Reviews

$P-\rho-T$ Data of Liquids: Summarization and Evaluation. 8. Miscellaneous Compounds

Ivan Cibulka*,† and Toshiharu Takagi‡

Department of Physical Chemistry, Institute of Chemical Technology, 166 28 Prague, Czech Republic, and Kyoto Institute of Technology, Kyoto 606-8585, Japan

The published experimental data for 53 compounds (eight amines, eight nitriles, four *N*-heterocyclic compounds, six nitro compounds, four amides, four other compounds containing C, H, O, and N atoms, six halogenated alcohols, five fluoroethers, and eight miscellaneous compounds) are summarized and reviewed, and the parameters of the Tait equation are given for 49 substances. This equation allows the calculation of smoothed values of either the volume ratio, $V(P)/V(P_{ref})$, and related properties (relative density, $\rho(P)/\rho(P_{ref})$, compression, $\{1 - \rho(P_{ref})/\rho(P)\}$) or, using density data at atmospheric pressure ($P_{ref} = 0.1$ MPa) or at saturation ($P_{ref} = P_{sat}$), the liquid densities of the substances over a temperature and pressure range. Experimental values of isothermal compressibility at atmospheric pressure compiled from the literature are also summarized and compared with values calculated from the Tait equation.

Introduction

This work is the continuation of a systematic summarization and critical evaluation of published $P-\rho-T$ data of pure substances in the liquid state. Data for hydrocarbons C_n ($n \ge 5$) [96-cib/hne, 99-cib/tak, 99-cib/tak-1], C-H-O substances [94-cib/zik, 97-cib/hne, 97-cib/hne-1], and selected halogenated hydrocarbons [01-cib/tak] have already been reviewed and evaluated. This work concerns substances that have not been included in the previous reviews, that is, compounds of C-H-N, C-H-O-N, C-H-O-N, C-H-O-halogen, and miscellaneous substances.

Sources of Data

The original experimental data (4825 data points for 53 substances) processed were extracted from the source database which was employed for our previous reviews and is being currently updated. A list of substances is presented in Table 1 along with Chemical Abstracts Service Registry Numbers (CASRNs; provided by the authors) and formulas.

The characteristics of data that were available in the database for density and related quantities (molar and specific volumes, volume or density ratios, compression) of selected compounds are summarized in Table 2. The temperature ranges and numbers of experimental values are restricted up to the critical temperature; that is, only subcritical liquid density data were retrieved from the source database. No corrections for the different temperature scales were made; the effect is mostly less than uncertainties in density and/or temperature measurements. Besides that, very few researchers declare a particular temperature scale used (see "data type" column and footnotes f and g in Table 2). Similarly, as in our previous

[†] Institute of Chemical Technology.

[‡] Kyoto Institute of Technology

reviews, values (denoted by a letter F in the "data type" column of Table 2) calculated from smoothing functions presented in the papers (mostly the Tait equation), following as much as possible the information concerning the distribution of experimental points given by authors, were included for some substances if no direct experimental (D) or smoothed values (S) were available in the papers. The $\rho(T,P)$ values calculated from other properties (C) were also included in the evaluation.

Treatment of Data and Method of Data Evaluation

The procedures of treatment of the data and the critical evaluation were essentially the same as those employed in our previous papers. A brief summarization is given below.

Available data on the compressed liquid density and related quantities were fitted by a Tait equation with temperature-dependent parameters C(T) and B(T) written in the form

$$\rho(T, P, \vec{c}, \vec{b}) = \frac{\rho(T, P_{\text{ref}}(T))}{1 - C(T, \vec{c}) \ln\left[\frac{B(T, \vec{b}) + P}{B(T, \vec{b}) + P_{\text{ref}}(T)}\right]}$$
(1)

where

$$C(T, \vec{c}) = \sum_{i=0}^{N_{\rm C}} c_i [(T - T_0)/100]^i$$
$$\vec{c} = \{c_i\} = \{c_0, ..., c_{N_{\rm C}}\} \quad (2)$$

$$B(T, \vec{b}) = \sum_{i=0}^{N_{\rm B}} b_i [(T - T_0)/100]^i$$
$$\vec{b} = \{b_i\} = \{b_0, ..., b_{N_{\rm D}}\}$$
(3)

^{*} To whom correspondence should be addressed. Fax: +420-2-2431-0273. E-mail: ivan.cibulka@vscht.cz.

Table 1. List of Substances: Names (Alternative Names),Chemical Abstracts Service Registry Numbers, CASRN(Supplied by Authors), and Summary Formulas

name (alternative name)	CASRN	formula
C-H-N Compounds	5	
Aminos		
1.2-ethanediamine	107-15-3	C.H.N.
1-aminopropane (<i>n</i> -propylamine)	107-10-8	C ₂ H ₈ N ₂
1-aminobutane (<i>n</i> -butylamine)	109-73-9	C ₄ H ₁₁ N
2-methyl-2-propanamine (<i>tert</i> -butylamine)	75-64-9	$C_4H_{11}N$
1-aminopentane (<i>n</i> -pentylamine)	110-58-7	$C_5H_{13}N$
aminobenzene (aniline, phenylamine)	62-53-3	C ₆ H ₇ N
2-methyl-1-aminobenzene (o-toluidine,	95-53-4	C_7H_9N
2-aminotoluene)		a
4-methyl-1-aminobenzene (<i>p</i> -toluidine,	106-49-0	C_7H_9N
4-animotoruene)		
Nitriles		
ethanenitrile (acetonitrile, methyl cyanide)	75-05-8	C_2H_3N
ethanenitrile- d_3	2206-26-0	C_2D_3N
butapanitrile (propionitrile, etnyi cyanide)	107-12-0	C_3H_5IN
cvanide)	109-74-0	C4H7IN
2-methylpropanenitrile (<i>iso</i> -butyronitrile.	78-82-0	C ₄ H ₇ N
2-cyanopropane)		
2-methylpropenenitrile (methacrylonitrile,	126-98-7	C_4H_5N
2-cyanopropene)		
benzonitrile (phenyl cyanide)	100-47-0	C_7H_5N
phenylethanenitrile (α -tolunitrile, benzyl	140-29-4	C_8H_7N
cyanide)		
Heterocyclic C-H-N Com	pounds	
pyridine (azine)	110-86-1	C_5H_5N
piperidine (azacyclohexane,	110-89-4	$C_5H_{11}N$
nexanyaropyriaine)	120 72 0	СИМ
1-azamuene (1-benzazoie, 1ri-muoie, benzopyrrole)	120-72-9	C ₈ Π ₇ IN
auinoline (benzo[<i>b</i>]pyridine)	91-22-5	C ₀ H ₇ N
	1	0 91 1/1 1
C-H-O-N Compoun	ds	
Nitro Compounds		
nitromethane	75-52-5	CH_3NO_2
nitroethane	79-24-3	$C_2H_5NO_2$
1-nitropropane	108-03-2	$C_3H_7NO_2$
2-nitropropane	79-46-9	$C_3H_7NO_2$
2-methyl-2-nitropropane	594-70-7	$C_4H_9NO_2$
nitrobenzene	98-95-3	$C_6H_5INO_2$
Amides		
formamide	75-12-7	CH ₃ NO
<i>N</i> -methylformamide	123-39-7	C_2H_5NO
N, N-dimethylformamide	68-12-2	C_3H_7NO
<i>Iv, Iv</i> -dimethylacetamide	127-19-5	C_4H_9NO
Other C-H-O-N Compo	ounds	
triethanolamine	102-71-6	$C_6H_{15}NO_3$
1-methoxy-2-nitrobenzene (<i>o</i> -nitroanisole)	91-23-6	$C_7H_7NO_3$
1-metnylpyrrolldin-2-one	872-50-4	C_5H_9NO
3-cvanopropanal (4-ovabutanenitrile)	3515-93-3	C.H.NO
		04115110
C-H-O Halogen Compo	unds	
Halogenated Alcohol	s	
2-fluoroethanol	371-62-0	C_2H_5FO
2,2-difluoroethanol	359-13-7	$C_2H_4F_2O$
2,2,2-trifluoroethanol	75-89-8	$C_2H_3F_3O$
2,2,3,3,3-pentafluoropropanol	422-05-9	C ₃ H ₃ F ₅ O
2,2,3,3-tetrafluoropropanol	76-37-9	$C_3H_4F_4O$
2,2,2-trichloroethanol	115-20-8	$C_2H_3CI_3O$
Halogenated Ethers		
bis(difluoromethyl) ether (HFE134)	1691-17-4	$C_2H_2F_4O$
2,2,2-trifluoroethyl difluoromethyl ether	1885-48-9	$C_3H_3F_5O$
(HFE245mf)	99410 44 9	CUEO
1 2 2 2 totrafluoroothyl difluoromothyl	22410-44-2 57041 67 5	$C_3\Pi_3\Gamma_5O$
ether (HFF236me)	57041-07-5	$C_3 \Pi_2 \Gamma_6 O$
heptafluoropropyl methyl ether	375-03-1	C4H3F7O
(HFE347mcc)	2.0 00 1	- 4 3- / 0
Miscellaneous Compour	nds	
pentafluorobenzonitrile	773-82-0	C ₇ F ₅ N
tetramethylstannane	594-27-4	C ₄ H ₁₂ Sn
tetramethylsilane	75-76-3	C ₄ H ₁₂ Si
tetraethylšilane	631-36-7	C ₈ H ₂₀ Si
hexamethyldisilane	1450-14-2	$C_6H_{18}Si_2$
tetraethoxysilane	78-10-4	$C_8H_{20}O_4Si$
octamethylcyclotetrasiloxane	556-67-2	C ₈ H ₂₄ O ₄ Si
dimethyl sulfoxide	67-68-5	C_2H_6OS

and T_0 is a parameter with a preselected fixed value for which $C(T_0) = c_0$ and $B(T_0) = b_0$ are valid. The reference values, $\rho(T, P_{ref}(T))$ and $P_{ref}(T)$, were selected in the same way as that used previously; that is, at temperatures below the normal boiling temperature the densities at atmospheric pressure ($P_{ref} = 0.101$ 325 MPa) were used, while for higher temperatures the values along the saturation curve, that is, saturated liquid densities and saturated vapor pressures, were employed. Exceptions of this rule are discussed below. Experimental values of densities at atmospheric pressure or at saturation for the same sample reported along with compressed liquid density data were preferably used for the reference density, $\rho(T, P_{ref})$, and thus, the values of relative density, $\rho(T,P)/\rho(T,P_{ref}=0.1)$ MPa or P_{sat}), reported by the researchers were correlated by eq 1. In some cases of isothermal data, the reference density, $\rho(T, P_{ref})$, was obtained for each isotherm by an extrapolation of experimental compressed liquid density data to the reference pressure, P_{ref} (0.101 325 MPa below or $P_{\rm sat}$ above the normal boiling temperature), using the Tait equation. If the reference values were not available in the original source and the extrapolation was not feasible (e.g., for isobaric or isochoric data), then densities obtained from the equations summarized in Appendix 1 (Table 6) were employed in the correlations. In the cases where the compressed-liquid data were presented in the original source in the form of one of the relative properties (relative density, $\rho(T,P)/\rho(T,P_{ref})$; volume ratio, $V(T,P)/V(T,P_{ref}) =$ $\rho(T, P_{ref}) / \rho(T, P)$; compression, { $V(T, P_{ref}) - V(T, P)$ }/ $V(T, P_{ref})$ = $1 - \rho(T, P_{ref}) / \rho(T, P)$), such data were correlated by eq 1 without any knowledge of reference densities; that is, the relative densities $\rho(T, P) / \rho(T, P_{ref})$ were correlated.

Saturated vapor pressures were calculated from the smoothing functions either taken from the literature (for references, see Table 3) or obtained by fitting to selected data (see Appendix 2 and Table 7).

Adjustable parameters \vec{c} and \vec{b} of function 1 were obtained by minimizing the objective function

$$\phi(\vec{c},\vec{b}) = \sum_{j=1}^{N_p} w_j [\rho_j - \rho(T_j, P_j, \vec{c}, \vec{b})]^2$$
(4)

where $\rho_{j_{\perp}} = \rho(T_{j_{i}}P_{j_{i}})$ is the *j*th experimental data point, $\rho(T_{j_{i}}P_{j_{i}}\vec{c},\vec{b})$ is the value calculated from function 1 with parameters \vec{c} and \vec{b} for the values T_{j} and P_{j} , and N_{p} is the number of experimental values of density used in the correlation. Adjustable parameters were calculated by the Marquardt algorithm in double precision to minimize the influence of rounding errors. Statistical weights, $w_{j_{i}}$ in eq 4, were defined as

$$w_i = \mu / (\delta \rho_i)^2 \tag{5}$$

where $\delta \rho_j$ is the experimental uncertainty taken from the source database and either given by the authors (preferably) or estimated by a compiler for the *j*th density value in a correlated data set. The uncertainties $\delta \rho_j$ included not only random but also systematic error estimates (if available) and corresponded to the experimental accuracy rather than the precision of measurements. The statistical weight of each density value was adjusted by varying the parameter μ_j ($\mu_j = 0$ for rejected values), taking into account additional available information (sample purity, experimental method used, uncertainties in temperature and pressure measurements). In some cases comparisons of isothermal compressibilities calculated from the fit of a particular data set with independent values (see below and

 Table 2. Characteristics of Data Sets: Overall Number of Data Points, N_p , Temperature and Pressure Ranges within the Liquid State, T_{min} , T_{max} , P_{min} , and P_{max} , Experimental Method Used, Types of Data, and Purities of Measured Samples

