Liquid-Liquid Equilibria for Acetic Anhydride + Selected Alkanes

María Aboy, Susana Villa, Nicolás Riesco, Juan Antonio González,* Isaías García de la Fuente, and Jose Carlos Cobos

G.E.T.E.F., Grupo Especializado en Termodinámica de Equilibrio entre Fases, Departamento de Termodinámica y Física Aplicada, Facultad de Ciencias, Universidad de Valladolid, E-47071, Valladolid, Spain

Liquid–liquid equilibria (LLE) temperatures for systems of acetic anhydride with hexane, heptane, octane, decane, cyclohexane, and methylcyclohexane have been measured between 314 K and the upper critical solution temperature (UCST). The coexistence curves were determined visually. They have a rather horizontal top, and their symmetry depends on the size of the alkane. Interaction parameters in the framework of the DISQUAC model for anhydride (CO–O–CO)/cyclohexane contacts are reported. The same set of interaction parameters can be used to represent, LLE, vapor–liquid equilibria, and molar excess enthalpies.

1. Introduction

We are engaged in a systematic study of mixtures containing the carbonyl (CO) and/or the oxygen (O) groups. Our final purpose is to characterize, experimentally and theoretically, intra- and intermolecular effects related to the presence of the CO and O groups in the same or in different molecules. So, we have reported data on molar excess enthalpies, $H_{\rm m}^{\rm E}$ ^{1,2} molar excess volumes, $V_{\rm m}^{\rm E}$,³ vapor–liquid equilibria, VLE,⁴ or liquid–liquid equilibria, LLE,⁵ of linear organic carbonate (OCOO group) + organic solvent mixtures. Similarly, we have provided $H_{\rm m}^{\rm E}$ and $V_{\rm m}^{\rm E}$ measurements for systems formed by organic anhydrides (CO–O–CO group) and alkanes,^{6–8} or for *n*-alkanone + oxaalkane mixtures.^{9,10} On the other hand, the interactions present in the mentioned solutions have been characterized in terms of DISQUAC,^{11–13} an extended group contribution model.¹⁴

As a continuation of this work, we report here LLE for mixtures containing acetic anhydride and hexane, heptane, octane, decane, methylcyclohexane, or cyclohexane. LLE data for the systems with heptane or cyclohexane are available in the literature.^{15,16} We derive DISQUAC interaction parameters for organic anhydride + cyclohexane mixtures.

2. Experimental Section

2.1. *Materials.* Acetic anhydride, hexane, heptane (puriss p.a. \geq 99.5 mol %), octane (purum \geq 99 mol %), decane (purum \geq 98 mol %), cyclohexane (puriss p.a. \geq 99.5 mol %), and methylcyclohexane (purum \geq 98 mol %) were from Fluka. Prior to the measurements, the chemicals were stored over molecular sieves (Union Carbide Type 4D from Fluka). All these chemicals were used without other further treatment. The densities, ρ , and the refractive indexes, n_D , at 298.15 K and atmospheric pressure were in good agreement with literature values (Table 1). The water contents, determined by the Karl Fischer method, were as follows (in mole %): 0.014, 0.018, 0.026, 0.013, 0.061, 0.049, and 0.013 for acetic anhydride, hexane, heptane, octane, decane, cyclohexane, and methylcyclohexane, respectively.

Table 1.	Refractive	Index,	n _D , and	Density,	ρ, of Pure
Compou	nds at 298.1	5 K			

	nı)	$ ho/{ m kg}{ m \cdot}{ m m}^{-3}$		
compound	this work	lit.	this work	lit.	
acetic anhydride	1.3875	1.387939	1075.02	1074.7439	
hexane	1.3729	1.3723^{40}	654.94	654.84^{40}	
heptane	1.3846	1.3851^{40}	679.52	679.46^{40}	
octane	1.3954	1.3951^{40}	698.56	698.62^{40}	
decane	1.4097	1.4097^{40}	726.43	726.35^{40}	
cyclohexane	1.4240	1.4235^{40}	773.83	773.89^{40}	
methylcyclohexane	1.4203	1.4206^{40}	765.01	765.06^{40}	

