Excess Enthalpies of the Ternary Mixtures: (Diisopropyl Ether or 2-Methyltetrahydrofuran) + Hexane + Hexadecane at 298.15 K

Zhaohui Wang, George C. Benson,* and Benjamin C.-Y. Lu

Department of Chemical Engineering, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5

Excess molar enthalpies, measured at 298.15 K in a flow microcalorimeter, are reported for diisopropyl ether + hexane + hexadecane and for 2-methyltetrahydrofuran + hexane + hexadecane. Smooth representations of the results are described and used to construct constant excess molar enthalpy contours on Roozeboom diagrams. The latter are compared with diagrams obtained when the model of Liebermann and Fried is used to estimate the excess molar enthalpies of the ternary mixtures from the physical properties of the components and the excess molar enthalpies of their binary mixtures.

Introduction

Previous papers from our laboratory have reported excess molar enthalpies of some binary and ternary mixtures comprised of either diisopropyl ether $(DIPE)^{1-3}$ or 2-methyltetrahydrofuran $(MTHF)^{4-6}$ and various *n*-alkanes. As a continuation of those investigations, similar calorimetric measurements at 298.15 K have been made for the two ternary systems formed from either DIPE or MTHF with mixtures of hexane (nC6) and hexadecane (nC16).

Experimental Section

All of the components were obtained from Aldrich, and in all cases the purities stated by the manufacturer were at least 99 mol %. Apart from partial degassing, the components were used without further purification. Densities, $\rho/\text{kg}\cdot\text{m}^{-3}$, measured at 298.15 K in an Anton-Paar digital densimeter, were 718.69, 848.10, 655.43, and 770.13, for DIPE, MTHF, nC6, and nC16, respectively. The result for DIPE is within 0.03% of that reported by Obama et al.;⁷ that for MTHF is within 0.15% of the value reported recently by De Lorenzi et al.⁸ The results for the alkanes are in reasonable agreement with values in the TRC Tables.⁹

An LKB flow microcalorimeter (Model 10700-1), thermostated at (298.150 \pm 0.003) K, was used to measure the excess molar enthalpies $H_{\rm m}^{\rm m}$. Details of the equipment and its operation have been described previously (Tanaka et al.¹⁰ and Kimura et al.¹¹).

In studying the ternary systems, the excess molar enthalpy $H_{m,1+23}^{E}$ was determined for several pseudobinary mixtures in which component 1 (DIPE or MTHF) was added to binary mixtures of components 2 (nC6) and 3 (nC16). For this purpose, binaries with fixed mole ratios, x_2/x_3 , were prepared by mass. The excess molar enthalpy $H_{m,123}^{E}$ of the ternary mixture was then obtained from the relation

$$H_{\rm m,123}^{\rm E} = H_{\rm m,1+23}^{\rm E} + (1 - x_{\rm 1}) H_{\rm m,23}^{\rm E}$$
(1)

where x_1 is the mole fraction of either DIPE or MTHF and $H_{m,23}^E$ is the excess molar enthalpy of the particular binary mixture. Over most of the mole fraction range, the

errors of the excess molar enthalpies and the mole fractions of the final mixtures are estimated to be less than 0.5% and 5 \times 10⁻⁴, respectively.

Results and Discussion

Excess molar enthalpies $H_{m,ij}^{E}$ (i < j), at 298.15 K, for four of the five constituent binaries of present interest have been reported previously: DIPE (1) + nC6 (2),¹ DIPE (1) + nC16 (3),¹ nC6 (2) + nC16 (3),¹² and MTHF (1) + nC6 (2).⁴ The experimental results for the excess molar enthalpies $H_{m,13}^{E}$ of MTHF (1) + nC16 (3) at 298.15 K are listed in Table 1. The smoothing function

$$H_{m,ij}^{\rm E} / \mathbf{J} \cdot \mathbf{mol}^{-1} = x_i (1 - x_j) \sum_{k=1}^n h_k (1 - 2x_j)^{k-1} \quad (i < j) \quad (2)$$

was fitted to the results by a least-squares method, with all points weighted equally. Values of the coefficients h_k are listed in Table 2, along with the standard deviation s for the representation. For convenience, the coefficients and standard deviations for the representations of $H_{m,ij}^{E}$ for the four other binary mixtures are also included in Table 2.