		Τ.	Т	Р.	р			sample			T.	Т	Ρ.	P			sample
ref	N	- I min K	- Max	MPa	MPa	meth ^a	data	<u></u>	ref	N	K	- K	MPa	MPa	meth ^a	data	
	1 vp	K	К	Ivii a	Ivii a	meur	type	/0	Ter	1 vp	K	К	wir a	wir a	meur	type	/0
711 / ·		000 15	1,2-E	thanedia	amine		D	004	77 . A		070 1	Nitr	ometha	ane		D	
/1-nam/smi	1	303.15	303.15 1-Ar	101.3 ninonror	101.3	va	D	99°	77-gup/nan 90-uos/mat-1	24 19	273.13	5 303.13 5 393 15	25.0	22.1	VS	D D	
95-pap/pan	9	298.15	298.15	2.0	33.9	mo	D	99.0m ^e	total	36	273.15	$5\ 363.15$	2.8	150.0	vu	D	
••• F•F•F•	-		1-A	minobut	ane		_					Nit	roetha	ne			
71-ham/smi	1	303.15	303.15	101.3	101.3	va	D	99 ^e	77-gup/han	24	273.15	5 363.15	2.8	22.1	vs	D	
		2	-Methyl	-2-amin	opropane		-	00 × 1	90-uos/mat-1	12	298.15	5 323.15	25.0	150.0	va	D	
95-kip/woo	54	278.15	313.14	2.5	157.8	vb	\mathbf{D}^{t}	$>99.5^{d}$	total	36	273.15	5 363.15	2.8	150.0			
71-ham/smi	1	303 15	303 15	101 3	101 3	va	D	QQ e	90-uos/mat-1	12	298 1	1-INI 3 323 15	25 0	150 0	va	D	
/ i nani/sini	1	505.15	Am	inobenz	ene	va	D	00	50 u05/11/11 1	1~	200.10	2-Ni	troprop	ane	va	D	
39-gib/loe	8	298.15	358.15	50.0	100.0	va	F		90-uos/mat-1	12	298.15	5 323.15	25.0	150.0	va	D	
39-gib/loe-1	16	298.15	358.15	25.0	100.0	va	F				2	Methyl	-2-nitro	propa	ne		
80-tak	3	298.15	298.15	55.3	151.8	ul	C	$>99.0v^{e}$	96-jen/reu	18	313.15	5 353.15	10.0	100.0	vs	S	99.5^{e}
85-eas/woo	10	298.15	323.15	25.0	100.0	vb	S	> 00 Grue	20 sih/loo	e	909 12	Niti	robenze	ene		Б	
total	10 54	208.15	303.15	10.0	180.0	ui	г	~99.0V°	39-gib/loe-1	16	298.15	5 358 15	25.0	100.0	va	г F	
totai	01	200.10	-Methvl	-1-amin	obenzene				60-hil/goc	6	293.15	$5\ 293.15$	5.1	50.7	bu	D	
79-gus/far	60	296.50	524.00	5.0	50.0	bu	S		79-abd/dzh	63	298.13	5 523.15	27.7	498.2	pi	D	
0		4	Methyl	-1-amin	obenzene				82-tak/ter	25	293.15	5 313.15	5.0	100.0	ul	С	
81-gus/naz	51	323.00	523.00	5.0	50.0	bu	D		90-uos/mat-1	3	298.15	5 298.15	25.0	75.0	va	D	
75 6	~~	202.05	Etl	hanenitr	rile	•-	D	00 0d	total	119	293.15	5 523.15	5.0	498.2			
75-fra/fra	// २२	302.95	380 15	2.4	240.4	ia	D S	99.8 ^d	83-025/2000	74	288 1	F0 322315		1e 970 7	vb	р	
75-fra/fra	85	323.15	523.15	5.0	250.0	ia	S	99.8 ^d	89-mor/nak	1	298.15	5 298 15	101.3	101.3	va	D	
77-gun/han	24	273.15	363.15	2.8	22.1	vs	D	00.0	91-uos/kit	4	298.15	5298.15	20.0	150.0	va	D	
77-sch/sch	21	303.15	393.15	3.0	450.0	nd	D		total	79	288.15	5 323.15	2.2	279.7			
77-sri/kay	12	283.15	313.15	50.0	200.0	vs	D					N-Meth	ylform	amide			
79-lue/sch	8	298.15	298.15	15.0	70.0	vs	F		85-eas/woo-1	37	288.15	5 313.15	2.5	290.0	vb	F	
80-lan/wue	20	283.15	313.15	10.0	300.0	vs	S		91-uos/kit	4	298.15	5 298.15	50.0	200.0	va	D	
80-lan/wue-1	142	233.45	313.25	10.0	300.0	vs	D		total	41	288.15	5 313.15	2.5	290.0			
82-eas/woo	5	298.15	298.15	50.0	250.0	vb	D				Λ	, <i>N</i> -Dim	ethylfoi	rmami	de		
85-eas/woo	10	298.15	313.15	50.0	250.0	vb	S		85-eas/woo-1	51	288.15	5 313.15	2.5	290.0	vb	F	
85-kra/mue	88	256.83	523.20	0.6	60.2	ia	\mathbf{D}^{g}	99.98m ^e	89-mor/nak	1	298.15	5 298.15	101.3	101.3	va	D	
88-eas/woo	83	278.15	323.15	2.5	280.0	vb	F		91-uos/kit	4	298.15	5 298.15	20.0	150.0	va	D	
90-lai/how	18	300.48	334.78	0.135	0.135	nd	D	99.9^{e}	total	56	288.15	5 313.15	2.5	290.0			
91-dym/awa	34	298.25	373.18	23.0	512.4	nd	\mathbf{S}^n		01	4	/	/, <i>I</i> V-Dim	ethylac	etami	de	D	
totai	000	233.45	545.15 Eth	0.1 monitril	512.4				91-u08/KIU	4	298.13	298.13 (Triot	banalar	200.0	va	D	
77-sch/sch	15	303 15	363 15	3.0	400.0	nd	D	99 <i>d</i>	33-hri	20	273 15	5 368 15	49.0	980 7	vh	D	
77 Self/Self	10	505.15	Pro	panenit	rile	nu	D	00	55 511	20	270.10 1-1	Methoxy	/-2-nitr	obenze	ene	D	
84-sha/gus	102	190.36	543.18	5.0	50.0	bu	D		60-hil/goc	6	293.15	5 293.15	6.1	48.6	bu	D	
90-uos/mat	6	298.15	298.15	25.0	150.0	va	D		0		1.	Methyl	oyrrolic	lin-2-o	ne		
total	108	190.36	543.18	5.0	150.0				91-uos/kit	4	298.15	5 298.15	50.0	200.0	va	D	
			Bu	tanenitr	rile							3-Cya	noprop	anal			
84-sha/gus	126	176.94	565.23	5.0	50.0	bu	D		81-mus/gan	56	290.40) 505.00	5.0	58.9	bu	D	
90-uos/mat	6	298.15	298.15	25.0	150.0	va	D		07	104	070 1	2-Flu	loroeth	anol		Df	ord
total	132	176.94	565.23 9 Mathr	5.U	150.0				97-W00	134	278.13	338.13	2.4	385.8	VD	D'	95 ^{<i>a</i>}
00 uos/mat	6	208 15	2-Methy 208 15	25 0		NO.	р		05 mal/waa	120	978 1	2,2-DII		275 G	vb	D∉	
50-u05/11/at	0	230.13	2-Meth	23.0 vlpropen	enitrile	va	D		95-mai/w00	130	270.10	2 2 2-Tr	ifluoroe	si 5.0 ethano	1	\mathbf{D}^{o}	
83-gus/naz	25	293.00	373.00	5.0	40.0	bu	D	99.9 ^e	89-bae/klo	62	293.15	5413.16	0.5	15.9	mo	\mathbf{D}^{g}	99.96 w^{d}
8			Be	enzonitri	ile				90-sve/sid	5	293.15	5 293.15	2.0	10.0	mo	\mathbf{D}^{g}	99.8 ^e
78-gus/naz	70	298.00	523.00	5.0	50.0	bu	D		91-mal/woo	138	278.15	5 338.15	2.5	281.7	vb	D	$99.5m^d$
86-gus	15	290.00	470.00	10.0	30.0	bu	D		92-kab/yam-1	311	310.00	420.00	0.3	200.0	vb	\mathbf{D}^{f}	99.95w ^e
90-uos/mat	6	298.15	298.15	25.0	150.0	va	D		93-sau/ĥol	44	317.78	8 478.14	1.7	59.7	ia	\mathbf{D}^{g}	99.96 ^e
01-tak/fuj	13	298.15	298.15	1.7	28.6	ul	С	$>99.99m^{d}$	93-sau/hol	35	263.15	5 363.15	2.0	10.0	mo	\mathbf{D}^{g}	99.96 ^e
total	104	290.00	523.00	1.7	150.0				94-mat/yam	42	298.15	5 323.15	0.5	80.0	mo	F	$>99^{d}$
			Pheny	lethane	nitrile				94-mat/yam	26	298.15	5 323.15	0.5	40.0	mo	F	>99d
90-uos/mat	6	298.15	298.15	25.0	150.0	va	D		99-her/oli	9	343.15	5 423.15	1.5	1.5	mo	D	> 99.9 ^d
F.C. ataa	1	000 15	202.15	Pyridine	101.0		D		total	672	263.15	6 478.14	0.3	281.7	1		
70 fur/mun	10	303.15	303.13	101.5	101.5	va vb	s		01 mat/wam	19	208 1	5,5,5-Pe 5 292 15		roprop 80.0	mo	F	>00 0d
total	40	303.15	423.15	10.0	400.0	VD	5		94-mai/yam	46	230.10	3 2.J.15	rafluor	onrons	nol	I.	- 33.3
.otui	-11	505.15	1~0.15 P	iperidin	e 100.0				94-mat/vam	42	298.1	5 323.15	0.5	80.0	mo	F	>99.9 ^d
71-ham/smi	1	303.15	303.15	101.3	101.3	va	D	99 ^e	o i maa jam	10	200110	2,2,2-Tr	ichloro	ethano	1	-	0010
	-		1-	Azainde	ne				97-jen/san	146	290.15	5 355.15	10.0	290.0	vs	D	99.5 ^e
95-yok/ebi	5	333.15	333.15	10.0	50.0	pi	D	99.9m ^e		-	Bi	s(difluo	rometh	yl) Etł	ner		
-			Ç	Quinolin	e	-			92-def/gil	57	273.58	3 367.31	1.0	5.3	mo	D	96.7m ^e
88-sid/tej	21	298.20	338.20	0.7	34.5	mo	D	$>99m^{d}$		2,2	,2-Trifl	uoroeth	yl Diflu	lorome	thyl Et	her	
96-cha/lee	45	298.15	348.15	1.0	30.0	mo	D	98m ^d	95-mal/woo-1	146	278.15	5 338.13	2.5	377.3	vb	\mathbf{D}^{f}	
96-cha/lee-1	18	333.15	413.15	5.0	30.0	mo	D	99.5 ^e			Pent	afluoroe	ethyl M	ethyl l	Ether	-	00 ·
96-ran/eat	40	353.15	353.15	10.0	400.0	bt	C	$>99^{d}$	01-oht/mor	49	279.99	369.98	0.5	3.0	bu	D	99.99m ^d
96-ran/eat	120	403.15	503.15	10.0	400.0	ca	С	>99a	01-wid/tsu	27	395.00	J 406.50	2.4	4.3	ıa	D	99.9967m ^d
total	244	298.15	503.15	0.7	400.0				total	76	279.99	1 406.50	0.5	4.3			

Table 2. (Continued)

		T _{min}	T _{max}	P_{\min}	P _{max}		data	sample purity ^c			T _{min}	T _{max}	P_{\min}	P _{max}		data	sample purity ^c
ref	$N_{\rm p}$	K	K	MPa	MPa	meth ^a	type ^b	%	ref	$N_{\rm p}$	K	K	MPa	MPa	meth ^a	type ^b	%
	1,2,2,2	2-Tetraf	luoroeth	yl Difl	uorome	thyl Etl	ner					Tetrae	ethylsi	lane			
95-mal/woo-1	155	278.15	338.13	2.5	375.2	vb	\mathbf{D}^{f}		90-yok/tak	70	283.15	333.15	10.0	100.0	VS	D	> 99.8m ^d
		Heptaf	luoropro	pyl Me	thyl Et	ther						Hexame	thyldi	silane			
01-oht/mor	80	279.99	369.98	0.5	3.0	bu	D	$99.9m^d$	82-bri/wue	7	303.20	323.20	10.0	40.0	nd	S	>99.9 ^e
01-wid/uch	14	422.00	437.50	1.9	3.6	ia	D	$99.4m^d$				Tetrae	thoxys	ilane			
total	94	279.99	437.50	0.5	3.6				90-yok/tak	70	283.15	333.15	10.0	100.0	VS	D	>99.8m ^d
		Per	ntafluor	obenzo	nitrile				-		Octa	methylc	yclotet	rasilox	ane		
90-pol/wei	62	283.20	363.20	5.0	200.0	vb	F	97.0 ^d	76-ben/win	313	313.14	413.17	0.7	213.3	vb	\mathbf{D}^h	99.95^{d}
•		Te	etrametł	iylstar	nane				84-eas/woo	10	323.15	323.15	5.0	80.0	vb	S	$> 98^{d}$
90-pol/wei	72	267.40	366.90	5.0	200.0	vb	F	99.0 ^d	96-wap/tar	36	308.20	426.60	10.0	180.0	vs	D	> 99 ^d
		,	Tetrame	thylsil	ane				total	359	308.20	426.60	0.7	213.3			
75-par/jon	42	298.00	373.00	4.5	450.0	vb	D					Dimeth	yl Sulf	oxide			
89-bao/cac	235	198.16	298.15	0.2	101.7	rl	D	>99.5m ^e	80-fuc/ghe	67	293.60	323.00	5.0	150.0	vb	F	
90-yok/tak	70	283.15	333.15	10.0	100.0	vs	D	>99m ^d	0								
total	347	198.16	373.00	0.2	450.0												

^{*a*} Method used for measurements: bt, calculated from compressibility; bu, buoyancy method; ca, calorimetric method; hp, high-pressure pycnometer; ia, isochoric apparatus; mo, mechanical oscillator method; nd, not described or stated in the reference; pi, piezometer of unspecified type; rl, expansion principle; ul, densities evaluated from speeds of sound; va, Aime method; vb, variable-volume cell with bellows; vs, variable-volume cell with solid piston. For the classification and description of the methods, see ref [85-tek/cib]. ^{*b*} D, direct experimental data; S, smoothed data presented in the reference; C, data calculated from other properties; F, values calculated from the smoothing equation reported by the researchers. ^{*c*} No letter, unspecified percent; m, mole percent; v, volume percent; w, mass percent. ^{*d*} Purity of source material is given only. ^{*e*} Final purity of the sample. ^{*f*} ITS-90 declared by the researchers. ^{*g*} IPTS-68 declared by the researchers. ^{*h*} Values from unpublished supplementary document.

Table 5) were made to facilitate the adjustment. The calculations of the parameters \vec{c} and \vec{b} were repeated until the final fit was obtained where the deviations between retained experimental and smoothed values were roughly equal to the modified experimental uncertainties, $\delta \rho_f \mu_f^{1/2}$, that is, where the weighted standard deviation of the fit was close to unity.

Results

No results of the fits by eq 1 are presented for data reported by Hamann and Smith [71-ham/smi] where values of compression at T = 303.15 K and P = 101.3 MPa (one value per substance) are presented for 1,2-ethanediamine (0.0399), 1-aminobutane (0.0711), 1-aminopentane (0.0652), and piperidine (0.0560).

Table 3 records the values of the parameters of eq 1 for 49 substances along with some statistical information of the fits defined as follows:

$$\mathbf{RMSD} = \{\sum_{j=1}^{N_{\rm p}} [\rho_j - \rho(T_{j^*} P_{j^*} \vec{c}, \vec{b})]^2 / N_{\rm p} \}^{1/2}$$
(6)

$$\text{RMSD}_{\rm r}/\% = 100 \{ \sum_{j=1}^{N_{\rm p}} [1 - \rho(T_j, P_j, \vec{c}, \vec{b})/\rho_j]^2 / N_{\rm p} \}^{1/2} \quad (7)$$

bias =
$$\sum_{j=1}^{N_{\rm p}} [\rho_j - \rho(T_j, P_j, \vec{c}, \vec{b})] / N_{\rm p}$$
 (8)

$$\pm = \sum_{j=1}^{N_p} \operatorname{sign}[\rho_j - \rho(T_j, P_j, \vec{c}, \vec{b})] \times 1$$
(9)

$$s_{\rm w} = [\phi/(N_{\rm p} - N_{\rm C} - N_{\rm B} - 2)]^{1/2}$$
 (10)

where $N_{\rm p}$ is the overall number of experimental data points retained for the correlation. The characteristics are given on an absolute density scale (kg·m⁻³), which is more illustrative than on a relative density scale.

Values at high temperatures of some retained data sets were rejected in those cases where large deviations from the Tait equation were observed and it was not possible to improve the fit by additional parameters b_i and c_i . Thus, the P-T ranges of some fits do not cover the entire original range of retained data sets. The temperature and/or pressure ranges were sometimes enlarged by retaining less accurate and less reliable values in the ranges beyond those of more accurate data sets but only in those cases where the representation of accurate data was not affected by the enlargement and the enlargement did not result in a distortion of the B(T) function. The absence of extremes and inflection points on the function B(T) (eq 3) of all final fits was checked.

The temperature and pressure ranges of validity of the fits given in the table allow one to avoid extrapolation using eq 1 with the parameters from Table 3 beyond P-T areas of retained data. The P-T areas that either are not rectangular or cannot be easily derived from the ranges recorded in Table 4 are shown in Figure 1, which provides crude information on the distribution of the retained data points. Nonrectangular P-T areas appeared mostly for substances where the P-T range approached the vicinity of a solid-liquid equilibrium line.

Table 4 summarizes some statistical information derived from the fits. Only those data subsets for which the temperature and pressure ranges are displayed in the table were retained in the correlations. The statistical characteristics of these subsets refer only to the data points retained in the correlation. On the other hand, the characteristics of the rejected subsets, that is, those for which no T and P ranges are given in the table, illustrate the deviations of the rejected points from eq 1, but only for those values within the P-T areas of the retained data (see Table 3 and Figure 1). If only one set of smoothed $P-\rho-T$ values available in original sources (S- or F-type data) for a particular substance was fitted by eq 1, then average deviations of the fit (RMSD, RMSD_r) do not reflect a real accuracy of the experiment and consequently the weighted standard deviation, s_w , may be much lower than unity.

