Solid-Liquid Equilibria of Terephthalaldehydic Acid in Different Solvents

Dian-Qing Li,* David G. Evans, and Xue Duan

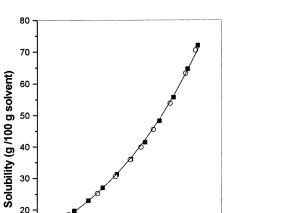
Key Laboratory of Science and Technology of Controllable Chemical Reactions, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China

Solubilities of terephthalaldehydic acid in water, acetic acid, chloroform, *N*, *N*-dimethylformamide, and *N*-methyl-2-pyrrolidone were determined by a static analytical method at temperatures ranging from 293.15 K to 371.15 K at atmospheric pressure. The Buchowski equation was used to correlate the solubility data with standard deviations in the range 0.006–3.438 g of terephthalaldehydic acid/100 g of solvent.

Introduction

As one of the most important aromatic compounds, terephthalic acid is widely used in organic synthesis, particularly in the polyester industry. During the manufacture of terephthalic acid by oxidation of *p*-xylene, many undesired compounds are formed, including terephthalaldehydic acid, which is a major component of the byproducts. To purify terephthalic acid using simple methods and to separate terephthalaldehydic acid from the reaction mixture, measurement of systemic and comprehensive solubility data of terephthalaldehydic acid in different solvents is needed. The solubilities of terephthalaldehydic acid in N-methyl-2-pyrrolidone measured by the synthetic method have been reported in a previous paper;¹ solubilities of terephthalaldehydic acid in water and in acetic acid with a mass fraction purity of 0.980, measured at temperatures above 397.2 K, have been reported,² but these solubility data are not accurate and have insufficient points for practical use. In this work we report solubilities of terephthalaldehydic acid in water, acetic acid, chloroform, N, N-dimethylformamide, and N-methyl-2-pyrrolidone in the temperature range from 293.15 K to 371.15 K at atmospheric pressure.

Experimental Section


Chemicals. Water used in the experiments was doubledistilled. Acetic acid, chloroform, N.N-dimethylformamide, and N-methyl-2-pyrrolidone were obtained from Shanghai Chemical Reagent Co. and had mass fraction purities of 0.995, 0.990, 0.990, and 0.990, respectively. Terephthalaldehydic acid had a mass fraction purity of 0.998, which was obtained by purifying the commercial product that had a stated mass fraction purity of 0.980. First, terephthalaldehydic acid was dissolved in 10 wt % sodium hydroxide solution. Next, concentration and crystallization were conducted three times to remove the impurities. Then, acidification, washing, and recrystallization in water were carried out to obtain the purified terephthalaldehydic acid. The purity of this aromatic acid compound was analyzed with a high performance liquid chromatograph (LC-10A, Shimadzu). The melting point of terephthalaldehydic acid measured with a NETZSCH STA449C differential scanning calorimeter was 522.8 K and compares with the literature value 520.2 K.3

* To whom correspondence should be addressed. E-mail: Dellsson@ 371.net. Fax: 0086-10-64425385.