The experimental results for $H_{m,1+23}^{E}$ and the corresponding values of $H_{m,123}^{E}$ calculated from eq 1 are listed in Tables 3 and 4 against the mole fraction x_1 for the ternary systems containing DIPE and MTHF, respectively. For a selected value of x_2/x_3 in these tables, the maximum values of $H_{m,1+23}^{E}$ and $H_{m,123}^{E}$ occur near $x_1 = 0.5$. For both systems at constant x_1 , the enthalpies decrease as x_2/x_3 increases.

The experimental values of $H_{m,1+23}^{E}$ from Tables 3 and 4 are plotted in Figures 1 and 2, respectively. Also shown in Figure 2 are the results for MTHF (1) + nC16 (3) given in Table 1.

Following Tsao and Smith,¹³ the values of $H_{m,1+23}^{E}$ were represented as a sum of binary terms with an added ternary contribution

$$H_{m,1+23}^{\rm E} = [x_2/(1-x_1)]H_{m,12}^{\rm E} + [x_3/(1-x_1)]H_{m,13}^{\rm E} + H_{m,T}^{\rm E}$$
(3)

Table 1. Experimental Mole Fractions, x_1 , and Excess Molar Enthalpies, $H_{m_12}^E$, for MTHF (1) + nC16 (3) Mixtures at 298.15 K

11,15									
	$H_{\rm m,13}^{\rm E}$		$H_{\mathrm{m,13}}^{\mathrm{E}}$		$H_{\mathrm{m,13}}^{\mathrm{E}}$		$H_{\mathrm{m,13}}^{\mathrm{E}}$		$H_{\mathrm{m,13}}^{\mathrm{E}}$
<i>X</i> 1	J•mol ^{−1}	<i>X</i> 1	J•mol ^{−1}	<i>X</i> 1	J•mol ^{−1}	<i>X</i> 1	J•mol ^{−1}	<i>X</i> 1	$J \cdot mol^{-1}$
0.0500	138.89	0.2499	617.51	0.4503	901.14	0.6501	922.04	0.8500	605.77
0.1000	277.38	0.3002	711.99	0.5003	921.69	0.7000	879.85	0.9002	450.36
0.1499	413.89	0.3496	787.03	0.5502	938.68	0.7499	816.48	0.9500	252.68
0.2002	514.55	0.4000	853.69	0.5998	941.29	0.7998	726.74		

Table 2. Coefficients, h_k , and Standard Deviations, s, for the Representation of $H^{\rm E}_{{\rm m},i}$ (i < j) by Eq 2 for the Constituent-Binary Mixtures at 298.15 K

component								S
i	j	h_1	h_2	h_3	h_4	h_5	h_6	$\overline{\mathbf{J}\boldsymbol{\cdot}\mathbf{mol}^{-1}}$
DIPE DIPE nC6 MTHF MTHF	nC6 ^a nC16 ^a nC16 ^b nC6 ^c nC16 ^d	901.54 2241.24 453.2 2145.77 3706.59	$\begin{array}{r} 48.97 \\ -417.28 \\ 10.2 \\ 42.35 \\ -928.87 \end{array}$	$\begin{array}{r} 44.94\\ 351.93\\ -57.3\\ 54.73\\ 526.97\end{array}$	70.11 219.29 -423.85	-136.66 -491.54	-598.53	$1.0 \\ 2.8 \\ 0.6 \\ 1.73 \\ 4.14$

^{*a*} Zhu et al.¹ ^{*b*} Miller and Williamson.¹² ^{*c*} Wang et al.⁴ ^{*d*} Present work.