2.2. Apparatus and Procedure. Mixtures were prepared by mass, with weighing accurate to ± 0.0001 g, in Pyrex tubes of 0.9 cm i.d. and about 4 cm length, which then were immediately sealed by capping at atmospheric pressure and room temperature. Conversion to molar quantities was based on the relative atomic mass table of 1985 issued by IUPAC in 1986.¹⁷

The coexistence curves of the binary mixtures were determined visually.^{18–20} The samples in the sealed Pyrex tubes were placed in a thermostat bath a few hundredths of degree above the expected temperature, and the appearance of a second phase upon slow cooling (4 K h⁻¹) was noted. The separation temperatures were reproducible to ± 0.02 K for temperatures near the upper critical solution temperature. The precision of the equilibrium composition is expected to be better than 0.0005 in mole fraction. The weighing technique gives a precision better than 0.0001 in mole fraction, but this is reduced slightly because of partial evaporation of the more volatile component to the free volume of the ampule (~1.17 cm³).

The temperature was measured with a precision of ± 0.01 K and an estimated uncertainty of ± 0.1 K with a Hewlett-Packard model 2804A quartz thermometer calibrated on the basis of the ITS-90 scale of temperature using the triple point of water.

2.3. Results. Table 2 lists the direct experimental results of the liquid–liquid equilibrium temperatures, *T*, versus the mole fraction of acetic anhydride, x_1 , for the investigated mixtures (see also Figure 1).

* Corresponding author. E-mail: jagl@termo.uva.es.

All the systems show an upper critical solution temperature (UCST). LLE coexistence curves have a rather

 Table 2. Experimental Liquid-Liquid Equilibrium

 Temperatures for Acetic Anhydride (1) + Alkane (2)

 Mixtures

X_1	<i>T</i> /K	<i>X</i> ₁	T/K	X_1	T/\mathbf{K}	X_1	T/\mathbf{K}
			He	xane			
0.1945	325.30	0.3571	334.21	0.4832	335.05	0.5666	334.64
0.2373	329.19	0.3652	334.32	0.4878	335.00	0.5963	334.40
0.2438	329.61	0.3829	334.57	0.5022	334.93	0.6498	332.49
0.2548	330.41	0.4112	334.92	0.5086	334.94	0.6590	332.10
0.2590	330.91	0.4173	334.97	0.5183	334.93	0.6606	331.90
0.2707	331.64	0.4194	334.96	0.5198	334.93	0.6627	332.05
0.2948	332.84	0.4356	334.99	0.5235	334.93	0.6748	331.40
0.3147	333.49	0.4477	334.99	0.5351	334.90	0.7522	326.11
0.3282	333.73	0.4634	335.00	0.5430	334.86	0.7846	323.20
0.3360	333.84	0.4658	334.99				
			Hor	tano			
0 1477	323 05	0 4354	342.22	0 5204	319 17	0 6646	3/1 /8
0.1477	325.35	0.4334	342.22	0.5204	342.47	0.0040	341.40
0.1007	320.40	0.4475	342.24	0.5315	342.57	0.8020	340.02
0.1333	323 56	0.4473	342.31	0.5402	342.32	0.0000	340.02
0.2000	336.40	0.4756	342 58	0.5550	342.40	0.0347	339.17
0.2000	337 04	0.475	342 63	0.5683	342 64	0.7377	338.26
0.2707	340.01	0.4850	342 57	0.5000	342 42	0.8063	331 87
0.3310	340.01	0.4030	342.07	0.5020	342 17	0.8423	326.95
0.3779	341 37	0.5196	342 53	0.6098	342.13	0.9056	314 69
0.0770	041.07	0.0100	012.00		042.10	0.0000	014.00
			Oc	tane			
0.2710	341.44	0.4506	349.47	0.5650	349.89	0.6948	348.84
0.3141	344.64	0.4709	349.62	0.5655	349.90	0.7164	348.02
0.3319	346.09	0.4847	349.71	0.5933	349.87	0.7475	346.69
0.3/2/	347.57	0.5017	349.78	0.6002	349.86	0.7844	344.41
0.4103	348.00	0.5203	349.84	0.0270	349.74	0.8195	340.91
0.4233	348.98	0.5447	349.88	0.6593	349.40	0.8423	337.07
0.4302	349.18						
			De	cane			
0.4930	362.98	0.5604	363.71	0.6457	363.83	0.7321	363.18
0.5146	363.31	0.5924	363.82	0.6865	363.72	0.7503	362.74
0.5416	363.59	0.6233	363.85	0.7114	363.53		
			Cyclo	hexane			
0.1726	319.72	0.2799	324.70	0.4276	325.47	0.5156	325.12
0.1872	320.82	0.3164	325.14	0.4387	325.46	0.5479	324.64
0.1964	321.70	0.3440	325.31	0.4460	325.45	0.5766	324.02
0.2134	322.37	0.3858	325.45	0.4649	325.41	0.6114	322.76
0.2307	323.16	0.4076	325.47	0.4872	325.31	0.6587	320.53
0.2650	324.25	0.4181	325.48	0.4960	325.28	0.7064	317.27
		,	Methyles	clohevan	A		
0 1922	322 00	0.3643	328 97	0 4879	329.28	0.6588	326 85
0 2214	324 14	0.3890	329.21	0.5131	329 25	0.684/	325 53
0 2505	325.80	0 4005	329 25	0.5324	329.20	0 7071	324 26
0 2670	326.64	0 4254	329 27	0.5687	328 93	0 7190	323 62
0.2884	327.33	0.4404	329.31	0.5922	328.60	0.7247	322.89
0.3236	328.36	0.4630	329.30	0.6339	327.73	0.7305	321.69
0.3639	328.94	0.1000		0.0000		0000	

