Liquid-Liquid Equilibria for Binary Systems Containing *N*-Formylmorpholine

MinSu Ko,[†] Sungjin Lee,[‡] Jungho Cho,[§] and Hwayong Kim^{*,†}

School of Chemical Engineering & Institute of Chemical Processes, Seoul National University, Shinlim-dong, Kwanak-gu, Seoul 151-744, Korea, Department of Liberal Arts and Science, Semyung University, Sinwol-dong, Jechon, Chungbuk 390-711, Korea, and Department of Chemical Engineering, Dongyang University, 1 Kyo Chon-dong, Pung-gi up, Young-ju City, Kyoungbuk 750-711, Korea

Liquid-liquid equilibrium (LLE) data were measured for four binary systems containing *N*-formylmorpholine and alkanes (i.e. pentane, hexane, heptane, and octane) over the temperature range 298 K to 413 K using circulation type equipment with an equilibrium view cell. The compositions of both light and heavy phases were analyzed by on-line gas chromatography. The mutual solubility increased as the temperature increased for all these systems. The binary liquid-liquid equilibrium data were correlated with the NRTL and UNIQUAC equations using temperature-dependent parameters. Both models correlate the experimental data well. The solubility in *N*-formylmorpholine increased in the following order at the same temperature: pentane, hexane, heptane, and octane.

Introduction

There have been ever-increasing demands for high-purity aromatic compounds as a feedstock for chemical synthesis. Many solvents such as sulfolane,^{1–5} *N*-methylpyrrolidone,⁶ glycol,^{7,8} and *N*-formylmorpholine^{9–11} are used to extract aromatics such as benzene, toluene, and xylene from hydrocarbon mixtures.

The *N*-formylmorpholine extractive distillation process separates aromatics from the reformates. It minimizes aromatic content in gasoline and refines the extracted aromatics, which are used as raw materials for petrochemical processes. This process can recover most of the benzene. The solvent-to-feed ratio by mass of this process is around 3.5. The operating cost and the initial equipment cost for the overall plant can be reduced by optimization. Commercial process simulators such as PROII(SimSci), HYSYS (Hyprotech), and ASPEN-PLUS (Aspentech)¹² have been used to determine the optimum solvent rate. However, liquid—liquid equilibrium (LLE) data are not available for these mixtures.

In this work, a newly designed circulating apparatus equipped with a equilibrium view cell and connected directly to a gas chromatograph has been constructed to obtain the equilibrium *T*, *x*, *x* data for the *N*-formylmorpholine (NFM) and *n*-alkane (pentane, hexane, heptane, and octane) systems in the operating temperature range of the NFM extractive distillation process. LLE data for the four binary systems were measured in the temperature range from 298 K to 413 K, and these data were compared with the existing data at different temperatures (293 K to 333 K).^{10,11} Experimental data were correlated with the NRTL¹³ and UNIQUAC¹⁴ models with the function of temperature-dependent parameters.

Table 1. Suppliers and Purities of the Used Chemicals

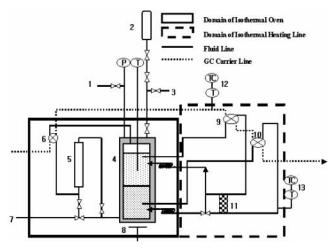
chemical	supplier	spec % ^a	purity ^b /%
NFM	ACROS	99+	99.99+
NFM	Samsung Chemical Co., Ltd.	98 +	99.14 +
pentane	Kanto Chemical Co., Ltd.	99 +	99.99 +
hexane	Junsei Chemical Co., Ltd.	99.5	99.99 +
heptane	Aldrich	99 +	99.93 +
octane	ACROS	99 +	99.94 +

 a The purity reported by the supplier. b The purity determined as an area ratio by gas chromatography with a thermal conductivity detector.

Experimental Section

Chemicals. The suppliers and purities of the chemicals are listed in Table 1 together with the purities determined using a HP 5890 gas chromatograph with a thermal conductivity detector. The *N*-formylmorpholine supplied by Samsung Chemical Co., Ltd., was used after distillation and filtration treatment through the 0.45 μ m membrane. The rest of the chemicals were used without purification.