Table 3. Experimental Excess Molar Enthalpies, $H_{m,1+23}^E$, Measured at 298.15 K, for the Addition of DIPE to nC6 + nC16 Mixtures to Form DIPE (1) + nC6 (2) + nC16 (3), and Values of $H_{m,123}^E$ Calculated from Eq 1

	$H^{\mathrm{E}}_{\mathrm{m},1+23}$ a	$H_{ m m,123}^{ m E}$		$H^{ m E}_{ m m,1+23}$ a	$H^{\mathrm{E}}_{\mathrm{m,123}}$		$H^{\mathrm{E}}_{\mathrm{m},1+23}{}^{a}$	$H_{\mathrm{m,123}}^{\mathrm{E}}$
<i>X</i> 1	J•mol ^{−1}	J•mol ^{−1}	<i>X</i> 1	J•mol ^{−1}	$\overline{\mathbf{J}\boldsymbol{\cdot}\mathbf{mol}^{-1}}$	<i>X</i> 1	J•mol ^{−1}	$\overline{\mathbf{J}\cdot\mathbf{mol}^{-1}}$
			$x_2/x_3 = 0.33$	335, H_{m23}^{E} (J·mol	l^{-1}) = 83.27			
0.0501	80.40	159.50	0.4002	426.96	476.91	0.7002	412.28	437.25
0.1001	147.94	222.88	0.4502	443.89	489.67	0.7497	375.70	396.55
0.1500	215.65	286.43	0.4999	460.12	501.76	0.8001	327.95	344.60
0.2001	274.63	341.24	0.5501	461.80	499.26	0.8506	267.58	280.02
0.2502	328.29	390.73	0.6003	454.97	488.25	0.9000	195.25	203.58
0.3001	369.48	427.77	0.6503	438.53	467.65	0.9500	107.39	111.55
0.3496	398.28	452.44						
			$x_2/x_3 = 1.00$	04, $H_{\rm m}^{\rm E}$ 23 (J·mol	$^{-1}) = 113.30$			
0.0502	67.21	174.83	0.3498	330.02	403.68	0.6499	352.07	391.74
0.1000	124.65	226.62	0.4001	350.51	418.48	0.7000	329.46	363.45
0.1501	177.92	274.21	0.4509	365.45	427.66	0.7500	298.83	327.16
0.2000	229.46	320.10	0.5003	372.38	428.99	0.7999	259.72	282.39
0.2501	270.59	355.55	0.5508	372.11	423.01	0.8500	210.70	227.69
0.3002	305.21	384.50	0.6002	366.73	412.03	0.9500	81.55	87.22
			$x_2/x_3 = 2.98$	865, $H_{\rm m}^{\rm E}$ 22 (J·mol	l^{-1}) = 81.34			
0.0494	52.24	129.56	0.4008	279.88	328.62	0.6999	254.43	278.84
0.1000	101.62	174.82	0.4536	291.81	336.25	0.7503	230.36	250.67
0.1500	146.71	215.85	0.5004	294.94	335.57	0.8002	197.71	213.96
0.2002	185.72	250.77	0.5509	292.86	329.39	0.8501	159.26	171.45
0.2503	218.96	279.94	0.6005	285.50	317.99	0.9001	116.75	124.88
0.2972	242.81	299.97	0.6499	273.21	301.68	0.9500	63.11	67.18
0.3487	263.37	316.35						

^{*a*} Ternary term for representation of $H_{m,1+23}^{E}$ by eqs 3 and 4: $H_{m,T}^{E}$ (J·mol⁻¹) = $x_1x_2x_3(765.19 - 8562.98x_1 + 293.01x_2 + 15474.78x_1^2 + 3158.09x_1x_2 - 1582.53x_2^2 - 11329.16x_1^3)$, s = 2.32 J·mol⁻¹.

where values of the $H_{m,ij}^{E}$ were calculated from the appropriate smoothing functions. The form

$$H_{m,T}^{E}/J \cdot mol^{-1} = x_{1}x_{2}x_{3}(c_{0} + c_{1}x_{1} + c_{2}x_{2} + c_{3}x_{1}^{2} + c_{4}x_{1}x_{2} + c_{5}x_{2}^{2} + ...)$$
(4)

which was adopted for the ternary contribution, is similar to that used by Morris et al.¹⁴ Values of the parameters c_i were obtained from least-squares analyses in which eqs 3 and 4 were fitted to the experimental values in Tables 3 and 4. The resulting representations of $H_{m,T}^E$ are given in the footnotes of the tables, along with the standard deviations *s* of the fits. The solid curves for $H_{m,1+23}^E$ in Figures 1 and 2 were calculated from eqs 3 and 4, using these representations.

