.15	14.53	14.52	0.01								
298.15	35.42	35.44	-0.02	298.15	18.48	18.50	-0.02								
303.15	43.57	43.58	-0.01	303.15	23.33	23.34	-0.01								
313.15 392.1#	64.37 02.22	64.34 02.22	0.03	313.15 392.1#	36.14 54 19	36.13	0.01								
323.13	96.00	32.32	0.01	333 15	78 67	78 6/	0.02								
				340.38	101.325	101.37	-0.05								
				5100			2.00								

 $^{a} \delta P = P_{\text{expt}} - P_{\text{calc}}.$

Table 4.	Antoine	Constants and AAI) between	Calculated	and Ex	xperimental	Pressures
----------	---------	-------------------	-----------	------------	--------	-------------	-----------

			Antoine const.		
no.	compd	A	В	С	AAD (%)
1	CF ₃ CF ₂ CF ₂ CF ₂ OCH ₂ CH ₂ CH ₃	6.017 08	1219.964	-65.16	0.085
2	CF ₃ CF ₂ CF ₂ CF ₂ CF ₂ OCH ₃	6.085 51	1207.929	-62.00	0.035
3	CF ₃ CF ₂ CF ₂ CF ₂ CF ₂ OCH ₂ CH ₃	6.048 56	1237.128	-66.99	0.096
4	CF ₃ CF(OCF ₃)CH ₂ CH ₃	6.039 71	1075.895	-52.38	0.011
5	(CF ₃) ₃ COCH ₃	5.991 31	1072.474	-57.70	0.015
6	(CF ₃) ₂ CFCF ₂ CF ₂ OH ₃	6.078 56	1216.898	-59.12	0.023
7	(CF ₃) ₂ CFCF ₂ CF ₂ OCH ₂ CH ₃	6.068 21	1265.873	-61.88	0.087
8	$CF_3CF(OCF_3)CH_2CHF_2$	6.101 88	1102.070	-62.73	0.024
9	(CF ₃) ₃ COCH ₂ CH ₃	5.994 40	1120.491	-59.35	0.031
10	CF ₃ CF(OCF ₃)CH ₂ CF ₃	6.111 62	1095.140	-56.92	0.047
11	CF ₃ CHFCF ₂ OCH ₂ CF ₃	6.087 27	1126.735	-69.82	0.014
12	CF ₃ CHFCF ₂ OCH ₂ CF ₂ CHF ₂	6.180 21	1272.909	-74.15	0.088
13	CF ₃ CHFCF ₂ OCH ₂ CF ₂ CF ₃	6.159 83	1212.610	-68.73	0.046
14	CHF ₂ CF ₂ CH ₂ OCF ₂ CHF ₂	6.225 87	1247.989	-70.59	0.070
15	CHF ₂ CF ₂ CF ₂ CF ₂ CH ₂ OCH ₃	6.269 41	1384.446	-71.09	0.253
16	CH ₂ FCF ₂ OCH ₃	6.113 16	1080.517	-53.84	0.088
17	CF ₃ CF ₂ CH ₂ OCH ₃	6.157 20	1113.777	-53.27	0.017
18	CHF ₂ CF ₂ CH ₂ OCHF ₂	6.287 18	1264.351	-53.28	0.064

Table 4 (Continued)