Table 1.	Solubilities	of Terephthalaldehydic Acid in	n
Differen	t Solvents		

Different Solvents								
T	S	$S_{ m c}$	Т	S	$S_{ m c}$			
K	$\overline{g \cdot (100 \text{ g})^{-1}}$	$\overline{g \cdot (100 \ g)^{-1}}$	K	$\overline{g \cdot (100 \text{ g})^{-1}}$	g •(100 g) ^{−1}			
		Wa	ter					
293.15	0.035	0.025	338.15	0.229	0.251			
298.15	0.041	0.034	343.15	0.287	0.312			
303.15	0.053	0.044	348.15	0.351	0.387			
308.15	0.065	0.058	353.15	0.437	0.476			
313.15	0.078	0.076	358.15	0.543	0.583			
318.15	0.098	0.098	363.15	0.687	0.709			
323.15	0.121	0.125	368.15	0.865	0.860			
328.15	0.147	0.159	371.15	1.005	0.963			
333.15	0.183	0.200						
	Acetic Acid							
293.15	0.246	0.164	338.15	1.124	1.233			
298.15	0.279	0.211	343.15	1.366	1.495			
303.15	0.316	0.270	348.15	1.688	1.803			
308.15	0.360	0.342	353.15	2.035	2.165			
313.15	0.425	0.431	358.15	2.463	2.587			
318.15	0.511	0.538	363.15	2.983	3.079			
323.15	0.615	0.668	368.15	3.661	3.650			
328.15	0.764	0.825	370.65	4.155	3.968			
333.15	0.926	1.011						
		Chlor	oform					
293.15	0.104	0.096	318.15	0.212	0.219			
298.15	0.118	0.114	323.15	0.247	0.255			
303.15	0.135	0.136	328.15	0.293	0.295			
308.15	0.156	0.160	332.15	0.339	0.331			
313.15	0.183	0.188						
N, N-Dimethylformamide								
298.15	54.473	50.146	338.15	69.132	69.194			
303.15	55.729	52.148	343.15	71.239	72.172			
308.15	57.500	54.243	348.15	73.796	75.320			
313.15	59.159	56.437	353.15	76.092	78.653			
318.15	60.736	58.739	358.15	78.544	82.189			
323.15	62.682	61.157	363.15	80.879	85.946			
328.15	64.904	63.698	368.15	83.699	89.947			
333.15	66.911	66.384	370.35	85.172	91.790			
000 1 -	10.005	N-Methyl-2			10.016			
293.15	16.885	16.387	323.15	41.458	42.318			
298.15	19.681	19.427	328.15	48.249	48.831			
303.15	22.892	22.911	333.15	55.678	56.146			
308.15	26.980	26.888	338.15	64.571	64.339			
313.15	31.242	31.410	341.75	72.030	70.830			
318.15	36.013	36.532						

Procedure. Solubilities were measured by the static analytical method.^{4–6} Excess solute and solvent were placed in a jacketed glass bottle. The temperature was maintained within ± 0.05 K of the desired temperature with a thermoelectric controlling system (type 501, Shanghai Scientific Instruments). Continuous stirring was carried out for several days with a magnetic bar. Attainment of equilib

290 300 310 320 330 340 350 **T/K Figure 1.** Solubility of terephthalaldehydic acid in *N*-methyl-2pyrrolidone: ○, previous work;¹ ■, this work; −, the values

 Table 2. Parameters for Correlation Equations of Different Solvents

10

calculated by eq 1.

solvent	λ	<i>h</i> /K	$\sigma_x/g \cdot (100 \text{ g})^{-1}$
water	0.05911	85611.42	0.022
acetic acid	0.49649	8912.83	0.093
chloroform	0.07003	43160.69	0.006
<i>N</i> , <i>N</i> -dimethylformamide	$2.879 imes10^{-8}$	2842.26	3.438
N-methyl-2-pyrrolidone	8.68477	337.94	0.557

rium was verified by repetitive measurements during the following several days until the results were reproducible within 0.5%. With the exception of the system terephthalaldehydic acid + acetic acid, compositions of saturated solutions were determined by titration with standard sodium hydroxide solution using phenolphthalein as indicator. As for the system terephthalaldehydic acid + acetic acid, the compositions of saturated solutions were determined by a mass analytical method, in which the amount of terephthalaldehydic acid in the weighed solution was determined by mass after drying in vacuo at 50 °C for more than 6 h. To test the uncertainty of the measurements, one other experiment was done in which the solubility of phthalic acid in water was determined. The experimental value differed from the literature value by less than 1%.⁷ The solubilities of terephthalaldehydic acid in the five solvents are listed in Table 1. Values represent the average of three or four independent determinations. In this work the estimated uncertainty of solubility was less than 0.001 g of terephthalaldehydic acid/100 g of solvent.