Equations 1–4 were also used to calculate the constant $H_{m,123}^E$ contours plotted on the Roozeboom diagrams¹⁵ in

Figures 3a and 4a. The general characteristics of these are similar and there is no indication of an internal extremum.

Recent work^{16,17} indicates that an extension of the model of Liebermann and Fried^{18,19} can be useful in representing the excess enthalpies of binary mixtures and also has the potential for estimating the enthalpies of ternary mixtures from data for the pure components and their binary mixtures. It is therefore of interest to examine how well the Liebermann–Fried model can represent the enthalpies of the present ternary systems.

The equations used in this application have been outlined by Wang et al.¹⁷ Values of the Liebermann–Fried interaction parameters, A_{ij} and A_{ji} , for each of the binary mixtures are given in Table 5. These were obtained by fitting the Liebermann–Fried formula for $H_{m,ij}^E$ to the primary experimental results in Table 1 and those reported

Table 4.	Experimental Excess Mola	r Enthalpies, $H_{m.1+23}^{E}$, Measured at 2	98.15 K, for the	e Addition of MTHF	to nC6 + nC16
Mixtures	S To Form MTHF $(1) + nC6$	(2) + nC16(3), and V	alues of $H_{m123}^{\rm E}$ Ca	alculated from	Eq 1	