horizontal top, and their symmetry depends on the size of the alkane.^{5,21,22} In acetic anhydride + alkanes mixtures, the UCST increases with the length of the second component (Table 3). The same trends are encountered in solutions of alkoxyethanols^{21,22} or *n*-alkanones²³ with alkanes or in sulfolane + 1-alkanol mixtures.²⁴

The coordinates of the critical points, x_{1c} and T_c (Table 3), were obtained by reducing the experimental data with the equation^{25,26}

$$T/K = T_c/K + k|y - y_c|^m$$
 (1)

where

$$y = \frac{\alpha x_1}{1 + x_1(\alpha - 1)} \tag{2}$$

$$y_{\rm c} = \frac{\alpha x_{\rm lc}}{1 + x_{\rm lc}(\alpha - 1)} \tag{3}$$

In eqs 1–3, *m*, *k*, α , *T*_c, and *x*_{1c} are the coefficients to be fitted to the experimental results. When $\alpha = 1$, eq 1 is

Figure 1. LLE of acetic anhydride (1) + alkanes (2) mixtures. Points, experimental results: cyclohexane (\blacktriangle , ref 16; \bigcirc , this work); octane (\blacksquare , this work). Solid lines, DISQUAC calculations.

Table 3. Coefficients in Eq 1 for the Fitting of the (x_1, T) Pairs Given in Table 2 for Acetic Anhydride (1) + Alkane (2) Mixtures^a

N^b	m	K	α	$T_{\rm c}/{ m K}$	X _{1c}	σ/\mathbf{K}
		Acetic An	hydride (1) + Hexan	e (2)	
38	2.95	-397	1.17	335.00	0.466	0.116
		Acetic Anl	vdride (1) + Heptan	e (2)	
36	3.06	-439	0.87	342.52	0.521	0.116
		Acetic An	hvdride (1) + Octane	e (2)	
25	3.30	-608	0.78	349.83	0.560	0.145
		Acetic An	hvdride (1) + Decane	a (2)	
11	2.98	-365	0.51	363.84	0.628	0.010
	Ac	etic Anhv	dride (1)	+ Cyclobey:	ane (2)	
24	3.11	-394	1.23	323.46	0.409	0.071
	Acatic	Anhudnia	$l_{\alpha}(1) \perp \mathbf{N}$	athylovalal		
25	3 26	-549	0.87	329.28	0 479	0 1 2 6
20	5.20	545	0.07	525.20	0.172	0.120