Experimental Apparatus. The sampling parts of the recirculation type apparatus used in the previous studies were modified and used in this study.^{4,5} A schematic diagram of the apparatus is shown in Figure 1. The system consists of eight major parts: an equilibrium cell, a magnetic pump for circulation, one vapor and two liquid sampling valves, a constant temperature air bath, a magnetic stirrer, a charge-discharge device, temperature and pressure measurement devices, and an analysis system. The volume of the equilibrium cell was 240 cm³. The cell was made of stainless steel (SUS. 316) and placed inside the air bath, controlled by a PID temperature controller to the desired temperature within ± 0.1 K (maximum temperature 573.2 K). The cell and the quartz window were sealed with PTFE (Teflon) gaskets. The mixing was promoted by the magnetic stirrer and magnetic recirculation pumps. The sampling system consists of a sample valve, a sample loop, and a pneumatic actuator. The sample injection valve was a two-position rotary


10.1021/je010328n CCC: \$22.00 © 2002 American Chemical Society Published on Web 05/10/2002

^{*} To whom correspondence should be addressed. Fax: +82-2-888-6695.

E-mail: hwayongk@snu.ac.kr. [†] Seoul National University.

[‡] Semyung University.

[§] Dongyang University.

Figure 1. Flow diagram of the apparatus: 1, vacuum line for the removal of air with a vacuum pump; 2, bottle for charging a reagent; 3, air line (8 kg/cm²) for the leak test; 4, equilibrium cell with the view window (quartz); 5, magnetic pump (chromium plating); 6, six-way valve for vapor; 7, discharge line with vacuum; 8, magnetic stirrer; 9, sampling loop for the light phase; 10, sampling loop for the heavy phase; 11, circulating minipump; 12, temperature controller (domain of preheating carrier line); 13, temperature controller (domain of circulating fluid line).

 Table 2. Experimental and Calculated LLE Data for the

 Pentane (1) + N-Formylmorpholine (2) System

	top phase, <i>x</i> ₁₁			bo	ttom pha	ase, <i>x</i> ₁₂
<i>T</i> /K	exp	NRTL	UNIQUAC	exp	NRTL	UNIQUAC
304.49	0.9944	0.9925	0.9934	0.0397	0.0376	0.0380
308.16	0.9907	0.9917	0.9924	0.0415	0.0399	0.0400
313.07	0.9905	0.9904	0.9908	0.0432	0.0432	0.0430
317.88	0.9901	0.9890	0.9891	0.0455	0.0467	0.0463
322.86	0.9895	0.9874	0.9871	0.0497	0.0506	0.0501
327.57	0.9856	0.9857	0.9850	0.0555	0.0545	0.0539
333.28	0.9813	0.9833	0.9822	0.0573	0.0596	0.0592
338.01	0.9771	0.9810	0.9796	0.0606	0.0643	0.0639
342.83	0.9748	0.9785	0.9767	0.0650	0.0693	0.0692
348.02	0.9711	0.9754	0.9734	0.0717	0.0752	0.0753
352.23	0.9680	0.9726	0.9705	0.0827	0.0803	0.0807
357.79	0.9654	0.9684	0.9665	0.0899	0.0877	0.0883
363.45	0.9643	0.9635	0.9621	0.0952	0.0958	0.0967
368.48	0.9591	0.9586	0.9579	0.1022	0.1038	0.1048
373.60	0.9516	0.9529	0.9535	0.1128	0.1126	0.1136
378.41	0.9496	0.9469	0.9492	0.1262	0.1217	0.1224
383.17	0.9468	0.9401	0.9448	0.1376	0.1315	0.1317
388.10	0.9455	0.9323	0.9401	0.1494	0.1426	0.1419

switching valve with an internal sample loop of 0.5 μ L. This was connected with the pneumatic actuator that actuates positions. The actuator was operated with a solenoid valve. The vacuum pump was used for discharge of the mixture. The temperature was measured using a sheath type 100 Ω -platinum resistance thermometer. Its uncertainty was estimated to be within 0.05 K. The sampling system was connected to a gas chromatograph (Hewlett-Packard 5890 Series Π) which had a thermal conductivity detector (TCD) and a 1.828 8 m \times 0.003 175 m column packed with Chromosorb WHP 100/120 coated with OV-101. The liquid-phase compositions were determined with a maximum relative error of 0.1%.