	., .,		111,	123	1		
$H^{ m E}_{ m m,1+23}$ a	$H_{\mathrm{m,123}}^{\mathrm{E}}$		$H^{\mathrm{E}}_{\mathrm{m},1+23}$ a	$H_{\mathrm{m,123}}^{\mathrm{E}}$		$H^{\mathrm{E}}_{\mathrm{m},1+23}$ a	$H_{ m m,123}^{ m E}$
$J \cdot mol^{-1}$	$J \cdot mol^{-1}$	<i>X</i> 1	$J \cdot mol^{-1}$	$\overline{\mathbf{J}\cdot\mathbf{mol}^{-1}}$	<i>X</i> 1	$J \cdot mol^{-1}$	$J \cdot mol^{-1}$
		$x_2/x_3 = 0.3$	336, $H_{m^{23}}^{E}$ (J·mo	l^{-1}) = 83.28			
125.21	204.32	0.4001	753.17	803.13	0.7001	760.71	785.68
253.87	328.82	0.4500	786.48	832.28	0.7500	701.25	722.07
363.71	434.50	0.5002	814.10	855.72	0.7999	620.46	637.13
464.46	531.08	0.5500	823.96	861.43	0.8499	514.63	527.13
558.67	621.13	0.5996	820.33	853.68	0.9000	378.95	387.28
632.81	691.10	0.6503	801.69	830.82	0.9500	210.26	214.42
700.90	755.03						
		$x_2/x_3 = 1.00$	002, $H_{\rm m}^{\rm E}$ 23 (J·mol	$^{-1}) = 113.30$			
124.91	232.54	0.3996	680.70	748.73	0.7005	667.73	701.67
235.12	337.10	0.4507	712.98	775.22	0.7498	611.51	639.85
338.26	434.57	0.4998	732.98	789.66	0.8000	536.61	559.27
429.64	520.28	0.5498	737.45	788.46	0.8500	439.81	456.80
516.34	601.29	0.6000	730.29	775.61	0.9004	319.94	331.22
586.50	665.81	0.6506	706.21	745.80	0.9500	173.72	179.38
642.31	715.98						
		$x_2/x_3 = 3.0$	010, $H_{\rm m}^{\rm E}_{23}$ (J·mo	l^{-1}) = 81.32			
117.71	194.96	0.4000	591.21	640.00	0.6499	590.62	619.09
214.42	287.61	0.4499	609.29	654.02	0.6998	555.03	579.44
302.41	371.52	0.5000	624.87	665.53	0.7502	501.28	521.59
385.56	450.60	0.5501	627.21	663.79	0.8000	434.51	450.78
455.48	516.46	0.5963	619.89	652.72	0.8500	355.20	367.40
514.24	571.17	0.5997	618.48	651.03	0.9500	139.59	143.65
553.51	606.38						
	$\frac{H^{\rm E}_{\rm m,1+23}}{\rm J\cdot mol^{-1}}^{a}$ 125.21 253.87 363.71 464.46 558.67 632.81 700.90 124.91 235.12 338.26 429.64 516.34 586.50 642.31 117.71 214.42 302.41 385.56 455.48 514.24 553.51	$\begin{array}{c c} H^{\rm E}_{{\rm m},1+23} & H^{\rm E}_{{\rm m},123} \\ \hline J\cdot{\rm mol}^{-1} & J\cdot{\rm mol}^{-1} \\ \hline \\ 125.21 & 204.32 \\ 253.87 & 328.82 \\ 363.71 & 434.50 \\ 464.46 & 531.08 \\ 558.67 & 621.13 \\ 632.81 & 691.10 \\ 700.90 & 755.03 \\ \hline \\ 124.91 & 232.54 \\ 235.12 & 337.10 \\ 338.26 & 434.57 \\ 429.64 & 520.28 \\ 516.34 & 601.29 \\ 586.50 & 665.81 \\ 642.31 & 715.98 \\ \hline \\ 117.71 & 194.96 \\ 214.42 & 287.61 \\ 302.41 & 371.52 \\ 385.56 & 450.60 \\ 455.48 & 516.46 \\ 514.24 & 571.17 \\ 553.51 & 606.38 \\ \hline \end{array}$	$\begin{array}{c ccccc} H_{m,1+23}^{\rm E} & H_{m,123}^{\rm E} \\ \hline J \cdot {\rm mol}^{-1} & \frac{H_{m,123}^{\rm E}}{J \cdot {\rm mol}^{-1}} & x_{1} \\ & & x_{2}/x_{3} = 0.3 \\ \hline 125.21 & 204.32 & 0.4001 \\ 253.87 & 328.82 & 0.4500 \\ 363.71 & 434.50 & 0.5002 \\ 464.46 & 531.08 & 0.5500 \\ 558.67 & 621.13 & 0.5996 \\ 632.81 & 691.10 & 0.6503 \\ 700.90 & 755.03 \\ \hline & & x_{2}/x_{3} = 1.00 \\ 124.91 & 232.54 & 0.3996 \\ 235.12 & 337.10 & 0.4507 \\ 338.26 & 434.57 & 0.4998 \\ 429.64 & 520.28 & 0.5498 \\ 516.34 & 601.29 & 0.6000 \\ 586.50 & 665.81 & 0.6506 \\ 642.31 & 715.98 \\ \hline & & x_{2}/x_{3} = 3.0 \\ 117.71 & 194.96 & 0.4000 \\ 214.42 & 287.61 & 0.4499 \\ 302.41 & 371.52 & 0.5000 \\ 385.56 & 450.60 & 0.5501 \\ 455.48 & 516.46 & 0.5963 \\ 514.24 & 571.17 & 0.5997 \\ 553.51 & 606.38 \\ \hline \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\frac{H_{m,1+23}^{E}}{J \cdot mol^{-1}} \frac{H_{m,123}^{E}}{J \cdot mol^{-1}} \\ \frac{x_2/x_3 = 0.3336}{J \cdot mol^{-1}} \frac{H_{m,23}^{E}}{J \cdot mol^{-1}} = 83.28 \\ 125.21 & 204.32 & 0.4001 & 753.17 & 803.13 \\ 253.87 & 328.82 & 0.4500 & 786.48 & 832.28 \\ 363.71 & 434.50 & 0.5002 & 814.10 & 855.72 \\ 464.46 & 531.08 & 0.5500 & 823.96 & 861.43 \\ 558.67 & 621.13 & 0.5996 & 820.33 & 853.68 \\ 632.81 & 691.10 & 0.6503 & 801.69 & 830.82 \\ 700.90 & 755.03 & & & & & & & & & & & & & & & & & & &$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\frac{H_{m,1+23}^{E}}{J \cdot mol^{-1}} \frac{H_{m,123}^{E}}{J \cdot mol^{-1}} \frac{H_{m,123}^{E}}{X_{1}} \frac{H_{m,1+23}^{E}{a}^{a}}{J \cdot mol^{-1}} \frac{H_{m,123}^{E}{a}^{a}}{J \cdot mol^{-1}} \frac{H_{m,123}^{E}{a}$