The origin of the reference density values (RD, Table 4) is denoted by the letters "o" (original values as reported by authors of data), "p" (extrapolated from compressedliquid data along an isotherm), and "e" (calculated from a

Table 3. Parameters c_i , b_i , and T_0 of Eq 1, Temperature and Pressure Ranges,^a T_{\min} , T_{\max} , P_{\min} , and P_{\max} , Absolute, RMSD, and Relative, RMSD_r, Root Mean Square Deviations, Biases, bias, Number of Data Points, N_p , \pm , Weighted Standard Deviations, s_{w} , Normal Boiling Point Temperatures,^b T_{nbp} , and References to Saturated Vapor Pressure, ref(P_{sat}), for the Fits Where $T_{\max} > T_{nbp}$

	1-aminopropane	2-methyl-2-propanamine	aminobenzene	2-methyl-1-aminobenzene		
^{c0} b ₀ /MPa b ₁ /(MPa K ⁻¹) b ₂ /(MPa K ⁻²) b ₃ /(MPa K ⁻³) b ₄ /(MPa K ⁻⁴)	0.115627 99.0244	$\begin{array}{c} 0.091578\\ 66.4473\\ -64.9706\\ 13.4972 \end{array}$	$\begin{array}{c} 0.094363 \\ 196.3979 \\ -107.3578 \\ 22.3750 \end{array}$	$\begin{array}{r} 0.084920\\ 203.4441\\ -151.6918\\ 90.1546\\ -44.2852\\ 8.3934\end{array}$		
T_0/K T_{min}/K T_{max}/K P_{min}/MPa P_{max}/MPa $RMSD/(kg m^{-3})$	298.15 298.15 298.15 2.00 33.90 0.032	$\begin{array}{c} 278.15\\ 278.15\\ 313.14\\ 2.55\\ 157.82\\ 0.300 \end{array}$	303.15 298.15 358.15 10.00 180.00 0.447	296.50 322.50 524.00 5.00 50.00 0.569		
RMSD _r /% bias/(kg m ⁻³) N _p	0.004 0.006 9	0.039 0.056 54	0.043 0.212 54	0.063 0.007 54		
$rac{\pm}{S_{ m W}} \ T_{ m nbp}/ m K \ m ref(P_{ m sat})$	$1 \\ 0.316 \\ 320.4$	14 0.897 317.2	20 0.525 457.1	0 0.629 473.5 90-cha/gad		
	4-methyl-1-aminobenzene	ethanenitrile (85-kra/mu	ue) ethanenitrile (full ra	ange) ethanenitrile- d_3		
	2.800287	0.108788	0.102941	0.102375		
c_1/K^{-1} b_0/MPa $b_1/(MPa K^{-1})$ $b_2/(MPa K^{-2})$ $b_{2/}(MPa K^{-3})$ T_0/K	5007.0371 8137.4627 4156.0076 348.00	$\begin{array}{c} -0.005570\\ 97.2726\\ -80.7947\\ 20.5123\\ -1.7929\\ 298.15\end{array}$	$\begin{array}{r} -0.002586\\ 91.0938\\ -73.7189\\ 17.9064\\ -1.4845\\ 298.15\end{array}$	81.3027 -64.0287 6.1331 303.15		
$T_{ m min}/ m K$ $T_{ m max}/ m K$ $P_{ m min}/ m MPa$ $P_{ m max}/ m MPa$	323.00 448.00 5.00 50.00	256.83 523.20 0.58 60.24	233.45 523.20 0.58 512.40	303.15 363.15 3.00 400.00		
$\frac{\text{RMSD}/(\text{kg m}^{-3})}{\text{RMSD}_{\text{r}}/\%}$ bias/(kg m $^{-3}$) N_{p} +	4.618 0.517 -0.245 33 -1	0.129 0.020 0.016 88 10	0.719 0.085 -0.028 273 15	$\begin{array}{c} 0.471 \\ 0.052 \\ -0.015 \\ 15 \\ -3 \end{array}$		
$\frac{S_{ m w}}{T_{ m nbp}/ m K}$ ref $(P_{ m sat})$	5.171 473.6 90-cha/gad	0.390 354.8 77-rei/pra	1.028 354.8 77-rei/pra	0.525 see text		
	propanenitrile	butanenitrile 2	-methylpropanenitrile	2-methylpropenenitrile		
$\frac{c_0}{b_0/MPa} \\ \frac{b_1/(MPa K^{-1})}{b_2/(MPa K^{-2})} \\ \frac{b_3/(MPa K^{-3})}{b_3/(MPa K^{-3})}$	$\begin{array}{c} 0.095033\\ 86.2115\\ -73.6614\\ 47.4578\\ -36.1780\\ 10.016\\ 10.006\\$	0.092174 93.2663 88.3915 63.4215 38.1743	0.098890 86.7481	$\begin{array}{c} 0.179348\\ 205.6764\\ -234.4680\\ 111.3710\end{array}$		
D_{4} (MPa K ⁻⁴) T_0/K T_{min}/K T_{max}/K P_{min}/MPa $RMSD/(kg m^{-3})$	$10.8181 \\ 298.15 \\ 190.36 \\ 467.55 \\ 5.00 \\ 150.00 \\ 0.535 $	8.9503 298.15 176.94 490.46 5.00 150.00 0.992	298.15 298.15 298.15 25.00 150.00 0.307	293.00 293.00 373.00 5.00 40.00 0.376		
$ m RMSD_r^{1}\%$ bias/(kg m ⁻³) N_p \pm	0.070 0.019 60 14	0.135 -0.133 106 -24	0.038 -0.002 6 -2	0.050 0.003 25 5		
$S_{ m w} T_{ m nbp}/ m K$ $ m ref(P_{ m sat})$	0.960 370.5 83-mcg	2.020 390.5 77-rei/pra	3.636 377.0	0.495 363.4 Table 7		
	benzonitrile	phenylethanenitri	le pyridine	1-azaindene		
$\frac{c_0}{b_0/MPa} \\ \frac{b_1}{(MPa K^{-1})} \\ \frac{b_2}{(MPa K^{-2})} \\ \frac{b_2}{(MPa K^{-3})}$	$\begin{array}{r} 0.098882 \\ 158.5407 \\ -41.6826 \\ -33.5808 \\ 12.4867 \end{array}$	0.155223 333.9107	0.094736 111.5002 - 79.2286 17.1238	0.073340 144.1153		
T_0 'K T_{min} /K T_{max} /K P_{min} /MPa P_{max} /MPa RMSD/(kg m ⁻³) RMSD_/%	298.15 298.15 523.00 1.66 150.00 1.633 0.182	298.15 298.15 298.15 25.00 150.00 0.241 0.023	$\begin{array}{c} 333.15\\ 303.15\\ 423.15\\ 10.00\\ 400.00\\ 0.529\\ 0.052\end{array}$	$\begin{array}{c} 333.15\\ 333.15\\ 333.15\\ 10.00\\ 50.00\\ 0.193\\ 0.018\\ \end{array}$		
bias/(kg m ⁻³) N_p \pm S_w T_{nbp}/K $ref(P_{sat})$	0.074 82 6 1.995 463.9 77-rei/pra	0.005 6 2 3.585 506.7	0.098 41 11 0.461 388.4 83-mcg	$ \begin{array}{r} -0.022 \\ 5 \\ -1 \\ 0.838 \\ 527.9 \end{array} $		

Table 3. (Continued)