			Antoine const.					
no.	compd	A	В	С	AAD (%)			
19	CF ₃ CF ₂ CH ₂ OCHF ₂	6.091 68	1074.018	-56.23	0.016			
20	$(CF_3)_2 CHOCH_3$	6.171 38	1111.854	-57.19	0.027			
21	CHF ₂ CF ₂ OCH ₂ CH ₃	6.147 22	1131.658	-56.55	0.007			
22	CF ₃ CH ₂ OCF ₂ CH ₂ F	6.260 36	1186.247	-59.36	0.063			
23	CHF ₂ CF ₂ OCH ₂ CF ₃	6.301 52	1176.625	-55.46	0.029			
24	CF ₃ CH ₂ OCH ₂ CF ₃	6.324 09	1218.754	-54.67	0.047			
25	CHF ₂ CF ₂ OCH ₂ CHF ₂	6.379 56	1276.387	-60.29	0.123			
26	CH ₂ FCF ₂ OCHF ₂	6.167 41	1075.139	-57.84	0.061			
27	CF ₃ CHFCF ₂ OCH ₃	6.195 29	1147.412	-53.59	0.027			
28	CHF ₂ CH ₂ OCHF ₂	6.152 27	1119.817	-58.42	0.025			
29	CHF ₂ CF ₂ CF ₂ OCH ₃	6.221 92	1205.827	-55.01	0.050			
30	(CF ₃) ₂ CHOCHF ₂	6.212 43	1105.488	-52.48	0.020			
31	CF ₃ CF ₂ CH ₂ OCF ₂ CHF ₂	6.193 73	1173.291	-63.24	0.056			
32	CHF ₂ CF ₂ CH ₂ OCF ₃	6.230 55	1134.867	-50.59	0.024			
33	$(CF_3)_2CHOCH_2F$	6.286 49	1178.914	-56.33	0.028			
34	CF ₃ CF ₂ OCH ₂ CHF ₂	6.181 17	1098.671	-55.40	0.010			
35	$(CF_3)_2 CHCF_2 OCH_3$	6.177 43	1197.966	-55.90	0.075			
36	CF ₃ CHFCF ₂ CH ₂ OCF ₃	6.143 83	1155.013	-58.49	0.050			
37	CF ₃ CF ₂ CF ₂ OCH ₂ CH ₃	6.074 46	1118.112	-51.05	0.033			
38	$CF_3CF_2CF_2OCH_2CF_3$	5.808 63	969.407	-70.58	0.057			
39	$CF_3CF_2CF_2OCH_2CF_2CHF_2$	6.158 85	1221.906	-62.74	0.090			
40	CF ₃ CF ₂ CH ₂ OCF ₂ CF ₃	6.052 23	1056.314	-58.95	0.014			
41	$CHF_2CF_2CH_2OCF_2CF_3$	6.112 27	1127.942	-61.47	0.015			
42	CF ₃ CF ₂ CF ₂ OCH ₂ CHF ₂	6.162 39	1163.214	-60.53	0.049			
43	$CF_3CF_2CF_2OCH_2CF_2CF_3$	6.090 73	1152.169	-61.90	0.028			
44	CHF ₂ CH ₂ OCH ₃	6.118 20	1082.746	-58.36	0.024			
45	CHF ₂ CF ₂ CH ₂ OCH ₃	6.215 07	1225.419	-56.38	0.026			
46	CF ₃ CF ₂ CF ₂ CH ₂ OCH ₃	6.121 81	1166.591	-60.70	0.040			
47	CF ₃ CHFCF ₂ CH ₂ OCH ₃	6.195 13	1263.163	-59.13	0.053			
48	$CHF_2CF_2OCH_2F$	6.356 11	1191.990	-52.74	0.029			
49	$CF_3CF_2CF_2OCH_2F$	6.113 98	1070.233	-55.91	0.009			
50	$CF_3CF_2CF_2CF_2OCH_2CH_3$	6.122 41	1221.188	-53.39	0.026			

mental values are shown in Table 4. The uncertainties of the calculated values of the 48 hydrofluoroethers were less than 0.1% except for those of CHF₂CF₂CF₂CF₂CH₂OCH₃ and CHF₂CF₂OCH₂CHF₂, where the AAD was 0.253% and 0.123%, respectively.