^{*a*} Ternary term for representation of $H_{m,1+23}^{E}$ by eqs 3 and 4: $H_{m,T}^{E}$ (J·mol⁻¹) = $x_1 x_2 x_3 (-2838.33 + 3995.75 x_1 + 12127.97 x_2 - 1550.43 x_1^2 - 9294.34 x_1 x_2 - 12397.64 x_2^2)$, $s = 4.68 \text{ J·mol}^{-1}$.

Figure 1. Excess molar enthalpies $H^{\rm E}_{{\rm m},1+23}$ for DIPE (1) + nC6 (2) + nC16 (3) at 298.15 K. Experimental results: (\triangle) $x_2/x_3 = 0.3335$; (\bigcirc) $x_2/x_3 = 1.0004$; (\bigcirc) $x_2/x_3 = 2.9865$; (\diamondsuit) $x_2 = 0$, Zhu et al.¹; (\square) $x_3 = 0$, Zhu et al.¹ Curves: (-) calculated from the representation of the results by eq 3, using the ternary term $H^{\rm E}_{{\rm m},{\rm T}}$ given in the footnote of Table 3; (- -) estimated by means of the Liebermann–Fried model.

for the other relevant binaries by Zhu et al.,¹ Wang et al.,⁴ and Miller and Williamson.¹² Also included in Table 5 are values of the standard deviations s achieved in the fitting

Figure 2. Excess molar enthalpies $H_{m,1+23}^{E}$ for MTHF (1) + nC6 (2) + nC16 (3) at 298.15 K. Experimental results: (\triangle) $x_2/x_3 = 0.3336$; (\bigcirc) $x_2/x_3 = 1.0002$; (\bigtriangledown) $x_2/x_3 = 3.0010$; (\diamondsuit) $x_2 = 0$; (\square) $x_3 = 0$, Wang et al.⁴ Curves: (-) calculated from the representation of the results by eq 3, using the ternary term $H_{m,T}^{E}$ given in the footnote of Table 4; (- - -) estimated by means of the Liebermann–Fried model.

process and values^{7.8,20} of the isobaric thermal expansivities α_p of the components, used in evaluating the contributions due to different molecular sizes.

Table 5. Values of the Interaction Parameters, A_{ij} and A_{ji} , Standard Deviations, s, and Isobaric Thermal Expansivities, α_p , at 298.15 K for Liebermann–Fried Model Calculations

component				S	α _p (k	α_p (kK ⁻¹)	
i	j	A_{ij}	A_{ji}	$\overline{\mathbf{J}\boldsymbol{\cdot}\mathbf{mol}^{-1}}$	i	j	
DIPE	nC6	0.8493	0.9960	2.09	1.455 ^a	1.387^{b}	
DIPE	nC16	0.9982	0.6508	5.72	1.455^{a}	0.883^{b}	
nC6	nC16	1.0713	0.8121	0.85	1.387^{b}	0.883^{b}	
MTHF	nC6	0.8155	0.8525	1.70	1.215^{c}	1.387^{b}	
MTHF	nC16	0.9923	0.5348	5.85	1.215^{c}	0.883 ^b	

 a Obama et al. 7 $\ ^b$ Benson et al. 20 $\ ^c$ Estimated from the density data of De Lorenzi et al. 8

Figure 3. Contours for constant values of $H_{m,123}^{E}/J \cdot mol^{-1}$ for DIPE (1) + nC6 (2) + nC16 (3) at 298.15 K. Part (a) calculated from the representation of the experimental results by eqs 1 and 3 with $H_{m,T}^{E}$ from the footnote of Table 3; part (b) estimated by means of the Liebermann–Fried model.