	quinoline	nitromethane	nitroethane	1-nitropropane
	1			
c_0	0.091903	0.094301	0.096509	0.092543
h/MPa	151 4359	150 6040	145 1597	114 7628
$L ((MD K^{-1}))$	70,1000	01 5710	05 5500	114.7020
$D_1/(MPa K^{-1})$	-79.1693	-81.5/18	-95.5536	-76.6410
$b_2/(MPa K^{-2})$	9.0214	-4.8608	16.9361	
<i>b</i> ₂ /(MPa K ⁻³)	4.0697			
$h/(MD_{0} K^{-4})$	0.6799			
$D_4/(MPa K^{-1})$	-0.0722			
T_0/K	353.15	273.15	273.15	298.15
$T_{\rm min}/{\rm K}$	298.15	273.15	273.15	298.15
T /K	503 15	363 15	262 15	323 15
	505.15	0.70	505.15	525.15
$P_{\rm min}/{\rm MPa}$	1.00	2.76	2.76	25.00
$P_{\rm max}/{\rm MPa}$	400.00	150.00	150.00	150.00
$RMSD/(kg m^{-3})$	0 310	0.420	0.516	0 148
	0.010	0.020	0.049	0.014
$RMSD_r/70$	0.030	0.036	0.048	0.014
bias/(kg m ⁻³)	-0.045	-0.026	-0.234	0.005
N _n –	143	27	36	12
- · p	1	_2	-16	1
Ξ	1	-3	-10	4
S_{W}	1.586	1.031	1.124	1.175
$T_{\rm nbn}/{\rm K}$	510.3	374.3	387.2	403.3
$ref(P_{rest})$				
rei(r sat)				
	2-nitropropane	2-methyl-2-nitropropane	nitrobenzene	formamide
			0.000101	0.407007
Co	0.089243	0.103218	0.093194	0.105327
<i>b</i> ₀ /MPa	100.4232	81.2663	185.0866	261.2778
$h_{\rm r}/({\rm MP}_2 {\rm K}^{-1})$	-67 2076	-44 4470	-06 1/83	-70 3877
	07.2570	44.4470	15 0005	70.5077
$D_2/(MPa K^{-2})$			15.6305	-70.5930
T_0/K	298.15	353.15	298.15	298.15
T _{min} /K	298 15	313 15	293 15	288 15
	200.15	010.10	250.15	200.15
$I_{\text{max}}/\mathbf{K}$	323.15	303.10	338.15	323.15
$P_{\rm min}/{\rm MPa}$	25.00	10.00	5.00	2.24
Pman/MPa	150.00	100.00	100.00	279 70
$DMCD/(l_{1} \sigma m^{-3})$	0 1 1 9	0.501	0.065	0.919
RIVISD/(Kg III °)	0.112	0.301	0.065	0.215
RMSD _r /%	0.011	0.053	0.005	0.018
bias/(kg m ⁻³)	-0.006	-0.054	0.014	0.035
N	19	10	50	70
1 vp	12	10	30	79
±	-2	0	10	13
Sw	1.035	0.530	0.467	1.344
T, /K	303 /	300	183.8	183 7
(D)	000.4	000.	405.0	400.7
$ref(P_{sat})$				
	N-methylformamide	N.N-dimethylformamide	N.N-dimethylacetamide	triethanolamine
	N-methylformamide	N,N-dimethylformamide	N,N-dimethylacetamide	triethanolamine
 	<i>N</i> -methylformamide	<i>N,N</i> -dimethylformamide 0.098235	<i>N,N</i> -dimethylacetamide	triethanolamine
$\frac{c_0}{c_0/K^{-1}}$	<i>N</i> -methylformamide 0.093732 -0.099332	N,N-dimethylformamide 0.098235	<i>N,N</i> -dimethylacetamide 0.092077	triethanolamine 0.101423
	N-methylformamide 0.093732 -0.099332	<i>N</i> , <i>N</i> -dimethylformamide 0.098235	<i>N</i> , <i>N</i> -dimethylacetamide	triethanolamine 0.101423
$\frac{c_0}{c_1/\mathrm{K}^{-1}}$ b_0/MPa	N-methylformamide 0.093732 -0.099332 157.6483	<i>N,N-</i> dimethylformamide 0.098235 153.3433	<i>N,N</i> -dimethylacetamide 0.092077 142.7679	triethanolamine 0.101423 241.0284
^{c0} c ₁ /K ⁻¹ b ₀ /MPa b ₁ /(MPa K ⁻¹)	N-methylformamide 0.093732 -0.099332 157.6483 -270.2862	N,N-dimethylformamide 0.098235 153.3433 -81.3865	<i>N,N</i> -dimethylacetamide 0.092077 142.7679	triethanolamine 0.101423 241.0284 -46.4026
^{c₀} c ₁ /K ⁻¹ b ₀ /MPa b ₁ /(MPa K ⁻¹) b ₂ /(MPa K ⁻²)	N-methylformamide 0.093732 -0.099332 157.6483 -270.2862 -47.9256	N,N-dimethylformamide 0.098235 153.3433 -81.3865 -181.2935	<i>N,N-</i> dimethylacetamide 0.092077 142.7679	triethanolamine 0.101423 241.0284 -46.4026
$ \begin{array}{c} c_0\\ c_1/K^{-1}\\ b_0/MPa\\ b_1/(MPa K^{-1})\\ b_2/(MPa K^{-2})\\ T_r/K \end{array} $	N-methylformamide 0.093732 -0.099332 157.6483 -270.2862 -47.9256 298.15	N,N-dimethylformamide 0.098235 153.3433 -81.3865 -181.2935 298.15	<i>N,N</i> -dimethylacetamide 0.092077 142.7679 298.15	triethanolamine 0.101423 241.0284 -46.4026 368 15
$\frac{c_0}{c_1/K^{-1}} \\ b_0/MPa \\ b_1/(MPa K^{-1}) \\ b_2/(MPa K^{-2}) \\ T_0/K \\$	N-methylformamide 0.093732 -0.099332 157.6483 -270.2862 -47.9256 298.15 999.15	N,N-dimethylformamide 0.098235 153.3433 -81.3865 -181.2935 298.15 298.15	N,N-dimethylacetamide 0.092077 142.7679 298.15 293.15	triethanolamine 0.101423 241.0284 -46.4026 368.15 879.15
$\begin{array}{c} \hline c_{0} \\ c_{1}/K^{-1} \\ b_{0}/MPa \\ b_{1}/(MPa K^{-1}) \\ b_{2}/(MPa K^{-2}) \\ T_{0}/K \\ T_{min}/K \end{array}$	N-methylformamide 0.093732 -0.099332 157.6483 -270.2862 -47.9256 298.15 288.15	N,N-dimethylformamide 0.098235 153.3433 -81.3865 -181.2935 298.15 288.15	N,N-dimethylacetamide 0.092077 142.7679 298.15 298.15	triethanolamine 0.101423 241.0284 -46.4026 368.15 273.15
	N-methylformamide 0.093732 -0.099332 157.6483 -270.2862 -47.9256 298.15 288.15 313.15	N,N-dimethylformamide 0.098235 153.3433 81.3865 181.2935 298.15 288.15 313.15	N,N-dimethylacetamide 0.092077 142.7679 298.15 298.15 298.15	triethanolamine 0.101423 241.0284 -46.4026 368.15 273.15 368.15
$\frac{c_0}{c_1/K^{-1}} \\ b_0/MPa \\ b_1/(MPa K^{-1}) \\ b_2/(MPa K^{-2}) \\ T_0/K \\ T_{min}/K \\ T_{max}/K \\ P_{min}/MPa$	N-methylformamide 0.093732 -0.099332 157.6483 -270.2862 -47.9256 298.15 288.15 313.15 2.50	N,N-dimethylformamide 0.098235 153.3433 -81.3865 -181.2935 298.15 288.15 313.15 2.50	N,N-dimethylacetamide 0.092077 142.7679 298.15 298.15 298.15 50.00	triethanolamine 0.101423 241.0284 -46.4026 368.15 273.15 368.15 49.03
$\begin{array}{c} \hline c_0 \\ c_1/K^{-1} \\ b_0/MPa \\ b_1/(MPa K^{-1}) \\ b_2/(MPa K^{-2}) \\ T_0/K \\ T_{min}/K \\ T_{max}/K \\ P_{min}/MPa \\ P_0/MPa \\ P_0/MPa \\ \end{array}$	N-methylformamide 0.093732 -0.099332 157.6483 -270.2862 -47.9256 298.15 288.15 313.15 2.50 290.00	N,N-dimethylformamide 0.098235 153.3433 -81.3865 -181.2935 298.15 288.15 313.15 2.50 290.00	N,N-dimethylacetamide 0.092077 142.7679 298.15 298.15 298.15 50.00 200.00	triethanolamine 0.101423 241.0284 -46.4026 368.15 273.15 368.15 49.03 990.67
$\begin{array}{c} c_0\\ c_1/K^{-1}\\ b_0/MPa\\ b_1/(MPa K^{-1})\\ b_2/(MPa K^{-2})\\ T_0/K\\ T_{min}/K\\ T_{max}/K\\ P_{min}/MPa\\ P_{max}/MPa\\ \end{array}$	N-methylformamide 0.093732 -0.099332 157.6483 -270.2862 -47.9256 298.15 288.15 313.15 2.50 290.00	N,N-dimethylformamide 0.098235 153.3433 -81.3865 -181.2935 298.15 288.15 313.15 2.50 290.00	N,N-dimethylacetamide 0.092077 142.7679 298.15 298.15 298.15 50.00 200.00	triethanolamine 0.101423 241.0284 -46.4026 368.15 273.15 368.15 49.03 980.67
$\frac{c_0}{c_1/K^{-1}} \\ b_0/MPa \\ b_1/(MPa K^{-1}) \\ b_2/(MPa K^{-2}) \\ T_0/K \\ T_{min}/K \\ T_{max}/K \\ P_{min}/MPa \\ P_{max}/MPa \\ RMSD/(kg m^{-3})$	N-methylformamide 0.093732 -0.099332 157.6483 -270.2862 -47.9256 298.15 288.15 313.15 2.50 290.00 0.363	N,N-dimethylformamide 0.098235 153.3433 -81.3865 -181.2935 298.15 288.15 313.15 2.50 290.00 0.376	N,N-dimethylacetamide 0.092077 142.7679 298.15 298.15 298.15 50.00 200.00 0.043	triethanolamine 0.101423 241.0284 -46.4026 368.15 273.15 368.15 49.03 980.67 0.449
c_0 c_1/K^{-1} b_0/MPa $b_1/(MPa K^{-1})$ $b_2/(MPa K^{-2})$ T_0/K T_{min}/K T_{max}/K P_{min}/MPa P_{max}/MPa $RMSD/(kg m^{-3})$ $RMSD_r/\%$	N-methylformamide 0.093732 -0.099332 157.6483 -270.2862 -47.9256 298.15 288.15 313.15 2.50 290.00 0.363 0.035	N,N-dimethylformamide 0.098235 153.3433 -81.3865 -181.2935 298.15 288.15 313.15 2.50 290.00 0.376 0.037	N,N-dimethylacetamide 0.092077 142.7679 298.15 298.15 298.15 50.00 200.00 0.043 0.004	triethanolamine 0.101423 241.0284 -46.4026 368.15 273.15 368.15 49.03 980.67 0.449 0.037
c_0 c_1/K^{-1} b_0/MPa $b_1/(MPa K^{-1})$ $b_2/(MPa K^{-2})$ T_0/K T_{max}/K P_{min}/MPa P_{max}/MPa $RMSD/(kg m^{-3})$ $RMSD/(kg m^{-3})$	N-methylformamide 0.093732 -0.099332 157.6483 -270.2862 -47.9256 298.15 288.15 313.15 2.50 290.00 0.363 0.035 -0.044	N,N-dimethylformamide 0.098235 153.3433 -81.3865 -181.2935 298.15 288.15 313.15 2.50 290.00 0.376 0.037 -0.058	N,N-dimethylacetamide 0.092077 142.7679 298.15 298.15 298.15 50.00 200.00 0.043 0.004 0.000	triethanolamine 0.101423 241.0284 -46.4026 368.15 273.15 368.15 49.03 980.67 0.449 0.037 0.021
c_0 c_1/K^{-1} b_0/MPa $b_1/(MPa K^{-1})$ $b_2/(MPa K^{-2})$ T_0/K T_{min}/K T_{min}/K P_{min}/MPa P_{max}/MPa $RMSD/(kg m^{-3})$ $RMSD_r/\%$ bias/(kg m^{-3})	N-methylformamide 0.093732 -0.099332 157.6483 -270.2862 -47.9256 298.15 288.15 313.15 2.50 290.00 0.363 0.035 -0.044 40	N,N-dimethylformamide 0.098235 153.3433 -81.3865 -181.2935 298.15 288.15 313.15 2.50 290.00 0.376 0.037 -0.058 44	N,N-dimethylacetamide 0.092077 142.7679 298.15 298.15 298.15 50.00 200.00 0.043 0.004 0.000 4	triethanolamine 0.101423 241.0284 -46.4026 368.15 273.15 368.15 49.03 980.67 0.449 0.037 0.021 20
$\frac{c_0}{c_1/K^{-1}} \\ b_0/MPa \\ b_1/(MPa K^{-1}) \\ b_2/(MPa K^{-2}) \\ T_0/K \\ T_{min}/K \\ T_{max}/K \\ P_{min}/MPa \\ P_{max}/MPa \\ P_{max}/MPa \\ RMSD/(kg m^{-3}) \\ RMSD_r/\% \\ bias/(kg m^{-3}) \\ N_p$	N-methylformamide 0.093732 -0.099332 157.6483 -270.2862 -47.9256 298.15 288.15 313.15 2.50 290.00 0.363 0.035 -0.044 40	N,N-dimethylformamide 0.098235 153.3433 -81.3865 -181.2935 298.15 288.15 313.15 2.50 290.00 0.376 0.037 -0.058 44	N,N-dimethylacetamide 0.092077 142.7679 298.15 298.15 298.15 50.00 200.00 0.043 0.004 0.000 4	triethanolamine 0.101423 241.0284 -46.4026 368.15 273.15 368.15 49.03 980.67 0.449 0.037 0.021 20
$\begin{array}{c} c_{0} & \\ c_{1}/K^{-1} & \\ b_{0}/MPa & \\ b_{1}/(MPa & K^{-1}) & \\ b_{2}/(MPa & K^{-2}) & \\ T_{0}/K & \\ T_{min}/K & \\ T_{max}/K & \\ P_{min}/MPa & \\ P_{max}/MPa & \\ RMSD/(kg & m^{-3}) & \\ RMSD_{r}/\% & \\ bias/(kg & m^{-3}) & \\ N_{p} & \\ \pm & \end{array}$	N-methylformamide 0.093732 -0.099332 157.6483 -270.2862 -47.9256 298.15 288.15 313.15 2.50 290.00 0.363 0.035 -0.044 40 -6	N,N-dimethylformamide 0.098235 153.3433 -81.3865 -181.2935 298.15 288.15 313.15 2.50 290.00 0.376 0.037 -0.058 44 -4	N,N-dimethylacetamide 0.092077 142.7679 298.15 298.15 298.15 50.00 200.00 0.043 0.004 0.000 4 -2	triethanolamine 0.101423 241.0284 -46.4026 368.15 273.15 368.15 49.03 980.67 0.449 0.037 0.021 20 2
$\begin{array}{c} c_{0} & & \\ c_{1}/K^{-1} & & \\ b_{0}/MPa & & \\ b_{1}/(MPa K^{-1}) & & \\ b_{2}/(MPa K^{-2}) & & \\ T_{0}/K & & \\ T_{min}/K & & \\ T_{min}/K & & \\ P_{min}/MPa & & \\ P_{max}/MPa & & \\ P_{max}/MPa & & \\ RMSD/(kg m^{-3}) & & \\ RMSD_{r}\% & & \\ bias/(kg m^{-3}) & & \\ N_{p} & & \\ \pm & \\ s_{w} & \end{array}$	N-methylformamide 0.093732 -0.099332 157.6483 -270.2862 -47.9256 298.15 288.15 313.15 2.50 290.00 0.363 0.035 -0.044 40 -6 1.755	N,N-dimethylformamide 0.098235 153.3433 -81.3865 -181.2935 298.15 288.15 313.15 2.50 290.00 0.376 0.037 -0.058 44 -4 1.595	N,N-dimethylacetamide 0.092077 142.7679 298.15 298.15 298.15 50.00 200.00 0.043 0.004 0.000 4 -2 0.397	triethanolamine 0.101423 241.0284 -46.4026 368.15 273.15 368.15 49.03 980.67 0.449 0.037 0.021 20 2 0.682
$ \frac{c_0}{c_1/K^{-1}} \\ \frac{b_0/MPa}{b_0/(MPa K^{-1})} \\ \frac{b_2}{(MPa K^{-2})} \\ \frac{T_0/K}{T_{min}/K} \\ \frac{T_{min}/K}{T_{max}/K} \\ \frac{P_{min}/MPa}{P_{max}/MPa} \\ \frac{P_{max}/MPa}{RMSD/(kg m^{-3})} \\ \frac{RMSD_r/\%}{bias/(kg m^{-3})} \\ \frac{N_p}{\pm} \\ \frac{\pm}{S_W} \\ \frac{S_W}{T_{bbc}/K} $	N-methylformamide 0.093732 -0.099332 157.6483 -270.2862 -47.9256 298.15 288.15 313.15 2.50 290.00 0.363 0.035 -0.044 40 -6 1.755 456.	N,N-dimethylformamide 0.098235 153.3433 -81.3865 -181.2935 298.15 288.15 313.15 2.50 290.00 0.376 0.037 -0.058 44 -4 1.595 425.	N,N-dimethylacetamide 0.092077 142.7679 298.15 298.15 298.15 50.00 200.00 0.043 0.004 0.000 4 -2 0.397 439.3	triethanolamine 0.101423 241.0284 -46.4026 368.15 273.15 368.15 49.03 980.67 0.449 0.037 0.021 20 2 0.682 608.5
$\frac{c_0}{c_1/K^{-1}}$ $\frac{b_0/MPa}{b_0/(MPa K^{-1})}$ $\frac{b_2}{(MPa K^{-1})}$ $\frac{b_2}{(MPa K^{-2})}$ $\frac{T_0/K}{T_{max}/K}$ $\frac{T_{max}/K}{P_{min}/MPa}$ $\frac{P_{max}/MPa}{RMSD/(kg m^{-3})}$ $\frac{RMSD}{RMSD_r/\%}$ $\frac{bias}{(kg m^{-3})}$ $\frac{N_p}{\pm}$ $\frac{s_w}{T_{nbp}/K}$ $raf(P_{-1})$	$\begin{array}{r} N-methylformamide\\ \hline 0.093732\\ -0.099332\\ 157.6483\\ -270.2862\\ -47.9256\\ 298.15\\ 288.15\\ 313.15\\ 2.50\\ 290.00\\ 0.363\\ 0.035\\ -0.044\\ 40\\ -6\\ 1.755\\ 456. \\ \end{array}$	N,N-dimethylformamide 0.098235 153.3433 -81.3865 -181.2935 298.15 288.15 313.15 2.50 290.00 0.376 0.037 -0.058 44 -4 1.595 425.	N,N-dimethylacetamide 0.092077 142.7679 298.15 298.15 298.15 50.00 200.00 0.043 0.004 0.000 4 -2 0.397 439.3	triethanolamine 0.101423 241.0284 -46.4026 368.15 273.15 368.15 49.03 980.67 0.449 0.037 0.021 20 2 0.682 608.5
$ \begin{array}{c} c_0 & \\ c_1/K^{-1} & \\ b_0/MPa & \\ b_1/(MPa & K^{-1}) & \\ b_2/(MPa & K^{-2}) & \\ T_0/K & \\ T_{min}/K & \\ T_{max}/K & \\ P_{min}/MPa & \\ P_{max}/MPa & \\ RMSD/(kg & m^{-3}) & \\ RMSD_r/\% & \\ bias/(kg & m^{-3}) & \\ N_p & \\ \pm & \\ s_w & \\ T_{nbp}/K & \\ ref(P_{sat}) & \\ \end{array} $	$\begin{array}{r} N-methylformamide\\ \hline 0.093732\\ -0.099332\\ 157.6483\\ -270.2862\\ -47.9256\\ 298.15\\ 288.15\\ 313.15\\ 2.50\\ 290.00\\ 0.363\\ 0.035\\ -0.044\\ 40\\ -6\\ 1.755\\ 456. \\ \end{array}$	N,N-dimethylformamide 0.098235 153.3433 -81.3865 -181.2935 298.15 288.15 313.15 2.50 290.00 0.376 0.037 -0.058 44 -4 1.595 425.	N,N-dimethylacetamide 0.092077 142.7679 298.15 298.15 298.15 50.00 200.00 0.043 0.004 0.000 4 -2 0.397 439.3	triethanolamine 0.101423 241.0284 -46.4026 368.15 273.15 368.15 49.03 980.67 0.449 0.037 0.021 20 2 0.682 608.5
$\begin{array}{c} c_{0} \\ c_{1}/K^{-1} \\ b_{0}/MPa \\ b_{1}/(MPa K^{-1}) \\ b_{2}/(MPa K^{-2}) \\ T_{0}/K \\ T_{min}/K \\ T_{max}/K \\ P_{min}/MPa \\ P_{max}/MPa \\ RMSD/(kg m^{-3}) \\ RMSD_{1}/\% \\ bias/(kg m^{-3}) \\ N_{p} \\ \pm \\ s_{w} \\ T_{nbp}/K \\ ref(P_{sat}) \end{array}$	N-methylformamide 0.093732 -0.099332 157.6483 -270.2862 -47.9256 298.15 288.15 313.15 2.50 290.00 0.363 0.035 -0.044 40 -6 1.755 456.	N,N-dimethylformamide 0.098235 153.3433 -81.3865 -181.2935 298.15 288.15 313.15 2.50 290.00 0.376 0.037 -0.058 44 -4 1.595 425.	N,N-dimethylacetamide 0.092077 142.7679 298.15 298.15 298.15 50.00 200.00 0.043 0.004 0.000 4 -2 0.397 439.3	triethanolamine 0.101423 241.0284 -46.4026 368.15 273.15 368.15 49.03 980.67 0.449 0.037 0.021 20 2 0.682 608.5
	N-methylformamide 0.093732 -0.099332 157.6483 -270.2862 -47.9256 298.15 288.15 313.15 2.50 290.00 0.363 0.035 -0.044 40 -6 1.755 456. 1-methoxy-2-nitrobenzene	N,N-dimethylformamide 0.098235 153.3433 -81.3865 -181.2935 298.15 288.15 313.15 2.50 290.00 0.376 0.037 -0.058 44 -4 1.595 425.	N,N-dimethylacetamide 0.092077 142.7679 298.15 298.15 298.15 50.00 200.00 0.043 0.004 0.000 4 -2 0.397 439.3 3-cyanopropanal	triethanolamine 0.101423 241.0284 -46.4026 368.15 273.15 368.15 49.03 980.67 0.449 0.037 0.021 20 2 0.682 608.5 2-fluoroethanol
$\frac{c_0}{c_1/K^{-1}} \\ b_0/MPa \\ b_1/(MPa K^{-1}) \\ b_2/(MPa K^{-2}) \\ T_0/K \\ T_{min}/K \\ T_{max}/K \\ P_{min}/MPa \\ P_{max}/MPa \\ RMSD/(kg m^{-3}) \\ RMSD_t/\% \\ bias/(kg m^{-3}) \\ N_p \\ \pm \\ s_w \\ T_{nbp}/K \\ ref(P_{sat}) \\ \hline $	N-methylformamide 0.093732 -0.099332 157.6483 -270.2862 -47.9256 298.15 288.15 313.15 2.50 290.00 0.363 0.035 -0.044 40 -6 1.755 456.	N,N-dimethylformamide 0.098235 153.3433 -81.3865 -181.2935 298.15 288.15 313.15 2.50 290.00 0.376 0.037 -0.058 44 -4 1.595 425.	N,N-dimethylacetamide 0.092077 142.7679 298.15 298.15 298.15 298.15 200.00 0.043 0.000 4 -2 0.397 439.3	triethanolamine 0.101423 241.0284 -46.4026 368.15 273.15 368.15 49.03 980.67 0.449 0.037 0.021 20 2 0.682 608.5
$\frac{c_0}{c_1/K^{-1}} \\ \frac{b_0/MPa}{b_0/MPa} \\ \frac{b_1/(MPa K^{-1})}{b_2/(MPa K^{-2})} \\ \frac{T_0/K}{T_{0}/K} \\ \frac{T_{min}/K}{T_{max}/K} \\ \frac{P_{min}/MPa}{P_{max}/MPa} \\ \frac{P_{max}/MPa}{RMSD/(kg m^{-3})} \\ \frac{RMSD_r/\%}{bias/(kg m^{-3})} \\ \frac{N_p}{\pm} \\ \frac{s_w}{T_{nbp}/K} \\ ref(P_{sat}) \\ \frac{c_0}{T_0} \\ \frac{C_0}{$	N-methylformamide 0.093732 -0.099332 157.6483 -270.2862 -47.9256 298.15 288.15 313.15 2.50 290.00 0.363 0.035 -0.044 40 -6 1.755 456. 1-methoxy-2-nitrobenzene 0.035177	N,N-dimethylformamide 0.098235 153.3433 -81.3865 -181.2935 298.15 288.15 313.15 2.50 290.00 0.376 0.037 -0.058 44 -4 1.595 425.	N,N-dimethylacetamide 0.092077 142.7679 298.15 298.15 298.15 50.00 200.00 0.043 0.004 0.000 4 -2 0.397 439.3 3-cyanopropanal 0.090605	triethanolamine 0.101423 241.0284 -46.4026 368.15 273.15 368.15 980.67 0.449 0.021 20 2 0.682 608.5 2-fluoroethanol 0.097388
$\frac{c_0}{c_1/K^{-1}}$ $\frac{b_0/MPa}{b_0/(MPa K^{-1})}$ $\frac{b_2}{MPa K^{-2}}$ $\frac{b_2}{MPa K^{-2}}$ $\frac{b_1}{MPa}$ $\frac{b_1}{MPa}$ $\frac{b_1}{MPa}$ $\frac{b_1}{MPa}$ $\frac{b_1}{MPa}$ $\frac{b_1}{MPa}$ $\frac{b_1}{MPa}$ $\frac{b_1}{MPa}$ $\frac{c_0}{b_0/MPa}$	N-methylformamide 0.093732 -0.099332 157.6483 -270.2862 -47.9256 298.15 288.15 313.15 2.50 290.00 0.363 0.035 -0.044 40 -6 1.755 456. 1-methoxy-2-nitrobenzene 0.035177 42.2612	N,N-dimethylformamide 0.098235 153.3433 -81.3865 -181.2935 298.15 288.15 313.15 2.50 290.00 0.376 0.037 -0.058 44 -4 1.595 425.	N,N-dimethylacetamide 0.092077 142.7679 298.15 298.15 298.15 298.15 200.00 0.043 0.000 4 -2 0.397 439.3 3-cyanopropanal 0.090605 146.7205	triethanolamine 0.101423 241.0284 -46.4026 368.15 273.15 368.15 49.03 980.67 0.449 0.037 0.021 20 2 0.682 608.5 2-fluoroethanol 0.097388 149.4428
$\frac{c_{0}}{c_{1}/K^{-1}} \\ b_{0}/MPa \\ b_{1}/(MPa K^{-1}) \\ b_{2}/(MPa K^{-2}) \\ T_{0}/K \\ T_{min}/K \\ T_{max}/K \\ P_{min}/MPa \\ P_{max}/MPa \\ RMSD/(kg m^{-3}) \\ RMSD_{r}\% \\ bias/(kg m^{-3}) \\ N_{p} \\ \pm \\ \frac{s_{w}}{s_{w}} \\ T_{nbp}/K \\ ref(P_{sat}) \\ \hline \\ \hline \\ \hline \\ \hline \\ c_{0} \\ b_{0}/MPa \\ b_{r}/(MPa K^{-1}) \\ \hline \\ c_{0} \\ b_{0}/MPa \\ b_{r}/(MPa K^{-1}) \\ \hline \\ $	N-methylformamide 0.093732 -0.099332 157.6483 -270.2862 -47.9256 298.15 288.15 313.15 2.50 290.00 0.363 0.035 -0.044 40 -6 1.755 456. 1-methoxy-2-nitrobenzene 0.035177 42.2612	N,N-dimethylformamide 0.098235 153.3433 -81.3865 -181.2935 298.15 288.15 313.15 2.50 290.00 0.376 0.037 -0.058 44 -4 1.595 425.	N,N-dimethylacetamide 0.092077 142.7679 298.15 298.15 298.15 298.15 298.15 298.15 200.00 0.043 0.004 0.004 0.397 439.3 3-cyanopropanal 0.090605 146.7205 -105.0867	triethanolamine 0.101423 241.0284 -46.4026 368.15 273.15 368.15 49.03 980.67 0.449 0.037 0.021 20 2 0.682 608.5 2-fluoroethanol 0.097388 149.4428 -89.8646
$\frac{c_0}{c_1/K^{-1}} \frac{c_0}{b_0/MPa} \frac{c_0/MPa}{b_1/(MPa K^{-1})} \frac{b_2}{b_2/(MPa K^{-2})} \frac{c_0/MPa}{c_0/MPa} \frac{c_0/MPa}{c_0/$	N-methylformamide 0.093732 -0.099332 157.6483 -270.2862 -47.9256 298.15 288.15 313.15 2.50 290.00 0.363 0.035 -0.044 40 -6 1.755 456. 1-methoxy-2-nitrobenzene 0.035177 42.2612	N,N-dimethylformamide 0.098235 153.3433 -81.3865 -181.2935 298.15 288.15 313.15 2.50 290.00 0.376 0.037 -0.058 44 -4 1.595 425. 1-methylpyrrolidin-2-one 0.091074 173.4791	N,N-dimethylacetamide 0.092077 142.7679 298.15 298.15 298.15 298.15 298.15 298.15 298.15 0.00 200.00 0.043 0.004 0.000 4 -2 0.397 439.3 3-cyanopropanal 0.090605 146.7205 -105.0867 42 7506	triethanolamine 0.101423 241.0284 -46.4026 368.15 273.15 368.15 49.03 980.67 0.449 0.037 0.021 20 2 0.682 608.5 2-fluoroethanol 0.097388 149.4428 -89.8646 14.6076
$\frac{c_0}{c_1/K^{-1}} \frac{c_0}{b_0/MPa} \frac{c_1/K^{-1}}{b_0/MPa} \frac{b_1}{MPa} \frac{K^{-1}}{K} \frac{b_2}{MPa} \frac{K^{-2}}{K} \frac{T_{min}/K}{K} \frac{T_{min}/K}{K} \frac{T_{min}/MPa}{RMSD/(kg m^{-3})} \frac{RMSD_r/\%}{k} \frac{bias/(kg m^{-3})}{k} \frac{N_p}{k} \frac{\pm}{K} \frac{S_W}{T_{nbp}/K} \frac{T_{nbp}/K}{ref(P_{sat})} \frac{c_0}{b_0/MPa} \frac{b_1}{b_1/(MPa K^{-1})} \frac{b_2}{MPa} \frac{K^{-2}}{K} \frac{K}{K} $	N-methylformamide 0.093732 -0.099332 157.6483 -270.2862 -47.9256 298.15 288.15 313.15 2.50 290.00 0.363 0.035 -0.044 40 -6 1.755 456. 1-methoxy-2-nitrobenzene 0.035177 42.2612	N,N-dimethylformamide 0.098235 153.3433 -81.3865 -181.2935 298.15 288.15 313.15 2.50 290.00 0.376 0.037 -0.058 44 -4 1.595 425.	N,N-dimethylacetamide 0.092077 142.7679 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 200.00 0.004 0.000 4 -2 0.397 439.3 3-cyanopropanal 0.090605 146.7205 -105.0867 42.7596	triethanolamine 0.101423 241.0284 -46.4026 368.15 273.15 368.15 49.03 980.67 0.449 0.037 0.021 20 2 0.682 608.5 2-fluoroethanol 0.097388 149.4428 -89.8646 14.6076
$\frac{c_0}{c_1/K^{-1}} \\ b_0/MPa \\ b_1/(MPa K^{-1}) \\ b_2/(MPa K^{-2}) \\ T_0/K \\ T_{min}/K \\ T_{min}/K \\ T_{max}/K \\ P_{min}/MPa \\ P_{max}/MPa \\ RMSD/(kg m^{-3}) \\ RMSD_t/\% \\ bias/(kg m^{-3}) \\ N_p \\ \pm \\ \frac{s_w}{s_w} \\ T_{nbp}/K \\ ref(P_{sat}) \\ \hline \\ c_0 \\ b_0/MPa \\ b_1/(MPa K^{-1}) \\ b_2/(MPa K^{-3}) \\ b_3/(MPa K^{-3}) \\ \hline \\ $	N-methylformamide 0.093732 -0.099332 157.6483 -270.2862 -47.9256 298.15 288.15 313.15 2.50 290.00 0.363 0.035 -0.044 40 -6 1.755 456. 1-methoxy-2-nitrobenzene 0.035177 42.2612	N,N-dimethylformamide 0.098235 153.3433 -81.3865 -181.2935 298.15 288.15 313.15 2.50 290.00 0.376 0.037 -0.058 44 -4 1.595 425.	N,N-dimethylacetamide 0.092077 142.7679 298.15 290.00 0.043 0.004 0.004 0.004 0.0397 439.3 3-cyanopropanal 0.090605 146.7205 -105.0867 42.7596 -11.6626	triethanolamine 0.101423 241.0284 -46.4026 368.15 273.15 368.15 273.15 368.15 273.15 368.15 203 202 202 202 2 0.682 608.5 2-fluoroethanol 0.097388 149.4428 -89.8646 14.6076