Experimental Procedure. The mixture was fed into the equilibrium cell that was initially evacuated. The mixture was stirred for at least 1 h with the magnetic stirrer and then left to settle for at least 2 h. The samples were analyzed by gas chromatography. The temperatures of the injector and the detector were maintained at 523.15 K. After 1 min of holding at 353.15 K, the column temperature was raised to the final temperature of 423.15 K at the rate

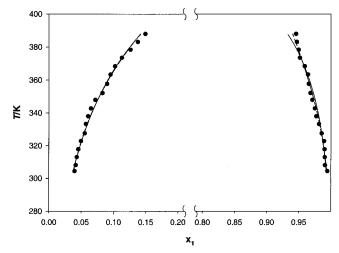
Table 3. Experimental and Calculated LLE Data for theHexane (1) + N-Formylmorpholine (2) System

	top phase, x_{11}			bottom phase, x_{12}		
<i>T</i> /K	exp	NRTL	UNIQUAC	exp	NRTL	UNIQUAC
299.46	0.9865	0.9853	0.9850	0.0311	0.0319	0.0330
306.31	0.9826	0.9833	0.9832	0.0346	0.0337	0.0340
314.24	0.9797	0.9808	0.9809	0.0365	0.0360	0.0355
324.31	0.9756	0.9770	0.9774	0.0408	0.0395	0.0384
333.24	0.9737	0.9733	0.9737	0.0428	0.0430	0.0417
344.01	0.9689	0.9680	0.9684	0.0452	0.0481	0.0469
353.74	0.9641	0.9623	0.9626	0.0523	0.0536	0.0529
363.47	0.9536	0.9557	0.9557	0.0589	0.0603	0.0606
374.03	0.9488	0.9470	0.9464	0.0730	0.0694	0.0711
383.69	0.9363	0.9372	0.9360	0.0848	0.0801	0.0835
394.37	0.9252	0.9232	0.9215	0.0947	0.0963	0.1010
402.95	0.9060	0.9079	0.9067	0.1135	0.1154	0.1192
413.33	0.8785	0.8792	0.8835	0.1597	0.1600	0.1479

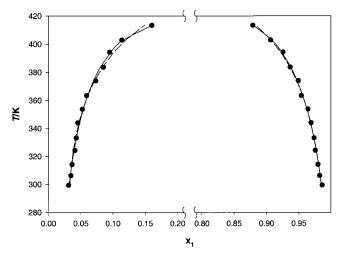
 Table 4. Experimental and Calculated LLE Data for the

 Heptane (1) + N-Formylmorpholine (2) System

	top phase, x_{11}			bo	ttom pha	ase, <i>x</i> ₁₂
<i>T</i> /K	exp	NRTL	UNIQUAC	exp	NRTL	UNIQUAC
301.12	0.9889	0.9903	0.9902	0.0244	0.0249	0.0251
311.31	0.9871	0.9864	0.9864	0.0256	0.0263	0.0262
319.37	0.9847	0.9826	0.9826	0.0288	0.0278	0.0276
329.08	0.9801	0.9769	0.9770	0.0310	0.0301	0.0299
339.00	0.9658	0.9696	0.9698	0.0339	0.0331	0.0330
343.75	0.9637	0.9656	0.9657	0.0350	0.0348	0.0347
358.43	0.9463	0.9504	0.9506	0.0380	0.0412	0.0413
368.50	0.9347	0.9373	0.9374	0.0481	0.0469	0.0472
373.48	0.9320	0.9299	0.9300	0.0512	0.0502	0.0505
378.02	0.9213	0.9226	0.9226	0.0545	0.0535	0.0539
387.64	0.9121	0.9051	0.9050	0.0605	0.0617	0.0620
398.85	0.8774	0.8809	0.8806	0.0701	0.0736	0.0736
403.46	0.8753	0.8696	0.8691	0.0786	0.0795	0.0792
412.16	0.8422	0.8456	0.8451	0.0969	0.0924	0.0913