Using the values of the parameters given in Table 5, $H_{m,1+23}^{E}$ and $H_{m,123}^{E}$ were calculated for the present mixtures. The resulting values of $H_{m,1+23}^{E}$ for the ternary mixtures and $H_{m,ij}^{E}$ for the constituent binaries were used to plot the dashed curves in Figures 1 and 2. It can be seen from these that although the fits of the data for the constituent binaries are relatively good, the Liebermann–Fried model tends to overestimate the ternary enthalpies of both systems. The mean absolute relative deviations between the 56 experimental and estimated values of $H_{m,1+23}^{E}$ in Table 3 and the 57 points in Table 4 amount to 5.3% and 4.8%, respectively.

Figure 4. Contours for constant values of $H_{m,123}^{E}/J \cdot mol^{-1}$ for MTHF (1) + nC6 (2) + nC16 (3) at 298.15 K. Part (a) calculated from the representation of the experimental results by eqs 1 and 3 with $H_{m,T}^{E}$ from the footnote of Table 4; part (b) estimated by means of the Liebermann–Fried model.

Constant $H_{m,123}^E$ contours were also estimated on the basis of the Liebermann–Fried model and are shown in parts b of Figures 3 and 4. Although differing in detail, the overall characteristics of these are very similar to those in parts a, which were derived from the representations of the experimental data for the ternary mixtures. This again indicates that the Liebermann–Fried model provides useful estimates of the ternary enthalpy behavior without requiring the direct investigation of the excess enthalpies of any ternary mixtures.

Literature Cited

- Zhu, S.; Shen, S.; Benson, G. C.; Lu, B. C.-Y. Excess Enthalpies of (2,4-Dimethyl-3-oxapentane + one or more *n*-Alkanes) at the Temperature 298.15 K, Part I: Binary Mixtures. *J. Chem. Thermodyn.* 1994, *26*, 415–420.
- (2) Zhu, S.; Shen, S.; Benson, G. C.; Lu, B. C.-Y. Excess Enthalpies of (2,4-Dimethyl-3-oxapentane + one or more *n*-Alkanes) at the Temperature 298.15 K, Part II: Ternary Mixtures. *J. Chem. Thermodyn.* 1994, 26, 421–427.
- (3) Wang, Z.; Horikawa, Y.; Benson, G. C.; Lu, B. C.-Y. Excess Enthalpies of the Ternary Mixtures: Diisopropyl Ether + *n*-Octane + (*n*-Heptane or *n*-Dodecane) at 298.15 K. *Fluid Phase Equilib.* **2001**, *181*, 215–224.
- (4) Wang, Z.; Benson, G. C.; Lu, B. C.-Y. Excess Enthalpies of 2-Methyltetrahydrofuran + n-Alkane Binary Mixtures at 298.15 K. J. Chem. Eng. Data 2001, 46, 1188–1189.
- (5) Wang, Z.; Benson, G. C.; Lu, B. C.-Y. Excess Enthalpies of the Ternary Mixtures 2-Methyltetrahydrofuran + n-Octane + (n-Decane or n-Dodecane) at 298.15 K. J. Chem. Eng. Data 2001, 46, 1193–1197.