 $^a\sigma$ is the standard deviation defined by eq 5. T_c and x_{1c} are the coordinates for the critical points. b Number of experimental data points.

similar to the well-known equation²⁷⁻²⁹

$$\Delta \lambda_1 = B \tau^\beta \tag{4}$$

where $\Delta \lambda_1 = \lambda_1' - \lambda_2''$ is the so-called order parameter, which can be any density variable in the conjugate phase (in our case $\lambda_1 = x_1$), τ is the reduced temperature ($T_c - T$)/ T_c , and β is a critical exponent corresponding to this order parameter. The β value depends on the theory applied to its determination.^{27,29} More detail is given elsewhere.³⁰

The fitting was developed using the Marquardt algorithm³¹ with all the points weighted equally. Results are collected in Table 3. Also listed is the standard deviation defined by

$$(\sigma(T)/\mathbf{K}) = \left[\sum (T_i^{\exp} - T_i^{\operatorname{cal}})^2 / (N - n)\right]^{1/2}$$
(5)

where N and n stand for the number of data points and the number of fitted parameters, respectively. We note that eq 1 fits well the experimental data.

Table 4. Coordinates of Critical Points (x_{1c}, T_c) of Acetic Anhydride (1) + Alkanes (2) and Comparison with DISQUAC Results Using the Interaction Parameters from Table 5

	$T_{\rm c}/{ m K}$		X _{1c}		
alkane	exp	DQ	exp	DQ	ref
hexane	335.00	341.3	0.466	0.486	this work
heptane	342.52	351.6	0.521	0.540	this work
•	341.67		0.529		15
octane	349.83	360.4	0.560	0.588	this work
decane	363.84	374.6	0.628	0.664	this work
cyclohexane	325.46	329.3	0.409	0.391	this work
5	325.7				16
	325.86		0.415		41
methylcyclohexane ^a	329.28	332.0	0.472	0.450	this work

^a Assumed as an alkane in DISQUAC calculations.¹²

For mixtures including heptane or cyclohexane, our critical points are in good agreement with literature values (Table 4, see also Figure 1)

3. DISQUAC Model

In the framework of DISQUAC, solutions of organic anhydrides and cyclohexane are regarded as possessing three types of surface: type a, aliphatic, CH_3 , or CH_2 in anhydrides; type n, CO-O-CO in anhydrides; and type c, cyclic c- CH_2 in cyclohexane. The total relative molecular volumes, the surfaces, and the molecular surface fractions of the mixture components are calculated additively on the basis of the group volumes and surfaces recommended by Bondi.³² The geometrical parameters are given elsewhere.^{11,33,34}

The equations used to calculate the excess functions are well-known.³⁴ The interactional terms in the excess functions contain a dispersive (DIS) and a quasichemical (QUAC) contribution which are obtained independently by the classical formulas and then simply added. The degree of nonrandomness is thus expressed by the relative amounts of the DIS and QUAC terms:

$$G_{\rm m}^{\rm E} = G_{\rm m}^{\rm E,COMB} + G_{\rm m}^{\rm E,DIS} + G_{\rm m}^{\rm E,QUAC} \tag{6}$$

$$H_{\rm m}^{\rm E} = H_{\rm m}^{\rm E, DIS} + H_{\rm m}^{\rm E; QUAC} \tag{7}$$

where $G_{\rm m}^{\rm E,COMB}$ is the Flory–Huggins combinatorial term.³³ For the QUAC part, as coordination number the reference value is used, that is z = 4.