$\frac{c_0}{c_1/K^{-1}} \frac{c_0}{b_0/MPa} \frac{c_0/MPa}{b_1/(MPa K^{-1})} \frac{b_0/(MPa K^{-1})}{b_0/(MPa K^{-2})} \frac{c_0/MPa}{T_{max}/K} \frac{c_0/MPa}{T_{max}/MPa} \frac{c_0/MPa}{T_{max}/MPa} \frac{c_0/MPa}{T_{max}/MPa} \frac{c_0/MPa}{T_{mbp}/K} \frac{c_0}{T_{mbp}/K} \frac{c_0/MPa}{T_{mbp}/K} \frac{c_0/MPa}{T_{mbp}/K} \frac{c_0/MPa}{T_{mbp}/K} \frac{c_0/MPa}{T_{mbp}/MPa} \frac{c_0/MPa}{T_{mb}/MPa} \frac{c_0/MPa}{T_{mbp}/MPa} \frac{c_0/MPa}{T_{mb}/MPa} c_$	$\begin{tabular}{ c c c c c } \hline N-methylformamide \\ \hline 0.093732 \\ -0.099332 \\ 157.6483 \\ -270.2862 \\ -47.9256 \\ 298.15 \\ 288.15 \\ 313.15 \\ 2.50 \\ 290.00 \\ 0.363 \\ 0.035 \\ -0.044 \\ 40 \\ -6 \\ 1.755 \\ 456 \\ \hline \hline 1-methoxy-2-nitrobenzene$ \\ \hline 0.035177 \\ 42.2612 \\ \hline \end{tabular}$	N,N-dimethylformamide 0.098235 153.3433 -81.3865 -181.2935 298.15 288.15 313.15 2.50 290.00 0.376 0.037 -0.058 44 -4 1.595 425.	N,N-dimethylacetamide 0.092077 142.7679 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 3000 0.004 0.000 4 -2 0.397 439.3 3-cyanopropanal 0.090605 146.7205 -105.0867 42.7596 -11.6626 1.2509	triethanolamine 0.101423 241.0284 -46.4026 368.15 273.15 368.15 49.03 980.67 0.449 0.037 0.021 20 2 0.682 608.5 2-fluoroethanol 0.097388 149.4428 -89.8646 14.6076
$\frac{c_0}{c_1/K^{-1}} \frac{c_0}{b_0/MPa} \frac{c_0/MPa}{b_1/(MPa K^{-1})} \frac{b_2/(MPa K^{-2})}{b_0/(MPa K^{-2})} \frac{c_0/MPa}{b_0/(MPa} \frac{c_0/MPa}{b_0/MPa} \frac{c_0/MPa}{b_0/MPa} \frac{c_0/MPa}{b_0/MPa} \frac{c_0/MPa}{b_0/(MPa K^{-1})} \frac{c_0/MPa}{b_0/(MPa K^{-2})} \frac{c_0/MPa}{b_0/(MPa K^{-3})} \frac{c_0/MPa}{b_0/MPa K^{-3})} \frac{c_0/MPa}{b_0/MPa K^{-3}} \frac{c_0/MPa}{b_0/MPa} \frac{c_0/MPa}{b_0$	N-methylformamide 0.093732 -0.099332 157.6483 -270.2862 -47.9256 298.15 288.15 313.15 2.50 290.00 0.363 0.035 -0.044 40 -6 1.755 456.	N,N-dimethylformamide 0.098235 153.3433 -81.3865 -181.2935 298.15 288.15 313.15 2.50 290.00 0.376 0.037 -0.058 44 -4 1.595 425.	N,N-dimethylacetamide 0.092077 142.7679 298.15 298.15 298.15 298.15 298.15 200.00 0.043 0.000 4 -2 0.397 439.3 3-cyanopropanal 0.090605 146.7205 -105.0867 42.7596 -11.6626 1.2509 290.40	triethanolamine 0.101423 241.0284 -46.4026 368.15 273.15 368.15 49.03 980.67 0.449 0.037 0.021 20 2 0.682 608.5 2-fluoroethanol 0.097388 149.4428 -89.8646 14.6076 208.14
$\frac{c_0}{c_1/K^{-1}} \\ b_0/MPa \\ b_1/(MPa K^{-1}) \\ b_2/(MPa K^{-2}) \\ T_0/K \\ T_{min}/K \\ T_{max}/K \\ P_{min}/MPa \\ P_{max}/MPa \\ RMSD/(kg m^{-3}) \\ RMSD_t/\% \\ bias/(kg m^{-3}) \\ N_p \\ \pm \\ S_w \\ T_{nbp}/K \\ ref(P_{sat}) \\ \hline \\ \hline \\ \hline \\ \hline \\ c_0 \\ b_0/MPa \\ b_1/(MPa K^{-1}) \\ b_2/(MPa K^{-3}) \\ b_3/(MPa K^{-3}) \\ b_4/(MPa K^{-4}) \\ T_0/K \\ T_m/K \\ \hline \\ $	N-methylformamide 0.093732 -0.099332 157.6483 -270.2862 -47.9256 298.15 288.15 313.15 2.50 290.00 0.363 0.035 -0.044 40 -6 1.755 456. 1-methoxy-2-nitrobenzene 0.035177 42.2612	N,N-dimethylformamide 0.098235 153.3433 -81.3865 -181.2935 298.15 288.15 313.15 2.50 290.00 0.376 0.037 -0.058 44 -4 1.595 425.	N,N-dimethylacetamide 0.092077 142.7679 298.15 290.00 200.00 200.00 0.090605 146.7205 -105.0867 42.7596 -11.6626 1.2509 290.40 290.40	triethanolamine 0.101423 241.0284 -46.4026 368.15 273.15 368.15 49.03 980.67 0.449 0.037 0.021 20 2 0.682 608.5 2-fluoroethanol 0.097388 149.4428 -89.8646 14.6076 298.14 970.15
$\frac{c_0}{c_1/K^{-1}} \frac{c_0}{b_0/MPa} \frac{c_1/K^{-1}}{b_0/MPa} \frac{b_1/(MPa K^{-1})}{b_2/(MPa K^{-2})} \frac{c_0}{T_0/K} \frac{c_0}{T_{min}/MPa} \frac{c_0}{RMSD/(kg m^{-3})} \frac{c_0}{RMSD_r/\%} \frac{b_1as/(kg m^{-3})}{b_1as/(kg m^{-3})} \frac{N_p}{b_0} \frac{b_1}{b_0} \frac{c_0}{MPa} \frac{b_0/MPa}{b_1/(MPa K^{-1})} \frac{c_0}{b_0/MPa} \frac{b_1/(MPa K^{-2})}{b_3/(MPa K^{-2})} \frac{b_2}{b_0}(MPa K^{-3})} \frac{b_1/(MPa K^{-3})}{b_0/MPa K^{-3})} \frac{b_1/(MPa K^{-3})}{b_0/MPa K^{-3})} \frac{b_1/(MPa K^{-3})}{b_0/MPa K^{-3})} \frac{b_1/(MPa K^{-3})}{b_0/MPa K^{-3})} \frac{b_1/(MPa K^{-3})}{T_0/K} \frac{c_0}{T_{min}/K} \frac$	N-methylformamide 0.093732 -0.099332 157.6483 -270.2862 -47.9256 298.15 288.15 313.15 2.50 290.00 0.363 0.035 -0.044 40 -6 1.755 456. 1-methoxy-2-nitrobenzene 0.035177 42.2612 293.15 293.15	N,N-dimethylformamide 0.098235 153.3433 -81.3865 -181.2935 298.15 288.15 313.15 2.50 290.00 0.376 0.037 -0.058 44 -4 1.595 425.	N,N-dimethylacetamide 0.092077 142.7679 298.15 290.40 290.40 290.40	triethanolamine 0.101423 241.0284 -46.4026 368.15 273.15 368.15 49.03 980.67 0.449 0.037 0.021 20 2 0.682 608.5 2-fluoroethanol 0.097388 149.4428 -89.8646 14.6076 298.14 278.15
$\frac{c_0}{c_1/K^{-1}} \frac{c_0}{b_0/MPa} \frac{c_0/MPa}{b_1/(MPa K^{-1})} \frac{b_2/(MPa K^{-2})}{b_0/(MPa K^{-2})} \frac{c_0/MPa}{b_0/(MPa} \frac{c_0/MPa}{b_0/(MPa} \frac{c_0/MPa}{b_0/(MPa K^{-1})} \frac{c_0/MPa}{b_0/(MPa K^{-1})} \frac{c_0/MPa}{b_0/(MPa K^{-2})} \frac{c_0/MPa}{b_0/(MPa K^{-3})} \frac{b_0/(MPa K^{-3})}{b_0/(MPa K^{-3})} \frac{b_0/(MPa K^{-3})}{c_0/MPa} \frac{b_0/MPa}{ma/K} \frac{c_0/MPa}{ma/K} \frac{c_0/MPa}{ma} \frac{c_0/MPa}{ma/K} \frac{c_0/MPa}{ma/K} \frac{c_0/MPa}{m$	N-methylformamide 0.093732 -0.099332 157.6483 -270.2862 -47.9256 298.15 288.15 313.15 2.50 290.00 0.363 0.035 -0.044 40 -6 1.755 456. 1-methoxy-2-nitrobenzene 0.035177 42.2612 293.15 293.15 293.15	N,N-dimethylformamide 0.098235 153.3433 -81.3865 -181.2935 298.15 288.15 313.15 2.50 290.00 0.376 0.037 -0.058 44 -4 1.595 425.	N,N-dimethylacetamide 0.092077 142.7679 298.15 290.40 290.40 290.40 290.40 290.40 290.40	triethanolamine 0.101423 241.0284 -46.4026 368.15 273.15 368.15 49.03 980.67 0.449 0.037 0.021 20 2 0.682 608.5 2-fluoroethanol 0.097388 149.4428 -89.8646 14.6076 298.14 278.15 338.13
$\frac{c_0}{c_1/K^{-1}} \frac{c_0}{b_0/MPa} \frac{c_0/MPa}{b_1/(MPa K^{-1})} \frac{b_0/(MPa K^{-1})}{b_0/(MPa K^{-2})} \frac{c_0/MPa}{c_0/MPa} $	N-methylformamide 0.093732 -0.099332 157.6483 -270.2862 -47.9256 298.15 288.15 313.15 2.50 290.00 0.363 0.035 -0.044 40 -6 1.755 456. 1-methoxy-2-nitrobenzene 0.035177 42.2612 293.15 293.15 293.15 293.15 293.15 6.08	N,N-dimethylformamide 0.098235 153.3433 -81.3865 -181.2935 298.15 288.15 313.15 2.50 290.00 0.376 0.037 -0.058 44 -4 1.595 425.	N,N-dimethylacetamide 0.092077 142.7679 298.15 290.40 290.40 290.40 290.40 50.00	triethanolamine 0.101423 241.0284 -46.4026 368.15 273.15 368.15 49.03 980.67 0.449 0.037 0.021 20 2 0.682 608.5 2-fluoroethanol 0.097388 149.4428 -89.8646 14.6076 298.14 278.15 338.13 2.45
$\frac{c_{0}}{c_{1}/K^{-1}} \\ b_{0}/MPa \\ b_{1}/(MPa K^{-1}) \\ b_{2}/(MPa K^{-2}) \\ T_{0}/K \\ T_{min}/K \\ T_{max}/K \\ P_{min}/MPa \\ P_{max}/MPa \\ RMSD/(kg m^{-3}) \\ RMSD_{r}/\% \\ bias/(kg m^{-3}) \\ N_{p} \\ \pm \\ s_{w} \\ T_{nbp}/K \\ ref(P_{sat}) \\ \frac{c_{0}}{b_{0}/MPa} \\ k_{-1} \\ b_{2}/(MPa K^{-1}) \\ b_{2}/(MPa K^{-3}) \\ b_{3}/(MPa K^{-3}) \\ b_{4}/(MPa K^{-3}) \\ b_{4}/(MPa K^{-3}) \\ b_{4}/(MPa K^{-3}) \\ b_{5}/(MPa K^{-3}) \\ b_{6}/(MPa K^{-3}) \\ b_{7}/K \\ T_{min}/K \\ T_{max}/K \\ P_{min}/MPa \\ B_{0}/MPa \\ A MPa \\ C \\ MPa K^{-1} \\ C_{0}/MPa \\ B_{0}/MPa \\ C \\ MPa K^{-1} \\ C_{0}/K \\ C_{0}/K \\ C_{0}/K \\ C_{0}/K \\ C_{0}/K \\ C_{0}/K \\ C_{0}/MPa \\ B_{0}/MPa \\ C \\ C_{0}/MPa \\ C \\ C \\ C_{0}/MPa \\ C \\ $	N-methylformamide 0.093732 -0.099332 157.6483 -270.2862 -47.9256 298.15 288.15 313.15 2.50 290.00 0.363 0.035 -0.044 40 -6 1.755 456. 1-methoxy-2-nitrobenzene 0.035177 42.2612 293.15 293.15 293.15 6.08 49.64	N,N-dimethylformamide 0.098235 153.3433 -81.3865 -181.2935 298.15 288.15 313.15 2.50 290.00 0.376 0.037 -0.058 44 -4 1.595 425.	N,N-dimethylacetamide 0.092077 142.7679 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 200.00 0.004 0.000 4 -2 0.397 439.3 3-cyanopropanal 0.090605 146.7205 -105.0867 42.7596 -11.6626 1.2509 290.40 290.40 290.40 290.40 505.00 5.00 5.00	triethanolamine 0.101423 241.0284 -46.4026 368.15 273.15 368.15 49.03 980.67 0.449 0.037 0.021 20 2 0.682 608.5 2-fluoroethanol 0.097388 149.4428 -89.8646 14.6076 298.14 278.15 338.13 2.45 295.92
$\frac{c_{0}}{c_{1}/K^{-1}} \frac{b_{0}/MPa}{b_{1}/(MPa K^{-1})} \frac{b_{2}/(MPa K^{-1})}{b_{2}/(MPa K^{-2})} \frac{1}{T_{0}/K} \frac{1}{T_{min}/K} \frac{1}{T_{max}/KPa} \frac{1}{RMSD/(kg m^{-3})} \frac{1}{RMSD_{r}/\%} \frac{1}{b_{1}/MPa} \frac{1}{RMSD_{r}/\%} \frac{1}{b_{2}/(MPa K^{-1})} \frac{1}{T_{0}/K} \frac{1}{T_{min}/K} \frac{1}{T_{min}/K} \frac{1}{T_{max}/MPa} \frac{1}{P_{max}/MPa} 1$	N-methylformamide 0.093732 -0.099332 157.6483 -270.2862 -47.9256 298.15 288.15 313.15 2.50 290.00 0.363 0.035 -0.044 40 -6 1.755 456. 1-methoxy-2-nitrobenzene 0.035177 42.2612 293.15 293.15 6.08 48.64	N,N-dimethylformamide 0.098235 153.3433 -81.3865 -181.2935 298.15 288.15 313.15 2.50 290.00 0.376 0.037 -0.058 44 -4 1.595 425.	N,N-dimethylacetamide 0.092077 142.7679 298.15 290.00 3-cyanopropanal 0.090605 146.7205 -105.0867 42.7596 -11.6626 1.2509 290.40 290.40 290.40 290.40 290.40 290.40 290.40 505.00 5.00 5.00 5.00 5.00 5.00 <	triethanolamine 0.101423 241.0284 -46.4026 368.15 273.15 368.15 49.03 980.67 0.449 0.037 0.021 20 2 0.682 608.5 2-fluoroethanol 0.097388 149.4428 -89.8646 14.6076 298.14 278.15 338.13 2.45 385.83
$\frac{c_0}{c_1/K^{-1}} \frac{c_0}{b_0/MPa} \frac{c_0/MPa}{b_1/(MPa K^{-1})} \frac{b_0/(MPa K^{-1})}{b_0/(MPa K^{-2})} \frac{c_0/MPa}{T_{max}/K} \frac{c_0/MPa}{T_{max}/MPa} \frac{c_0/MPa}{T_{max}/MPa} \frac{c_0/MPa}{T_{mbp}/K} \frac{c_0/MPa}{T_{mbp}/K} \frac{c_0/MPa}{T_{mbp}/K} \frac{c_0/MPa}{T_0/K} \frac{c_0/MPa}{T_0/K} \frac{c_0/MPa}{T_0/K} \frac{c_0/MPa}{T_{max}/MPa} \frac{c_0/MPa}{T_0/K} \frac{c_0/MPa}{T_{max}/MPa} c_0/$	N-methylformamide 0.093732 -0.099332 157.6483 -270.2862 -47.9256 298.15 288.15 313.15 2.50 290.00 0.363 0.035 -0.044 40 -6 1.755 456. 1-methoxy-2-nitrobenzene 0.035177 42.2612 293.15 293.15 293.15 293.15 6.08 48.64 0.198	N,N-dimethylformamide 0.098235 153.3433 -81.3865 -181.2935 298.15 288.15 313.15 2.50 290.00 0.376 0.037 -0.058 44 -4 1.595 425. 1-methylpyrrolidin-2-one 0.091074 173.4791 298.15 298.15 298.15 298.15 200.00 0.073	N,N-dimethylacetamide 0.092077 142.7679 298.15 20.00 439.3 3-cyanopropanal 0.090605 146.7205 -105.0867 42.7596 -11.6626 1.2509 290.40 290.40 <td>triethanolamine 0.101423 241.0284 -46.4026 368.15 273.15 368.15 49.03 980.67 0.449 0.037 0.021 20 2 0.682 608.5 2-fluoroethanol 0.097388 149.4428 -89.8646 14.6076 298.14 278.15 338.13 2.45 385.83 0.211</td>	triethanolamine 0.101423 241.0284 -46.4026 368.15 273.15 368.15 49.03 980.67 0.449 0.037 0.021 20 2 0.682 608.5 2-fluoroethanol 0.097388 149.4428 -89.8646 14.6076 298.14 278.15 338.13 2.45 385.83 0.211
$\frac{c_{0}}{c_{1}/K^{-1}} \\ b_{0}/MPa \\ b_{1}/(MPa K^{-1}) \\ b_{2}/(MPa K^{-2}) \\ T_{0}/K \\ T_{min}/K \\ T_{max}/K \\ P_{min}/MPa \\ P_{max}/MPa \\ RMSD/(kg m^{-3}) \\ RMSD_{r}/\% \\ bias/(kg m^{-3}) \\ N_{p} \\ \pm \\ s_{w} \\ T_{nbp}/K \\ ref(P_{sat}) \\ \hline \\ c_{0} \\ b_{0}/MPa \\ K^{-1} \\ b_{2}/(MPa K^{-1}) \\ b_{2}/(MPa K^{-2}) \\ b_{3}/(MPa K^{-3}) \\ b_{4}/(MPa K^{-3}) \\ b_{4}/(MPa K^{-3}) \\ b_{4}/(MPa K^{-3}) \\ b_{4}/(MPa K^{-3}) \\ b_{5}/(MPa K^{-3}) \\ b_{6}/(MPa K^{-3}) \\ b_{7}/K \\ T_{min}/K \\ T_{max}/K \\ P_{min}/MPa \\ P_{max}/MPa \\ RMSD/(kg m^{-3}) \\ RMSD./\% \\ \hline \\ $	N-methylformamide 0.093732 -0.099332 157.6483 -270.2862 -47.9256 298.15 288.15 313.15 2.50 290.00 0.363 0.035 -0.044 40 -6 1.755 456. 1-methoxy-2-nitrobenzene 0.035177 42.2612 293.15 293.15 293.15 293.15 0.03 48.64 0.198 0.016	N,N-dimethylformamide 0.098235 153.3433 -81.3865 -181.2935 298.15 288.15 313.15 2.50 290.00 0.376 0.037 -0.058 44 -4 1.595 425. 1-methylpyrrolidin-2-one 0.091074 173.4791 298.15 298.15 298.15 298.15 0.00 200.00 0.073	N,N-dimethylacetamide 0.092077 142.7679 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 200.00 0.004 0.000 4 -2 0.397 439.3 3-cyanopropanal 0.090605 146.7205 -105.0867 42.7596 -11.6626 1.2509 290.40 290.40 290.40 290.40 290.40 505.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00	triethanolamine 0.101423 241.0284 -46.4026 368.15 273.15 368.15 49.03 980.67 0.449 0.037 0.021 20 2 0.682 608.5 2-fluoroethanol 0.097388 149.4428 -89.8646 14.6076 298.14 278.15 338.13 2.45 385.83 0.211 0.018
$\frac{c_0}{c_1/K^{-1}} \frac{c_0}{b_0/MPa} \frac{c_0/K^{-1}}{b_0/MPa} \frac{b_1/(MPa K^{-1})}{b_2/(MPa K^{-2})} \frac{c_0/K}{T_{min}/KPa} \frac{b_1/K}{T_{max}/K} \frac{b_1/K}{T_{max}/KPa} \frac{b_1/K}{RMSD/(kg m^{-3})} \frac{b_1/K}{RMSD/(kg m^{-3})} \frac{b_1/K}{RMSD/K} \frac{c_0}{T_{mb}/K} \frac{b_1/K}{ref(P_{sat})} \frac{c_0}{T_{max}/K} \frac{b_1/KPa K^{-1}}{T_0/K} \frac{b_1/(MPa K^{-1})}{T_0/K} \frac{b_1/(MPa K^{-3})}{T_0/K} \frac{b_1/K}{T_{max}/K} \frac{T_{min}/K}{T_{max}/K} \frac{T_{max}/K}{P_{min}/MPa} \frac{P_{max}/MPa}{RMSD/(kg m^{-3})} \frac{RMSD/(kg m^{-3})}{RMSD/(kg m^{-3})} \frac{RMSD/(kg m^{-3})}{RMSD/(kg m^{-3})}$	N-methylformamide 0.093732 -0.099332 157.6483 -270.2862 -47.9256 298.15 288.15 313.15 2.50 290.00 0.363 0.035 -0.044 40 -6 1.755 456. 1-methoxy-2-nitrobenzene 0.035177 42.2612 293.15 293.15 6.08 48.64 0.198 0.016	N,N-dimethylformamide 0.098235 153.3433 -81.3865 -181.2935 298.15 288.15 313.15 2.50 290.00 0.376 0.037 -0.058 44 -4 1.595 425. 1-methylpyrrolidin-2-one 0.091074 173.4791 298.15 298.15 298.15 298.15 298.15 200.00 0.073 0.007 -0.021	N,N-dimethylacetamide 0.092077 142.7679 298.15 290.00 439.3 3 -2 0.397 439.3 -105.0867 42.7596 -11.6626 1.2509 290.40 290.40 290.40 200.500 5.00 5.00 5.00 5.00 5.00 <t< td=""><td>triethanolamine 0.101423 241.0284 -46.4026 368.15 273.15 368.15 49.03 980.67 0.449 0.037 0.021 20 2 0.682 608.5 2-fluoroethanol 0.097388 149.4428 -89.8646 14.6076 298.14 278.15 338.13 2.45 385.83 0.211 0.018 0.0274</td></t<>	triethanolamine 0.101423 241.0284 -46.4026 368.15 273.15 368.15 49.03 980.67 0.449 0.037 0.021 20 2 0.682 608.5 2-fluoroethanol 0.097388 149.4428 -89.8646 14.6076 298.14 278.15 338.13 2.45 385.83 0.211 0.018 0.0274
$\frac{c_0}{c_1/K^{-1}} \frac{c_0}{b_0/MPa} \frac{c_1/K^{-1}}{b_0/MPa} \frac{b_1/(MPa K^{-1})}{b_2/(MPa K^{-2})} \frac{c_0}{T_0/K} $	N-methylformamide 0.093732 -0.099332 157.6483 -270.2862 -47.9256 298.15 288.15 313.15 2.50 290.00 0.363 0.035 -0.044 40 -6 1.755 456. 1-methoxy-2-nitrobenzene 0.035177 42.2612 293.15 293.15 293.15 0.03 48.64 0.198 0.016 0.038	N,N-dimethylformamide 0.098235 153.3433 -81.3865 -181.2935 298.15 288.15 313.15 2.50 290.00 0.376 0.037 -0.058 44 -4 1.595 425. 1-methylpyrrolidin-2-one 0.091074 173.4791 298.15 298.15 298.15 298.15 298.15 200.00 0.073 0.007 -0.001	N,N-dimethylacetamide 0.092077 142.7679 298.15 290.40 290.40 290.40 290.40 290.40 290.40 290.40 290.40 290.40 290.40 290.40 290.40 290.40 290.40 290.40 290.40 290.40 290.40 200.76 200.77 <td>triethanolamine 0.101423 241.0284 -46.4026 368.15 273.15 368.15 49.03 980.67 0.449 0.037 0.021 20 2 0.682 608.5 2-fluoroethanol 0.097388 149.4428 -89.8646 14.6076 298.14 278.15 338.13 2.45 385.83 0.211 0.018 0.074 19.64 19.64 19.64 19.65 10.007 10</td>	triethanolamine 0.101423 241.0284 -46.4026 368.15 273.15 368.15 49.03 980.67 0.449 0.037 0.021 20 2 0.682 608.5 2-fluoroethanol 0.097388 149.4428 -89.8646 14.6076 298.14 278.15 338.13 2.45 385.83 0.211 0.018 0.074 19.64 19.64 19.64 19.65 10.007 10
$\frac{c_0}{c_1/K^{-1}} \frac{c_0}{b_0/MPa} \frac{c_0/MPa}{b_1/(MPa K^{-1})} \frac{b_2/(MPa K^{-1})}{b_2/(MPa K^{-2})} \frac{c_0/MPa}{T_{max}/K} \frac{c_0/MPa}{T_{max}/MPa} \frac{c_0/MPa}{RMSD_r/\%} \frac{c_0/MPa}{bias/(kg m^{-3})} \frac{N_p}{\lambda_p} \frac{\pm}{2} \frac{s_w}{T_{nbp}/K} \frac{c_0/MPa}{T_{nbp}/K} c_$	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	N,N-dimethylformamide 0.098235 153.3433 -81.3865 -181.2935 298.15 288.15 313.15 2.50 290.00 0.376 0.037 -0.058 44 -4 1.595 425. 1-methylpyrrolidin-2-one 0.091074 173.4791 298.15 298.15 298.15 298.15 298.15 298.15 20.00 0.073 0.007 -0.001	N,N-dimethylacetamide 0.092077 142.7679 298.15 298.15 298.15 298.15 298.15 298.15 298.15 200.00 0.043 0.000 4 -2 0.397 439.3 3-cyanopropanal 0.090605 146.7205 -105.0867 42.7596 -11.6626 1.2509 290.40 290.40 505.00 5.00 <td>triethanolamine 0.101423 241.0284 -46.4026 368.15 273.15 368.15 49.03 980.67 0.449 0.037 0.021 20 2 0.682 608.5 2-fluoroethanol 0.097388 149.4428 -89.8646 14.6076 298.14 278.15 338.13 2.45 385.83 0.211 0.018 0.074 134</td>	triethanolamine 0.101423 241.0284 -46.4026 368.15 273.15 368.15 49.03 980.67 0.449 0.037 0.021 20 2 0.682 608.5 2-fluoroethanol 0.097388 149.4428 -89.8646 14.6076 298.14 278.15 338.13 2.45 385.83 0.211 0.018 0.074 134
$\frac{c_0}{c_1/K^{-1}} \frac{c_0}{b_0/MPa} \frac{c_1/K^{-1}}{b_0/MPa} \frac{b_1/(MPa K^{-1})}{b_2/(MPa K^{-2})} \frac{c_0}{T_0/K} \frac{c_0}{T_{max}/K} \frac{c_0}{T_{max}/K} \frac{c_0}{T_{max}/MPa} \frac{c_0}{B_0/MPa} \frac{c_0}$	N-methylformamide 0.093732 -0.099332 157.6483 -270.2862 -47.9256 298.15 288.15 313.15 2.50 290.00 0.363 0.035 -0.044 40 -6 1.755 456.	N,N-dimethylformamide 0.098235 153.3433 -81.3865 -181.2935 298.15 288.15 313.15 2.50 290.00 0.376 0.037 -0.058 44 -4 1.595 425.	N,N-dimethylacetamide 0.092077 142.7679 298.15 290.40 290.40 290.40 290.40 290.40 505.00 5.00 5.00 58.90 0.346 0.037 -0.016 56 10	$\begin{tabular}{ c c c c c } \hline triethanolamine \\ \hline 0.101423 \\ \hline 241.0284 \\ -46.4026 \\ \hline 368.15 \\ 273.15 \\ \hline 368.15 \\ 49.03 \\ 980.67 \\ \hline 0.449 \\ 0.037 \\ 0.021 \\ 20 \\ 2 \\ \hline 0.682 \\ 608.5 \\ \hline \hline \hline 2-fluoroethanol \\ \hline 0.097388 \\ 149.4428 \\ -89.8646 \\ 14.6076 \\ \hline 298.14 \\ 278.15 \\ 338.13 \\ 2.45 \\ 385.83 \\ 0.211 \\ 0.018 \\ 0.074 \\ 134 \\ 48 \\ \hline \end{tabular}$
^{C0} c ₁ /K ⁻¹ b ₀ /(MPa K ⁻¹) b ₂ /(MPa K ⁻¹) b ₂ /(MPa K ⁻²) T ₀ /K T _{min} /MPa P _{max} /MPa RMSD/(kg m ⁻³) RMSD _r /% bias/(kg m ⁻³) N _p ± S _W T _{nbp} /K ref(P _{sat})	N-methylformamide 0.093732 -0.099332 157.6483 -270.2862 -47.9256 298.15 288.15 313.15 2.50 290.00 0.363 0.035 -0.044 40 -6 1.755 $456.$ 1-methoxy-2-nitrobenzene 0.035177 42.2612 293.15 293.15 293.15 293.15 293.15 6.08 48.64 0.198 0.016 0.038 6 0	N,N-dimethylformamide 0.098235 153.3433 -81.3865 -181.2935 298.15 288.15 313.15 2.50 290.00 0.376 0.037 -0.058 44 -4 1.595 425. 1-methylpyrrolidin-2-one 0.091074 173.4791 298.15 298.15 298.15 298.15 298.15 200.00 0.073 0.007 -0.001 4 -2 0.733	N,N-dimethylacetamide 0.092077 142.7679 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 200.00 0.004 0.000 4 -2 0.397 439.3 3-cyanopropanal 0.090605 146.7205 -105.0867 42.7596 -11.6626 1.2509 290.40 290.40 290.40 290.40 290.40 505.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.016 5.02 5.03	triethanolamine 0.101423 241.0284 -46.4026 368.15 273.15 368.15 49.03 980.67 0.449 0.037 0.021 20 2 0.682 608.5 2-fluoroethanol 0.097388 149.4428 -89.8646 14.6076 298.14 278.15 338.13 2.45 385.83 0.211 0.018 0.074 134 48 0.298
$\frac{c_0}{c_1/K^{-1}} \frac{c_0}{b_0/MPa} \frac{c_0/MPa}{b_1/(MPa K^{-1})} \frac{b_2/(MPa K^{-2})}{D_0/(MPa K^{-2})} \frac{D_0/MPa}{D_0/MPa} \frac{D_0/MPa}{D_0/MPa} \frac{D_0/MPa}{D_0/MPa} \frac{D_0/MPa}{D_0/MPa} \frac{D_0/MPa}{D_0/MPa} \frac{D_0/MPa}{D_0/MPa K^{-2})} \frac{D_0/MPa}{D_0/(MPa K^{-2})} \frac{D_0/MPa}{D_0/(MPa K^{-2})} \frac{D_0/MPa}{D_0/(MPa K^{-2})} \frac{D_0/MPa}{D_0/MPa} D_0/M$	N-methylformamide 0.093732 -0.099332 157.6483 -270.2862 -47.9256 298.15 288.15 313.15 2.50 290.00 0.363 0.035 -0.044 40 -6 1.755 456.	N,N-dimethylformamide 0.098235 153.3433 -81.3865 -181.2935 298.15 288.15 313.15 2.50 290.00 0.376 0.037 -0.058 44 -4 1.595 425. 1-methylpyrrolidin-2-one 0.091074 173.4791 298.15 298.15 298.15 298.15 20.00 0.073 0.007 -0.001 4 -2 0.733 475	N,N-dimethylacetamide 0.092077 142.7679 298.15 290.00 0.090605 146.7205 -105.0867 42.7596 -11.6626 1.2509 290.40 290.40 290.40 290.40 290.40 200.40 505.00 5.00 5.00 5.00 5.00 5.00 5.00 5.01	triethanolamine 0.101423 241.0284 -46.4026 368.15 273.15 368.15 49.03 980.67 0.449 0.037 0.021 20 2 0.682 608.5 2-fluoroethanol 0.097388 149.4428 -89.8646 14.6076 298.14 278.15 338.13 2.45 385.83 0.211 0.018 0.074 134 48 0.298 276
$\frac{c_0}{c_1/K^{-1}} \frac{c_0}{b_0/MPa} \frac{c_1/K^{-1}}{b_0/MPa} \frac{b_1/(MPa K^{-1})}{b_0/(MPa K^{-2})} \frac{b_0/(MPa K^{-2})}{T_0/K} \frac{T_{max}/K}{T_{max}/K} \frac{P_{min}/MPa}{P_{max}/MPa} \frac{P_{max}/MPa}{RMSD/(kg m^{-3})} \frac{N_p}{bias/(kg m^{-3})} \frac{b_0}{N_p} \frac{b_0}{b_0/MPa} \frac{b_0}{b_0/MPa} \frac{b_0}{b_0/MPa} \frac{b_0}{k_0/(MPa K^{-1})} \frac{b_0}{b_0/(MPa K^{-1})} \frac{b_0}{b_0/(MPa K^{-1})} \frac{b_0}{b_0/(MPa K^{-2})} \frac{b_0}{b_0/MPa} \frac{b_0}{k_0/(MPa K^{-3})} \frac{b_0}{b_0/MPa} \frac{k^{-3}}{T_0/K} \frac{T_{min}/K}{T_{max}/K} \frac{P_{min}/MPa}{P_{max}/MPa} \frac{P_{max}/MPa}{RMSD/(kg m^{-3})} \frac{RMSD_r/\%}{bias/(kg m^{-3})} \frac{N_p}{k_0} \frac{b_0}{k_0/kg m^{-3}} \frac{k}{k_0/kg m^{-3}} \frac{k_0}{k_0/kg m^{-3}} \frac{k_0}{kg m^{-3}} k_$	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{array}{c c} N, N\mbox{-dimethylformamide} \\ \hline 0.098235 \\ \hline 153.3433 \\ - 81.3865 \\ - 181.2935 \\ 298.15 \\ 298.15 \\ 288.15 \\ 313.15 \\ 2.50 \\ 290.00 \\ 0.376 \\ 0.037 \\ - 0.058 \\ 44 \\ -4 \\ 1.595 \\ 425 \\ \hline \\ $	N,N-dimethylacetamide 0.092077 142.7679 298.15 20.00 439.3 3 -105.0867 42.7596 -11.6626 1.2509 290.40 290.40 290.40 290.40 <	triethanolamine 0.101423 241.0284 -46.4026 368.15 273.15 368.15 49.03 980.67 0.449 0.037 0.021 20 2 0.682 608.5 2-fluoroethanol 0.097388 149.4428 -89.8646 14.6076 298.14 278.15 338.13 2.45 385.83 0.211 0.018 0.074 134 48 0.298 376.