Table 5. Experimental and Calculated LLE Data for the Octane (1) + *N*-Formylmorpholine (2) System

		•	· •		,	
	top phase, x_{11}			bo	ttom ph	ase, <i>x</i> ₁₂
<i>T</i> /K	exp	NRTL	UNIQUAC	exp	NRTL	UNIQUAC
297.00		0.9850	0.9842	0.0120	0.0143	0.0148
305.67		0.9811	0.9808	0.0171	0.0165	0.0166
308.20	0.9730	0.9798	0.9797	0.0214	0.0172	0.0172
313.10	0.9729	0.9772	0.9775	0.0197	0.0187	0.0184
322.80	0.9712	0.9716	0.9724	0.0205	0.0218	0.0213
332.68	0.9634	0.9651	0.9664	0.0233	0.0255	0.0248
342.48	0.9615	0.9580	0.9595	0.0326	0.0297	0.0290
353.22	0.9530	0.9492	0.9505	0.0342	0.0351	0.0348
362.83	0.9463	0.9406	0.9411	0.0403	0.0408	0.0411
372.50	0.9351	0.9309	0.9301	0.0457	0.0477	0.0487
384.17	0.9161	0.9175	0.9143	0.0573	0.0579	0.0603
392.83	0.8990	0.9058	0.9003	0.0683	0.0678	0.0710
402.27	0.8806	0.8893	0.8824	0.0800	0.0820	0.0852
413.66	0.8523	0.8553	0.8560	0.1127	0.1102	0.1072
416.18	0.8452	0.8389	0.8493	0.1211	0.1203	0.1129


of 25 K·min⁻¹. Helium was used as the carrier gas at the rate of 23 cm³·min⁻¹. Single-phase samples of known composition were used to calibrate the gas chromatograph in the composition range of interest. The analysis for the calibration indicated that a precision of $\pm 3 \times 10^{-5}$ area ratio was obtained for each composition. The samples of each phase at the same temperature were analyzed three times at least, and the average values were used. The average deviation of the area ratio is $\pm 3 \times 10^{-5}$.

Results and Discussion

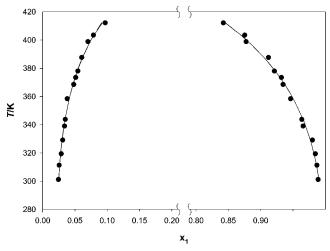

The experimental liquid—liquid equilibrium data for the systems pentane (1) + *N*-formylmorpholine (2), hexane (1) + *N*-formylmorpholine (2), heptane (1) + *N*-formylmorpholine (2), and octane (1) + *N*-formylmorpholine (2) are given in Tables 2-5 and Figures 2-5. Concentrations of compo-

Figure 2. Experimental and calculated liquid–liquid equilibrium data for the pentane (1) + *N*-formylmorpholine (2) mixture: points, experimental results; solid line, NRTL with $\alpha = 0.3$; dashed line, UNIQUAC.

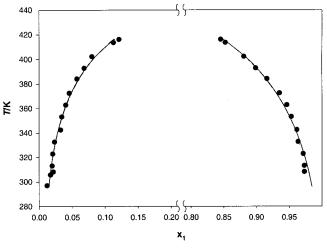


Figure 3. Experimental and calculated liquid–liquid equilibrium data for the hexane (1) + *N*-formylmorpholine (2) mixture: points, experimental results; solid line, NRTL with $\alpha = 0.3$; dashed line, UNIQUAC.

Figure 4. Experimental and calculated liquid–liquid equilibrium data for the heptane (1) + *N*-formylmorpholine (2) mixture: points, experimental results; solid line, NRTL with $\alpha = 0.3$; dashed line, UNIQUAC.

nents *i* in phase j (j = 1, top phase; j = 2, bottom phase) are given in the mole fraction x_{ij} . The binary liquid–liquid

Figure 5. Experimental and calculated liquid–liquid equilibrium data for the octane (1) + *N*-formylmorpholine (2) mixture: points, experimental results; solid line, NRTL with $\alpha = 0.3$; dashed line, UNIQUAC.