The temperature dependence of the interaction parameters is expressed in terms of the DIS and/or QUAC interchange coefficients, $C_{\text{st},1}^{\text{DIS/QUAC}}$, where st = a, c, or n and l = 1 for Gibbs energy, l = 2 for enthalpy, or l = 3 for heat capacity.

The three type of surface generate three pairs of contacts: (a, c), (a, n), and (c, n).

The (a, c) contacts are characterized by DIS parameters only, which are determined from the thermodynamic properties of cyclohexane + *n*-alkane mixtures.³³

The (a, n) contacts are characterized by DIS and QUAC parameters calculated from the thermodynamic properties of organic anhydride + n-alkane systems.¹¹

So, only the (c, n) contacts must be fitted. In the present case, the fitting of the interaction parameters is somewhat difficult because of the lack of experimental data, as well as the fact that the acetic anhydride + cyclohexane mixture shows a miscibility gap. The general procedure applied is explained in detail elsewhere.²⁴ Nevertheless, it is important to remark that calculations were developed assuming

Figure 2. $H_{\rm m}^{\rm E}$ at 363.15 K of the acetic anhydride (1) + cyclohexane (2) mixture: points, experimental results;⁴² solid line, DIS-QUAC calculations.

Table 5. Interchange Coefficients, Dispersive, $C_{cn,l}^{DIS}$ and Quasichemical, $C_{cn,l}^{QUAC}$ (l = 1, Gibbs Energy; l = 2, Enthalpy), for (c, n) Contacts (Type c, c-CH₂ in Cyclohexane; Type n, CO-O-CO in CH₃(CH₂)_{u-1}CO-O-CO(CH₂)_{v-1}CH₃) in Organic Anhydride + Cyclohexane Mixtures

u	V	$C_{\rm cn,1}^{\rm DIS}$	$C_{\mathrm{cn},2}^{\mathrm{DIS}}$	$C_{ m cn,1}^{ m QUAC}$	$C_{ m cn,2}^{ m QUAC}$
1	1	1.06	2.65	3.00	3.75
1	>1	1.06	2.65	2.95^{a}	3.60 ^a
>1	>1	1.06	2.65	2.90	3.55

^a Estimated.

that $C_{\text{an,l}}^{\text{QUAC}} = C_{\text{cn,l}}^{\text{QUAC}}$ as in many other applications.^{12,35} On the other hand, we used $C_{\text{cn,3}}^{\text{DIS/QUAC}} = 0$. The final parameters are listed in Table 5.

4. Discussion

Table 4 and Figures 1 and 2 show comparisons between the experimental data and the DISQUAC calculations. It is remarkable that the same set of interaction parameters can be used to represent quite accurately different thermodynamic properties, such as VLE, H_m^E , or LLE. DIS-QUAC predicts an azeotrope for the acetic anhydride (1) + cyclohexane (2) mixture at 353.27 K, $x_1 = 0.016$, and 99.6 kPa. At the same temperature, the experimental values are $x_1 = 0.065$ at 101 kPa.³⁶

It should be noted that the theoretical calculations on the LLE are developed under the basic and wrong assumption that $G_{\rm m}^{\rm E}$ is an analytical function close to the critical point. This is an important shortcoming of any mean field theory, such as DISQUAC. In accord with the mentioned assumption, the model provides LLE curves which are too high at the UCST and too low at the LCST (lower critical solution temperature).^{28,37} So, the calculated UCSTs are higher than the experimental values (Table 4).^{24,38}

5. Conclusions

LLE have be measured for mixtures formed by acetic anhydride and hexane, heptane, octane, decane, cyclohexane, or methylcyclohexane. DISQUAC interaction parameters for the CO–O–CO/c-CH₂ contacts have been determined.