Table 3. (Continued)

	2,2-difluoroethanol	2,2,2-trifluoroethanol	2,2,3,3,3-pentafluoropropanol	2,2,3,3-tetrafluoropropanol
<i>C</i> ₀	0.094771	0.092911	0.078879	0.083714
c_1/K^{-1}	117 9971	-0.003543	61 8071	106 2015
$b_0/MPa K^{-1}$	-77.9611	-58.9978	-60.6430	-88.8256
$b_2/(MPa K^{-2})$	11.4145	18.6097		
$b_3/(MPa K^{-3})$		-18.7043		
$D_4/(MPa K^4)$ T_0/K	313.15	8.3822 298.15	298.15	298.15
$T_{\rm min}/{\rm K}$	278.15	263.15	298.15	298.15
$T_{\rm max}/{ m K}$	338.15	433.28	323.15	323.15
$P_{\rm min}/MPa$	2.55	0.49	0.50	0.50
$\frac{1}{\text{max}^{-1}\text{MI}}$ a RMSD/(kg m ⁻³)	0.337	0.651	0.205	0.281
RMSD _r /%	0.025	0.049	0.013	0.019
bias/(kg m ⁻³)	0.126	0.128	0.015	0.016
¹ v _p +	48	102	2	42
$S_{ m W}$	0.397	0.795	0.132	0.186
$T_{\rm nbp}/K$	368	347.0	353.8	382.1
rei(P _{sat})		95-Sau/1101		
	2.2.2-trichloroethanol	bis(disfluoromethyl)	2,2,2-trifluoroethyl difluoromethyl ether	r pentafluoroethyl
	0.068406	0.086880	0.090278	0.065546
b_0/MPa	54.2989	18.2725	44.8952	21.6128
$b_1/(MPa K^{-1})$	-75.5685	-37.0946	-57.9641	-32.5099
$b_2/(MPa K^{-2})$ $b_2/(MPa K^{-3})$	26.7017	16.1542	24.2391	12.1047
T_0/K	355.15	333.12	298.14	279.99
$T_{\rm min}/{ m K}$	300.15	273.58	278.15	279.99
$T_{\rm max}/{\rm K}$	355.15	367.31	338.13	399.00
$P_{\rm min}/MPa$ $P_{\rm max}/MPa$	280.00	5.30	2.55	3.01
$RMSD/(kg m^{-3})$	1.539	0.264	1.210	0.271
$RMSD_r/\%$	0.096	0.021	0.079	0.024
$\frac{DIAS}{(Kg m^3)}$	-0.017 134	-0.003 57	0.364 145	-0.009 61
\pm	-10	7	35	-15
$S_{\rm W}$	0.602	0.412	0.855	0.175
$ref(P_{sat})$	423.	Table 7	502.4 98-goo/def	Table 7
	1,2,2,2-tetrafluoroeth	yl heptafluoropropyl		
	difluoromethyl ether	methyl ether	pentafluorobenzonitrile	tetramethylstannane
c_0	0.089100	0.070606	0.084679	0.093735
b_0/MPa K ⁻¹)	41.9705	-29.4071	-59 6992	-64,2220
$b_2/(MPa K^{-2})$	22.4601	7.1925	18.5218	22.3687
<i>b</i> ₃ /(MPa K ⁻³)	900 17	26.8199	-4.9729	-5.1623
$T_{0/K}$ T_{min}/K	278.15	279.99	283.20	267.40
$T_{\rm max}/{ m K}$	338.13	369.98	363.20	366.90
$P_{\rm min}/{\rm MPa}$	2.55	0.50	5.00	5.00
$P_{\text{max}}/\text{MPa}$ RMSD/(kg m ⁻³)	1.289	0.546	0.004	200.00
RMSD _r /%	0.077	0.041	0.000	0.003
bias/(kg m ⁻³)	0.406	0.021	0.000	0.002
/Vp +	155 21	80 -12	62 4	72 -18
S _W	0.771	0.228	0.002	0.018
$T_{\rm nbp}/{\rm K}$	296.5 Table 7	307.7 Table 7	435.	350.7 Table 7
Ter(I sat)				
	tetramethylsilan	e tetraethylsilane	hexamethyldisilane	tetraethoxysilane
c_0 b_0/MPa	0.090448	0.085492 80 4461	0.058342 21.0771	0.088030
$b_0/1011 a$ $b_1/(MPa K^{-1})$	-38.7468	-56.3972	-55.6331	-57.9306
$b_2/(MPa K^{-2})$	19.4751	10.8974		13.3229
<i>b</i> ₃ /(MPa K ⁻³) <i>T_c/к</i>	-3.8608 298 15	992 15	393 90	903 15
$T_{\rm min}/{\rm K}$	198.16	283.15	303.20	283.15
$T_{\rm max}/{\rm K}$	373.00	333.15	323.20	333.15
$P_{\rm min}/{\rm MPa}$	0.23	10.00	10.00	10.00
$r_{max'}$ MPa RMSD/(kg m ⁻³)	1.646	0.122	0.654	0.145
RMSD _r /%	0.219	0.016	0.089	0.015
bias/(kg m ⁻³)	-0.735	-0.004	0.038	-0.005
$\pm^{I v_p}$	201 -157	2	3	2
$\overline{S_{W}}$	1.605	0.609	1.367	$\tilde{0}.726$
$T_{\rm nbp}/K$	299.8	427.9	386.	441.1
$1 el(P_{sat})$	rable /			