Table 6. Temperature Dependence of the Parameters of the NRTL Equation for the *n*-Alkane (1) + *N*-Formylmorpholine (2) Binary Systems^a

tane hexan	e heptane	octane
462 66 -10.69	5 26 -62.593	35 -27.818 91
561 02 37.69	0 74 71.964	65 40.841 01
924 69 1555.79	0 02 5137.815	99 3089.473 48
168 79 -1440.30	3 61 -2902.831	30 -719.764 15
000 34 0.00	0.000 0.000	50 -0.000 42
002 79 1.55	3 54 8.621	37 3.607 94
000 55 -5.29	2 13 -10.415	88 -6.189 97
	561 02 37.69 924 69 1555.79 168 79 -1440.30 000 34 0.00 002 79 1.55	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

^{*a*} $c_{12} = c_{21} = 0.3; d_{12}/K^{-1} = 0.$

equilibrium data were correlated with the NRTL and UNIQUAC equations.

The binary parameters have the temperature dependence function

for the NRTL model:

$$\tau_{ii} = a_{ii} + b_{ii}/T + e_{ii} \ln T$$
 (1)

$$\alpha_{ij} = c_{ij} + d_{ij}(T - 273.15 \text{ K})$$
(2)

where τ_{ij} is dimensionless and *T* is in kelvin.

for the UNIQUAC model:

$$\tau_{ii} = \exp(a_{ii} + b_{i}/T + c_{ii} \ln T)$$
(3)

The binary parameters for the models were evaluated by a nonlinear regression method based on the maximumlikelihood principle. The objective function was minimized during optimization of the parameters in each of the equations:

$$OF = \sum_{k=1}^{N} \left\{ \left(\frac{T_k^{cal} - T_k^{exp}}{\sigma_{T_k}} \right)^2 + \sum_{i=1}^{2} \sum_{j=1}^{2} \left(\frac{x_{ij}^{cal} - x_{ij}^{exp}}{\sigma_{x_{ijk}}} \right)^2 \right\}$$
(4)

where *N* is the number of experimental data points in each group *k*.


The four resulting NRTL and UNIQUAC parameters optimized for the liquid—liquid equilibrium data are listed in Tables 6 and 7. The absolute average deviations of the NRTL and UNIQUAC equations are listed in Table 8. The NRTL model showed slightly smaller deviations in the

Table 7. Temperature Dependence of the Parameters ofthe UNIQUAC Equation for the *n*-Alkane (1) +*N*-Formylmorpholine (2) Binary Systems

•	-	•	•	
parameter	pentane	hexane	heptane	octane
a ₁₂	59.653 86	8.355 16	23.909 00	14.715 76
a_{21}	-33.99493	-34.69192	-18.80355	$-20.092\ 80$
b_{12}/K	-3501.07652	-768.56826	-1910.53676	$-1084.385\ 20$
b_{21}/K	1549.879 87	1657.696 94	1105.737 43	885.630 03
$c_{12}/(\ln K)^{-1}$	-8.57748	-1.14297	-3.24034	-2.07796
$c_{21}/(\ln K)^{-1}$	4.974 10	5.039 81	2.603 71	2.944 10

Table 8. Absolute Average Deviations $(AAD\%)^a$ of the NRTL and UNIQUAC Equations for the *n*-Alkane (1) + *N*-Formylmorpholine (2) Binary Systems

		<i>X</i> ₁₁	X12		
system	NRTL	UNIQUAC	NRTL	UNIQUAC	
pentane + NFM hexane + NFM heptane + NFM octane + NFM	0.30 0.14 0.33 0.47	0.19 0.17 0.33 0.36	3.19 2.72 2.90 5.78	3.06 3.85 3.08 7.36	

Figure 6. Mutual solubility for the *N*-formylmorpholine and nonaromatic mixtures.

bottom phase. However, in the top phase, the UNIQUAC model has smaller deviations. The mutual solubility increased as the temperature increased in all these systems. The solubility of *n*-paraffin in *N*-formylmorpholine, that is, the bottom phase, increased in the following order at the same temperature: pentane, hexane, heptane, and octane. The results are displayed in Figure 6.