Literature Cited

- (1) García, I.; Cobos, J. C.; González, J. A.; Casanova, C. Excess enthalpies of diethyl carbonate + some normal alkanes (C_6-C_{14}), cyclohexane, + methylcyclohexane, + benzene, + toluene, or tetrachloromethane. Int. DATA Ser., Sel. Data Mixtures, Ser. A **1987**, *3*, 164–173. (2) García, I.; Cobos, J. C.; González, J. A.; Casanova, C.; Cocero, M.
- J. Thermodynamics of binary mixtures containing organic carbonates. 1. Excess enthalpies of dimethyl carbonate + hydrocarbons or + tetrachloromethane. J. Chem. Eng. Data 1988, 33, 423-426.
- (3) García de la Fuente, I.; González, J. A.; Cobos, J. C.; Casanova, C. Excess molar volumes of dimethyl carbonate with hydrocarbons or tetrachloromethane at 25 °C. J. Solution Chem. 1995, 24, 827-835.
- (4) Cocero, M. J.; García, I.; González, J. A.; Cobos, J. C. Thermodynamics of binary mixtures containing organic carbonates. 6. Isothermal vapor-liquid equilibra for dimethyl carbonate + normal alkanes. Fluid Phase Equilib. 1991, 68, 151-161.
- González, J. A.; García, I.; Cobos, J. C.; Casanova, C. Thermo-(5)dynamics of binary mixtures containing organic carbonates. 4. Liquid-liquid equilibria of dimethyl carbonate + selected nalkanes. J. Chem. Eng. Data 1991, 36, 162–164.
- (6) García, I.; Cobos, J. C.; Escarda, R.; Casanova, C. Excess (6) Garcia, F., Cobos, J. C.; Escarda, R.; Casanova, C. Excess enthalpies of (butyric anhydride + *n*-alkane) at 298.15 K. *J. Chem. Thermodyn.* **1988**, *20*, 1097–1100.
 (7) García, I.; Cobos, J. C.; Escarda, R.; Casanova, C. Excess enthalpies of (heptanoic anhydride + *n*-alkane) at 298.15 K. *J.*
- *Chem. Thermodyn.* **1988**, *20*, 1457–1460. (8) Escarda, R.; García, I.; Cobos, J. C.; Casanova, C. Excess molar
- volumes of (butanoic anhydride or heptanoic anhydride + *n*-
- volumes of (butanoic annydride or heptanoic anhydride + n-alkane) at 298.15 K. J. Chem. Thermodyn. 1989, 21, 431–435.
 (9) Casanova, C.; Rey, J.; Cobos, J. C. Int. DATA Ser., Sel. Data Mixtures, Ser. A 1986, 2, 102–122.
 (10) Romero, T.; Riesco, N.; Villa, S.; García de la Fuente, I.; González, L A : Cobos, L C.
- J. A.; Cobos, J. C. Excess molar volumes at 298.15 K of binary liquid organic mixtures containing *n*-alkanones and linear ethers, Application of the Flory's theory. *Fluid Phase Equilib.* (in press).
 (11) Kehiaian, H. V.; González, J. A.; García, I.; Escarda, R.; Cobos,
- J. C.; Casanova, C. Prediction of liquid-liquid equilibria and of enthalpies of mixing in alkanoic acid anhydrid + *n*-alkanes mixtures using DISQUAC. *Fluid Phase Equilib.* **1991**, *69*, 91– 98