- (6) Wang, Z.; Benson, G. C.; Lu, B. C.-Y. Excess Enthalpies of the Ternary Mixtures: 2-Methyltetrahydrofuran + n-Hexane + (n-Decane or n-Dodecane) at 298.15 K. *Fluid Phase Equilib.* 2001, 189, 39–48.
- (7) Obama, M.; Oodera, Y.; Kohama, N.; Yanase, T.; Saito, Y.; Kusano, K. Densities, Molar Volumes, and Cubic Expansion Coefficients of 78 Aliphatic Ethers. *J. Chem. Eng. Data* **1985**, *30*, 1–5.
- (8) De Lorenzi, L.; Fermeglia, M.; Torriano, G. Density and Viscosity of 1-Methoxy-2-Propanol, 2-Methyltetrahydrofuran, α,α,α-Tri-fluorotoluene, and Their Binary Mixtures with 1,1,1-Trichloro-ethane at Different Temperatures. *J. Chem. Eng. Data* **1996**, *41*, 1121–1125.
- (9) *TRC Thermodynamic Tables—Hydrocarbons*, Thermodynamic Research Center, The Texas A&M University System: College Station, TX, 1996; 1995 loose-leaf data sheet 23-2-(1.10100)-a, p 1; 1976 loose-leaf data sheet 23-2-[1.101]-a, p 2.
- (10) Tanaka, R.; D'Arcy, P. J.; Benson, G. C. Application of a Flow Microcalorimeter to Determine the Excess Enthalpies of Binary Mixtures of Non-electrolytes. *Thermochim. Acta* 1975, *11*, 163– 175.
- (11) Kimura, F.; Benson, G. C.; Halpin, C. J. Excess Enthalpies of Binary Mixtures of *n*-Heptane with Hexane Isomers. *Fluid Phase Equilib.* **1983**, *11*, 245–250.
- (12) Miller, R. C.; Williamson, A. G. Excess Molar Enthalpies for (*n*-Hexane + *n*-Hexadecane) and for Three- and Four-component Alkane Mixtures Simulating this Binary Mixture. *J. Chem. Thermodyn.* **1984**, *16*, 793–799.
- (13) Tsao, C. Č.; Smith, J. M. Heats of Mixing of Liquids. Chem. Eng. Prog. Symp. Ser. No. 7 1953, 49, 107–117.

- (14) Morris, J. W.; Mulvey, P. J.; Abbott, M. M.; Van Ness, H. C. Excess Thermodynamic Functions for Ternary Systems I. Acetone– Chloroform–Methanol at 50 °C. J. Chem. Eng. Data 1975, 20, 403–405.
- (15) Findlay, A.; Campbell, A. N. *The Phase Rule and Its Applications*, 8th ed.; Longmans, Green and Co.: London, 1938; p 214.
- (16) Peng, D.-Y.; Wang, Z.; Benson, G. C.; Lu, B. C.-Y. Excess Enthalpies and (Vapor + Liquid) Equilibrium for (Oxygenated Additive + n-Alkane). J. Chem. Thermodyn. 2001, 33, 83–93.
- (17) Wang, Z.; Peng, D.-Y.; Benson, G. C.; Lu, B. C.-Y. Excess Enthalpies of {Ethyl *tert*-Butylether + Hexane + Heptane, or Octane} at the Temperature 298.15 K. *J. Chem. Thermodyn.* **2001**, *33*, 1181–1191.
- (18) Liebermann, E.; Fried, V. Estimation of the Excess Gibbs Free Energy and Enthalpy of Mixing of Binary Nonassociated Mixtures. *Ind. Eng. Chem. Fundam.* **1972**, *11*, 350–354.
- (19) Liebermann, E.; Fried, V. The Temperature Dependence of the Gibbs Free Energy of Binary Nonassociated Mixtures. *Ind. Eng. Chem. Fundam.* **1972**, *11*, 354–355.
- (20) Benson, G. C.; Luo, B.; Lu, B. C.-Y. Excess Enthalpies of Dibutyl Ether + n-Alkane Mixtures at 298.15 K. Can. J. Chem. 1988, 66, 531–534.

Received for review February 22, 2002. Accepted May 3, 2002. The financial support of the Natural Sciences and Engineering Research Council of Canada (NSERC) is gratefully acknowledged.

JE0200362