 Table 3. (Continued)

	octamethylcyclotetrasiloxane	dimethyl sulfoxide
<i>c</i> ŋ	0.085893	0.105679
b ₀ /MPa	19.2580	186.2920
$b_1/(MPa K^{-1})$	-24.7486	-58.7955
$b_2/(MPa K^{-2})$	6.9036	
T_0/\mathbf{K}	413.17	323.00
$T_{\rm min}/{ m K}$	313.14	293.60
$T_{\rm max}/{ m K}$	413.17	323.00
P_{\min}/MPa	0.73	5.00
P _{max} /MPa	213.29	150.00
$\overline{RMSD}/(kg m^{-3})$	0.320	0.438
RMSD _r /%	0.034	0.039
bias/(kg m ⁻³)	0.023	-0.054
$N_{\rm p}$	273	67
\pm	25	-5
$S_{ m W}$	0.562	0.398
$T_{\rm nbp}/{ m K}$	448.	463.4
$ref(P_{sat})$		

^{*a*} The low limit of the pressure range is 0.1 MPa or a saturation pressure (whichever is higher) for all fits. ^{*b*} Normal boiling temperature corresponds to a respective saturation pressure line or was taken from either the database [93-cda] or currently available databanks (Beilstein).

function given in Appendix 1). In some cases, the compressed-liquid data were presented in the original source in the form of a relative property (relative density, volume ratio, compression). In those cases, the reference data are also denoted as "o" in Table 4 despite the fact that the original reference density values were not known.