- (12) González, J. A.; García de la Fuente, I.; Cobos, J. C.; Casanova, C. Calorimetric and phase equilibrium data for linear carbonates + hydrocarbons or + CCl4 mixtures. Comparison with DISQUAC predictions. *Thermochim. Acta* **1993**, *217*, 57–69.
- (13) González, J. A.; Fernández Martínez, J. M.; García de la Fuente, I.; Cobos, J. C. DISQUAC Characterization of the carbonyl-oxygen interactions in binary liquid organic mixtures containing linear molecules: ketones, and a monoether, diether or triether. *Can. J. Chem.* **1996**, *74*, 1815–1823.
- (14) Kehiaian, H. V. Thermodynamics of binary liquid organic mixtures. *Pure Appl. Chem.* **1985**, *57*, 15–30. (15) Nagarajan, N.; Kumar, A.; Gopal, E. S. R.; Greer, S. C. Liquid–
- liquid critical phenomena. The coexistence curve of n-heptane + acetic anhydride. *J. Phys. Chem.* **1980**, *84*, 2883–2887. (16) Greer, S. C.; Das, B. K.; Kumar, A.; Gopal, E. S. R. Critical
- behaviour of the diameters of liquid-liquid coexistence curves. I. Chem. Phys. **1983**, 79, 4545–4552.
- (17) IUPAC Commission on Atomic Weights and Isotopic Abundances 1985. *Pure Appl. Chem.* **1986**, *58*, 1677. (18) Loven, A. W.; Rice, O. K. Coexistence curve of the 2,6-lutidene +
- water system in the critical region. Trans. Faraday Soc. 1963, 59, 2723–2727.
- (19) Young, C. L. Upper critical solution temperature of perfluoro-nalkane and n-alkane mixtures. Trans. Faraday Soc. 1969, 65, 2639-2644.
- (20) Snyder, R. B.; Eckert, C. A. Effect of third component on liquid-(a) Shiyder, N. D., Lettert, C. H. Enter of the data 1973, 18, 282–285.
 (21) Carmona, F. J.; González, J. A.; García de la Fuente, I.; Cobos, J.
- C. Thermodynamic properties of *n*-alkoxyethanols + organic solvents mixtures. X. Liquid–liquid equilibria of systems contain-
- solvents mixtures. X. Eiquid-Inquit equilibria of systems contraining 2-(2-methoxyethoxy)ethanol or 2-(2-ethoxyethoxy)ethanol and selected alkanes. J. Chem. Eng. Data 1999, 44, 892–895.
 (22) Martínez, R.; González, J. A.; García de la Fuente, I.; Cobos, J. C. Thermodynamic properties of n-alkoxyethanols + organic solvents mixtures. XIV. Liquid–liquid equilibria of systems containing 2 (2 ethoxyethowyethanoltand) and calcated alkoper. J. containing 2-(2-ethoxyethoxy)ethanol and selected alkanes. J. Chem. Eng. Data 2000, 45, 1036–1039.
 (23) Messow, U.; Doyé, U.; Kuchenbecker, D. Int. DATA Ser., Sel. Data
- Mixtures, Ser. A 1979, 1, 71-74.