Conclusions

In this work, we have determined the interaction parameters of the NRTL and UNIQUAC equations for the *N*-formylmorpholine + *n*-alkane systems (i.e. pentane, hexane, heptane, and octane) from experimental binary liquid–liquid equilibrium data at 331.15 K up to 413.15 K. The temperature dependency of the parameters of NRTL and UNIQUAC models can be expressed by eqs 1 and 3, respectively. Thus, a quantitative description of liquid–liquid equilibria of industrial interest containing *N*-formylmorpholine and *n*-alkanes is available to accurately simulate and optimize the extractive distillation units where these systems are involved.

Literature Cited

- Deal, C. H.; Evans, H. D.; Oliver, E. D.; Papadopoulus, M. N. Extraction of Aromatics with Sulfolane. *Fifth World Pet. Congr. Proc.* 1959, *3*, 283–297.
- (2) Voetter, H.; Kosters, W. C. G. The Sulfolane Extraction Process. Sixth World Pet. Congr. Proc. 1963, 3, 131–145.
- (3) Broughton, D. B.; Asselin, G. F. Production of High Purity Aromatics by the Sulfolane Process. *Seventh World Pet. Congr. Proc.* **1967**, *4*, 65–73.
- (4) Sungjin, L.; Hwayong, K. Liquid-liquid Equiliubria for the Ternary Systems Sulfolane + Octane + Benzene, Sulfolane + Octane + Toluene, and Sulfolane + Octane + *p*-Xylene. *J. Chem. Eng. Data.* **1995**, *40*, 499–502.
- 5) Sungjin, L.; Hwayong, K. Liquid-liquid Equiliubria for the Ternary Systems Sulfolane + Octane + Benzene, Sulfolane + Octane + Toluene, and Sulfolane + Octane + p-Xylene at Elevated Temperatures. J. Chem. Eng. Data 1998, 43, 358-361.
- (6) Muller, E. Use of *N*-Methylpyrrolidone for Aromatics Extraction. *Chem. Ind.* **1973**, 518–522.
- (7) Symoniak, M. F.; Ganju, Y. N.; Vidueira, J. A. Plant Data for Tetra Process. *Hydrocarbon Process.* **1981**, *60*, 139–142.
- (8) Taher, A. A. S.; Emina, K. Measurement and Prediction of Phase Equilibria in the Extraction of Aromatics from Naphtha Reformate by Tetraethyleneglycol. *Fluid Phase Equilib.* 1996, *118*, 271–285.
- (9) Cinelli, E.; Noe, S.; Paret, G. Extract Aromatics with FM. *Hydrocarbon Process.* **1972**, *51*, 141–144.
- (10) Mohamed, A. Q.; Taher, A. A.; Mohamed, A. F. Liquid-Liquid Equilibria in Some Binary and Ternary Mixtures with N-Formylmorpholine. *J. Chem. Eng. Data* **1995**, *40*, 88–90.
- (11) Cincotti, A.; Murru, M.; Cao, G.; Marongiu, B.; Masia, F.; Sannia, M. Liquid–Liquid Equilibria of Hydrocarbons with N-Formylmorpholine. J. Chem. Eng. Data 1999, 44, 480–483.
- (12) Oonk, H. A. J. Phase Theory, The thermodynamics of Heterogeneous Equilibria; Elsevier Scientific Publishing Company: Amsterdam, 1981.
- (13) Renon, H.; Prausnitz, J. M. Local Compositions in Thermodynamic Excess Functions for Liquid Mixtures. *AIChE J.* 1968, 14, 135–144.
- (14) Abrams, D. S.; Prausnitz, J. M. Statistical Thermodynamics of Liquid Mixtures; A New Expression for the Excess Gibbs Energy of Partly or Completely Miscible Systems. *AIChE J.* **1975**, *21*, 116–128.

Received for review December 17, 2001. Accepted February 28, 2002. This work was supported by the Brain Korea 21 Program supported by the Ministry of Education and LG-Caltex Research and by the National Research Laboratory (NRL) Program supported by the Korea Institute of S&T Evaluation and Planning.

JE010328N