Literature Cited

- (1) Sekiya, A.; Misaki, S. The potential of hydrofluoroethers to replace CFCs, HCFCs and PFCs. J. Fluorine Chem. 2000, 101, 215-221.
- Ravishankara, A. R.; Turnipseed, A. A.; Jensen, N. R.; Barone, S.; Mills, M.; Howard, C. J.; Solomon, S. Do Hydrofluorocarbons (2)Destroy Stratospheric Ozone? *Science* **1994**, *263*, 71–75. Goodwin, A. R. H.; Defibaugh, D. R.; Weber, L. A. Vapor Pressure
- (3)of 2-(Difluoromethyl)-1,1,1-trifluoroethane CHF2OCH2CF3 (HFE-
- 245). J. Chem. Eng. Data 1998, 43, 846–848.
 Weber, L. A.; Defibaugh, D. R. Vapor Pressur of Pentafluorodimethyl Ether. J. Chem. Eng. Data 1996, 41, 382–385.
 Narkhede, M. S.; Wang, B. H.; Adcock, J. L.; Hook, W. A. V. Vapor (4)
- (5)Pressures, Liquid Molar Volumes, vapor non-Ideality, and Critical Properties of some Partially Fluorinated Ethers (CF₃OCF₂CF₂H, CF₃OCF₂H, and CF₃OCH₃), some Perfluoroethers (CF₃OCF₂OCF₃, c-CF2OCF2OCF2, and c-CF2CF2CF2O), and of CHF2Br and CF3-CFHCF₃. J. Chem. Thermodyn. 1992, 24, 1065-1075.
- Wang, B. H.; Adcock, J. L.; Mathur, S. B.; Hook, W. A. V. Vapor Pressures, Liquid Molar Volumes, Vapor non-Idealities, and (6) Critical Properties of some Fluorinated Ethers: CF3OCF2OCF3, CF₃OCF₂CF₂H, c-CF₂CF₂CF₂O, CF₃OCF₂H, and CF₃OCH₃; and of CCl₃F and CF₂ClH. *J. Chem. Thermodyn.* **1991**, *23*, 699–710.
- (7) Ohta, H.; Morimoto, Y.; Widiatmo, J. V.; Watanabe, K. Liquid-Phase Thermodynamic Properties of New Refrigerants: Penta-

fluoroethyl Methyl Ether and Heptafluoropropyl Ether. J. Chem. Eng. Data 2001, 46, 1020-1024.

- (8) Knunyants, I. L.; Shchekotikhin, A. I.; Fokin, A. V. Addition reactions of perfluoroolefins. II. Addition of alcohols and thiols to perfluoropropylene. Izv. Akad. Nauk. SSSR, Ser. Khim. 1953, 282-289.
- (9) Murata, J.; Tamura, M.; Sekiya, A. Selective synthesis of fluorinated ethers by addition reaction of alcohols to fluorinated olefins in water. Green Chem. 2002, 4, 60-63.
- (10) Terrell, R. C.; Szur, A. J. Etherification process. U.S. Patent 3761524, 1973.
- (11) Croix, L. S. Fluorinated isopropyl derivatives as inhalation anesthesias. U.S. Patent 3883665, 1975.
- Sekiya, A.; Iwasaki, T.; Takada, N.; Fujimoto, E. JP2657792, 1997. (12)
- (12) Seriya, A., Iwasaki, I., Takada, N., Fujihoto, E. Sr 20172, 1927.
 (13) Terrell, R. C.; Speers, L.; Szur, A. J.; Ucciardi, T.; Vitcha, J. F. General Anesthetics. 3. Fluorinated Methyl Ethyl Ethyl Ethers as Anesthetic Agents. J. Med. Chem. 1972, 15, 604–606.
 (14) Mochizuki, Y.; Takada, N.; Fujimoto, E.; Sekiya, A. JP2887310, Accient A
- 1999.
- Thomson, G. W. *Technique of Organic Chemistry*; Weissburger, A., Ed.; Interscience: New York, 1965; Vol. I, Part 1. (15)
- ASTM D 2879-75, Standard Test Method for Vapor Pressure-Temperature Relationship and Initial Decomposition Tempera-
- ture Liquids by Isoteniscope.
 (17) Haar, L.; Gallaher, J. S.; Kell, G. S. NBS/NRC Steam Tables, Hemisphere Publishing Corp.: New York, 1984.

Received for review December 7, 2001. Accepted March 14, 2002. The authors acknowledge the financial support of the New Energy and Industrial Technology Development Organization (NEDO).

JE010322Y