- (24) González, J. A.; Domanska, U. Thermodynamics of mixtures containing a very strongly polar compound. Part I. Experimental phase equilibria (solid–liquid and liquid–liquid) for sulfolane + alkan-1-ols systems. Analysis of some mixtures containing sul-folane in terms of DISQUAC. *Phys. Chem. Chem. Phys.* 2001, *3*, 1034 - 1042
- (25) Ott, J. B.; Holscher, I. F.; Schneider, G. M. (Liquid-Liquid) phase Equilibria in (methanol + heptane) and (methanol + octane) at pressures from 0.1 to 150 MPa. J. Chem. Thermodyn. 1986, 18, 815-826.
- (26) Haarhaus, U.; Schneider, G. M. (Liquid–liquid) phase equilibria in (methanol + butane) and (methanol + pentane) at pressures from 0.1 to 140 MPa. *J. Chem. Thermodyn.* **1988**, *20*, 1121–1129.
- (27)Stanley, H. E. Introduction to Phase Transitions and Critical Phenomena; Clarendon Press: Oxford, 1971.
- Rowlinson, J. S.; Swinton, F. L. Liquids and Liquids Mixtures, (28)3rd ed.; Butterworth: London, 1982.
- (29)Novak, J. P.; Matous, J.; Pick, J. Liquid-Liquid Equilibria; Elsevier: Amsterdam, 1987.
- (30) Rubio, M. A.; González, J. A.; García de la Fuente, I.; Cobos, J. C. Thermodynamic properties of *n*-alkoxyethanols + Organic solvents mixtures. VIII. Liquid-liquid Equilibria of systems containing 2-methoxyethanol and alkanes (C₆H₁₂ and CH₃·(CH₂)_u-CH₃, u=3,4,6,8). *Fluid Phase Equilib*. **1998**, *143*, 111–123.
- (31) Bevington, P. R. Data Reductions and Error Analysis for the Physical Sciences; McGraw-Hill Book Co.: London, 1969.
- (32) Bondi, A. Physical Properties of Molecular Crystals, Liquids and Glasses; Wiley: New York, 1968.
- (33)González, J. A.; García de la Fuente, I.; Cobos, J. C.; Casanova, C.; Ait-Kaci, A. Application of the zeroth approximation of the DISQUAC model to cyclohexane + *n*-alkanes mixtures using different combinatorial terms. Fluid Phase Equilib. 1995, 112, 63-87.
- (34) Kehiaian, H. V.; Grolier, J.-P. E.; Benson, G. C. Thermodynamics of organic mixtures. A generalized quasichemical theory in terms of group surface interactions. J. Chim. Phys. **1978**, 75, 1031– 1048.
- (35) González, J. A.; García de la Fuente, I.; Cobos, J. C.; Casanova, C. DISQUAC predictions on phase equilibria, molar and standard partial molar excess quantities for 1-alkanols + cyclohexane mixtures. J. Solution Chem. **1994**, 23, 399–420.
- (36) Jones, H. E. Vapor-liquid equilibria for eight binary mixtures. J. Chem. Eng. Data 1962, 7, 13-18.
- De Pablo, J. J.; Prausnitz, J. M. Thermodynamics of liquid-liquid (37)equilibria including the critical region. AIChE J. 1988, 34, 1595-1606
- (38) González, J. A.; Cobos, J. C.; Carmona, F. J.; García de la Fuente, I.; Bhethanabotla, V. R.; Campbell, S. W. Thermodynamics of mixtures containing alkoxyethanols. Part XV. DISQUAC characterization of systems of alkoxyethanols with *n*-alkanes or cyclohexane. *Phys. Chem. Chem. Phys.* **2001**, *3*, 2856–2865.
- (39) Lu, B. C.-Y.; Ishikawa, T.; Benson, G. C. Isothermal Vapor-Liquid Equilibria for *n*-Hexane-Methyl Methacrylate, Methyl *n*-Propyl Ketone-Acetic Acid, n-Pentane-Methyl Acetate, and Ethyl Acetate-Acetic Anhydride, J. Chem. Eng. Data 1990, 35, 331-334.
- (40) Riddick, J. A.; Bunger, W. B.; Sakano, T. K. Organic Solvents, Techniques of Chemistry, Weissberger, A., Ed.; Wiley: New York, 1986; Vol. II.
- (41) Sivaraman, A.; Tiwari, M. K.; Jyothi, S.; Gopal, E. S. R. A high Pressure study of the Phase diagram and the critical exponent β of binary liquid systems. Ber. Bunsen-Ges. Phys. Chem. 1980, 84, 196-200.
- (42) Haan, A. B.; Gmehling, J. Excess enthalpies for various binary mixtures with N-methylacetamide or acetic anhydride. J. Chem. Eng. Data 1996, 41, 474-478.

Received for review January 14, 2002. Accepted April 5, 2002. This work was supported by the Programa Nacional de $\rm I+D+I$ del MCyT (Spain), Project ref. PPQ2001-1664, and by the Consejería de Educación y Cultura of Junta de Castilla y León y de la Unión Europea, F.S.E., under Project VA039/01. M.A. acknowledges the grant received from "Beca de Colaboración" del M.E.C., S.V. acknowledges the grant received from "Universidad de Valladolid", and N.R. acknowledges the grant received from "Programa de Formación del Profesorado Universitario y Personal Investigador, Subprograma de Formación del Profesorado Universitario" de la S.E.U.I. y D. del M.E.C.

JE020013N