Results and Discussion

Measured solubilities of terephthalaldehydic acid in *N*-methyl-2-pyrrolidone are shown in Figure 1 together with our previous measurements using the synthetic method.¹ It is clear from Figure 1 that solubility data measured using the two methods are in close agreement. Because *N*,*N*-dimethylformamide and *N*-methyl-2-pyrroli-

done are polar solvents, terephthalaldehydic acid has larger solubilities in these two solvents than in the other three.

Buchowski and co-workers⁸ developed an equation to deal with systems in which solutes exhibit self-association effects. In fact, this equation is also applicable to most solid–liquid equilibrium systems giving excellent correlation results without considering the activity coefficients of components. The Buchowski equation is given by eq 1,

$$\ln[1 + 100\lambda M_{\text{solute}} / (SM_{\text{solvent}})]_{\text{sat}} = \lambda h (T^{-1} - T_{\text{m}}^{-1}) \quad (1)$$

where λ and *h* are two parameters, *T* is the absolute temperature, $T_{\rm m}$ is the melting point of the solute, *S* stands for the solubility in grams of solute/100 grams of solvent, and $M_{\rm solvent}$ and $M_{\rm solvent}$ are the molecular weight of solute and solvent, respectively. The parameter *h* is related to the enthalpy of solution per mole of solute with units of K, and λ is identified as the approximate mean size of multimer molecules of the solute.

The solubility data were correlated with eq 1, and the calculated solubilities S_c are listed in Table 1 for comparison with the experimental values. The values of the two parameters λ and h together with the root-mean-square deviations (RMSDs) are listed in Table 2. The RMSD is defined as

$$\sigma_x = \left[\frac{1}{n_{i=1}}^n (S_{ci} - S_{j})^2\right]^{1/2}$$
(2)

where S_{ci} is the solubility calculated by eq 1 and *n* is the number of experimental points. From Tables 1 and 2 the calculated solubilities show good agreement with the experimental values. The experimental solubilities and correlation equation in this work can used to improve the design of the terephthalic acid purification process and the separation of terephthalaldehydic acid.

Literature Cited

- Li, D.-Q.; Liu, D.-Z.; Wang, F.-A. Solubilities of Terephthalaldehydic, *p*-Toluic, Benzoic, Terephthalic, and Isophthalic Acids in *N*-Methyl-2-pyrrolidone from 295.65 K to 371.35 K. *J. Chem. Eng. Data* 2001, *46*, 172–173.
- Chen, G.-R. Chinese Encyclopedia of Chemical and Engineering Technology, Chemical Industry Press: Beijing, 1990; Vol. 1.
 Robert, C. W.; Jeanette, G. G. Handbook of Data on Organic
- (3) Robert, Č. W.; Jeanette, G. Ğ. Handbook of Data on Organic Compounds, 2nd ed.; CRC Press Int.: Boca Raton, FL, 1985; Vol. II.
- (4) Sugunan, S.; Thomas, B. Salting Coefficients of 2-, 3-, and 4-Methylbenzoic Acids. *J. Chem. Eng. Data* **1993**, *38*, 520–521.
 (5) Powell, J. R.; Coym, K. S.; Acree, W. E., Jr. Solubility of
- (5) Powell, J. R.; Coym, K. S.; Acree, W. E., Jr. Solubility of Anthracene in Binary Alcohol + 2-Methoxyethyl Ether Solvent Mixtures. J. Chem. Eng. Data 1997, 42, 395–397.
- (6) Pribyla, K. J.; Chuca, I.; Van, T. T.; Acree, W. E., Jr. Solubility of Anthracene in Ternary Methyl *tert*-Butyl Ether + Alcohol + Heptane Solvent Mixtures at 298.15 K. *J. Chem. Eng. Data* 2000, *45*, 533–535.
- (7) Stephen, H.; Stephen, T. Solubilities of Inorganic and Organic Compounds; Pergamon Press: Oxford, 1963; Vol. 1.
- (8) Buchowski, H.; Ksiazczak, A.; Pietrzyk, S. Solvent Activity along a Saturation Line and Solubility of Hydrogen-Bonded Solids. J. Phys. Chem. 1980, 84, 975–979.

Received for review February 26, 2002. Accepted May 31, 2002. JE020039E