A comparison of isothermal compressibilities, $\beta_T = -(1/V)(\partial V/\partial P)_T = (1/\rho)(\partial \rho/\partial P)_T$, calculated from the fits for P = 0.1 MPa with available values published in the literature is presented in Table 5, which provides a rough check of the consistency of the fits with independent data. The literature values of isothermal compressibility used for the comparison in Table 5 are the values obtained either by direct measurements (not evaluated from the $P-\rho-T$ data included in the present evaluation) or from speed-of-sound measurements or adiabatic compressibility values and were either taken directly from the papers or calculated from the equation

$$\beta_T = \frac{1}{\rho} \left[\frac{1}{u^2} + \frac{TM\alpha_P^2}{c_P} \right] = \beta_S + \frac{TM\alpha_P^2}{\rho c_P}$$
(11)

where *M*, *u*, α_P , β_S , and c_P are the molar mass, speed of sound, isobaric thermal expansivity $(\alpha_P = (1/V)(\partial V/\partial T)_P =$ $-(1/\rho)(\partial \rho/\partial T)_P$, adiabatic (isoentropic) compressibility (β_S $= -(1/V)(\partial V/\partial P)_S = 1/(\rho u^2))$, and molar isobaric heat capacity, respectively. The values of the input quantities in eq 11 were taken from the different sources cited in Table 5. Contrary to our previous reviews, the recommended values of isobaric heat capacity [96-zab/ruz, 01-zab/ruz] for some substances are based on experimental data taken from a limited number of sources, and therefore their reliability might be rather questionable. The influence of heat capacity data on isothermal compressibility is, however, moderate, similar to the case of density values (which are usually known with an uncertainty lower than 0.1%). The uncertainty in the thermal expansivity, α_P , may have a larger effect, and therefore the values from different sources were employed where possible (see Table 5). The relative difference between isothermal and isoentropic compressibilities, $(\beta_T - \beta_S)/\beta_T$, that is, a portion of the term $TM\alpha_P^2/(\rho c_P)$ in the value of isothermal compressibility, is in the range from about 16% (formamide, 2,2,2-trifluoroethanol, both fluorinated propanols) to 30% (ethanenitrile, 2,2,2,-trichloroethanol) at temperatures close to 298 K. In a few cases, the heat capacity data of particular substances are discussed below.

No comparison is presented for 1,2-ethanediamine, 1-aminopropane, 1-aminobutane, and piperidine (either no fits were performed or an extrapolation from the fit was impossible, as for 1-aminopropane); the available isothermal compressibility values found in the literature are, however, retained in Table 5.

C–*H*–*N Compounds. Amines.* The fit of isothermal data [95-pap/pan] for 1-aminopropane gives $\beta_T(T = 298.15 \text{ K}, P = 0.1 \text{ MPa}) = 1.166 \text{ GPa}^{-1}$. This value is lower than that calculated from speed-of-sound data [78-pat] at 293.15 K, while an opposite dependence should be expected. The isothermal compressibility of 1-aminobutane increases by about 5.6% on the 5 K increase (Table 5). Assuming the same increase for 1-aminopropane, the value $\beta_T(T = 298.15 \text{ K}, P = 0.1 \text{ MPa}) = 1.27 \text{ GPa}^{-1}$ can be derived, which is about 8% higher than that calculated from the fit. The speed-of-sound data [78-pat] seem to be correct, since, for 1,2-ethanediamine, 1-aminobutane, and 2-methyl-2-aminopropane, they are in accordance with those of other sources (Table 5).

The fit of the data for 2-methyl-2-propanamine taken from one source [95-kip/woo] gives very good agreement in isothermal compressibility (1.3% in an average, see Table 5) at T = 293.15 K, that is, at the temperature approximately in the middle of the temperature interval of the $P-\rho-T$ data.

The data available in the database for aminobenzene are in very good mutual accordance (see Table 4). Deviations in isothermal compressibility at 0.1 MPa are mostly below 1% (Table 5), even in the temperature ranges beyond the temperature interval of the fit (25 K downward, 5 K upward, see Table 5).

Data for toluidines were measured in the same laboratory. The results for 2-methyl-1-aminobenzene are better (lower RMSD, Table 3, and deviations in isothermal compressibility, Table 5) than those for 4-methyl-1-aminobenzene. Densities at atmospheric pressure reported for 2-methyl-1-aminobenzene between 296.5 and 473.6 K [79gus/far] are by 2.9 kg·m⁻³ (RMSD) lower than those from [90-cha/gad]; the deviations for 4-methyl-1-aminobenzene [81-gus/naz] in the interval from 323 to 448 K are much greater (RMSD between [81-gus/naz] and [90-cha/gad] = 97.2 kg·m⁻³; at T = 448 K the deviation is -155 kg·m⁻³) and difficult to explain. Also densities extrapolated from compressed-liquid density data [81-gus/naz] to saturation pressure for temperatures higher than 473 K diverge from

Table 4. Statistical Characteristics of Individual Data Sets for the Fits in Table 3: Temperature and Pressure Ranges Taken into the Correlations, T_{min} , T_{max} , P_{min} , and P_{max} , Absolute, RMSD, and Relative, RMSD_r, Root Mean Square Deviations, Biases, bias, Number of Data Points, $N_{\rm p}$, \pm , and Origin of the Reference Density Values Used in the Correlations, RD

ref	$T_{\rm min}/{ m K}$	$T_{\rm max}/{ m K}$	P _{min} /MPa	P _{max} /MPa	RMSD/kg·m ⁻³	RMSD _r /%	bias/kg·m ⁻³	$N_{ m p}$	±	RD ^a
95-pap/pan	298.15	298.15	2.0	1-Am 33.9	inopropane 0.032	0.004	0.006	9	1	0
95-kip/woo	278.15	313.14	2.5	2-Methyl- 157.8	-2-propanamine 0.300	0.039	0.056	54	14	0
				Ami	nobenzene					
39-gib/loe	298.15	358.15	50.0	100.0	0.042	0.004	0.015	8	2	0
39-gib/loe-1	298.15	358.15	25.0	100.0	0.036	0.004	-0.016	16	-6	0
80-tak	298.15	298.15	55.3	151.8	0.031	0.003	0.028	3	3	0
85-eas/woo	298.15	323.15	25.0	100.0	0.210	0.020	0.093	9	3	0
85-tak/ter	303.15	303.15	10.0	180.0	0.759	0.073	0.593	18	18	0
				2-Methyl-	1-aminobenzene					
79-gus/far	322.50	524.00	5.0	50.0	0.569	0.063	0.007	54	0	ор
81-gus/naz	323.00	448 00	5.0	4-Methyl- 50.0	1-aminobenzene 4 618	0.517	-0.245	33	-1	0
or gus/nuz	020.00	110.00	0.0 E4	honoritrilo (E	the of OF lang/marie D	0.017	0.210	00		Ū
			Et	hanenitrile (F	it of 85-kra/mue D	ata)	0.050	15	4	
75-Ira/Ira					7.128	1.388	-2.950	15	1	e
75-Ira/Ira					7.032	0.884	0.200	9	9	0
75-Ira/Ira					9.138	1.578	-1.092	45	3	р
77-gup/nan					0.578	0.078	-0.067	24	0	р
77-sch/sch					0.630	0.094	0.449	4	2	р
77-Sri/Kay					1.745	0.210	-1.031	3	-3	0
79-lue/scn					0.995	0.123	-0.936	6	-/	0
80-lan/wue					0.376	0.046	-0.184	0	-2	р
80-lan/wue-l					0.655	0.079	0.190	30	12	0
82-eas/woo					0.212	0.026	-0.212	1	-1	0
85-eas/w00	050.00	500.00	0.0	00.0	0.099	0.013	0.068	2	10	0
85-kra/mue	256.83	523.20	0.6	60.2	0.129	0.020	0.016	88	10	e
88-eas/woo					0.242	0.030	-0.056	35	9	0
90-lai/how					6.682	0.871	6.451	18	18	е
91-dym/awa					1.371	0.205	-1.445	/	-7	0
				Ethanenitri	le (Full Range Fit)					
75-fra/fra					14.537	1.780	8.909	66	46	e
75-fra/fra					9.239	1.092	8.572	33	33	0
75-fra/fra					11.453	1.648	2.478	85	11	р
77-gup/han	273.15	318.15	2.8	22.1	0.300	0.038	0.262	16	14	р
77-sch/sch					10.112	1.169	8.180	21	19	р
77-sri/kay					3.157	0.368	-2.825	12	-12	0
79-lue/sch					1.105	0.136	-1.037	8	-8	0
80-lan/wue	283.15	313.15	10.0	300.0	0.452	0.052	-0.299	17	-11	р
80-lan/wue-1	233.45	313.25	10.0	300.0	0.591	0.069	0.163	114	20	0
82-eas/woo	298.15	298.15	50.0	250.0	0.467	0.052	-0.237	5	-3	0
85-eas/woo	298.15	313.15	50.0	250.0	1.156	0.132	0.963	10	10	0
85-kra/mue	256.83	523.20	0.6	60.2	0.148	0.024	0.001	88	4	e
88-eas/woo					12.798	1.467	-7.980	83	-55	0
90-lai/how			~~ ~		6.682	0.871	6.450	18	18	е
91-dym/awa	298.25	373.18	75.5	512.4	1.867	0.221	-1.475	23	-19	0
				Etha	nenitrile- <i>d</i> 3					
77-sch/sch	303.15	363.15	3.0	400.0	0.471	0.052	-0.015	15	-3	р
				Prop	oanenitrile					
84-sha/gus	190.36	467.55	5.0	50.0	0.553	0.072	0.017	54	12	ор
90-uos/mat	298.15	298.15	25.0	150.0	0.319	0.038	0.033	6	2	0
				But	anenitrile					
84-sha/gus	176.94	490.46	5.0	50.0	1.010	0.137	-0.140	100	-22	op
90-uos/mat	298.15	298.15	25.0	150.0	0.608	0.073	-0.009	6	-2	o
				2 Mothy	Inronanonitrilo					
90-uos/mat	298 15	298 15	25.0	150 0	0 307	0.038	-0.002	6	-2	0
30-u03/111at	230.13	230.15	23.0	150.0	0.307	0.038	0.002	0	~	0
00	000.00	070.00	5.0	2-Methy	Ipropenenitrile	0.050	0.000	05	~	
83-gus/naz	293.00	373.00	5.0	40.0	0.376	0.050	0.003	25	5	ор
				Ber	nzonitrile					
78-gus/naz	323.00	523.00	5.0	50.0	1.858	0.208	0.068	63	-7	ор
86-gus					4.325	0.495	-1.741	12	-2	op
90-uos/mat	298.15	298.15	25.0	150.0	0.379	0.036	0.050	6	0	0
01-tak/fuj	298.15	298.15	1.7	28.6	0.126	0.012	0.113	13	13	0
				Phenvl	ethanenitrile					
90-uos/mat	298.15	298.15	25.0	150.0	0.241	0.023	0.005	6	2	0
			20.0		emidine.	2.020	0.000	0	~	v
FC atta	202.15	202.15	101.0	101 0 P	yridine	0.079	0 7/1	1	1	~
30-Stu 70 fam/aar	303.15	303.15	101.3	101.3	0.741	0.072	-0./41	1	-1	0
/9-Iur/mun	303.15	423.15	10.0	400.0	0.523	0.051	0.119	40	12	ор

Table 4. (Continued)

ref	$T_{\rm min}/{ m K}$	T _{max} /K	P _{min} /MPa	P _{max} /MPa	RMSD/kg·m ⁻³	RMSD _r /%	bias/kg∙m ⁻³	$N_{\rm p}$	±	RD ^a
				1-A	zaindene					
95-yok/ebi	333.15	333.15	10.0	50.0	0.193	0.018	-0.022	5	-1	0
00 atd/tat				Qı	uinoline	0.029	0.959	9.1	15	
88-s10/tej 96-ch2/loo	208 15	348 15	1.0	30.0	0.346	0.032	-0.253	21 45	-15	0
96-cha/lee-1	333.15	413.15	5.0	30.0	0.176	0.017	0.048	18	6	0
96-ran/eat	000.10	110.10	0.0	00.0	4.879	0.424	4.702	40	40	0
96-ran/eat	453.15	503.15	10.0	400.0	0.398	0.039	-0.093	80	-16	0
				Nitr	omethane					
77-gup/han	273.15	363.15	2.8	22.1	0.234	0.021	-0.050	15	-5	р
90-uos/mat-1	298.15	323.15	25.0	150.0	0.573	0.048	0.003	12	2	0
				Nit	roethane					
77-gup/han	273.15	363.15	2.8	22.1	0.630	0.059	-0.351	24	-14	р
90-uos/mat-1	298.15	323.15	25.0	150.0	0.067	0.006	-0.001	12	-2	0
00 / 14	000 4 5	000 15	05.0	1-Nit	ropropane	0.014	0.005	4.0		
90-uos/mat-1	298.15	323.15	25.0	150.0	0.148	0.014	0.005	12	4	0
00	000 15	000 15	95.0	2-Nit	ropropane	0.011	0.000	10	0	
90-uos/mat-1	298.15	323.15	25.0	150.0	0.112	0.011	-0.006	12	-z	0
00 :	010.15	050 15	10.0	2-Methyl-	2-nitropropane	0.050	0.054	10	0	
96-Jen/reu	313.15	333.15	10.0	100.0	0.501	0.055	-0.054	18	0	0
20 sib/los	200 15	220 15	50.0	100 0	obenzene	0.004	0.040	e	G	
39-gib/loe-1	298.15	358 15	25.0	100.0	0.030	0.004	-0.040	16	-4	0
60-hil/goc	230.15	556.15	20.0	100.0	2 799	0.003	2 663	6	6	0
79-abd/dzh					31.053	2.615	-29.115	5	-5°	0
82-tak/ter	293.15	313.15	5.0	100.0	0.068	0.006	0.033	25	9	0
90-uos/mat-1	298.15	298.15	25.0	75.0	0.138	0.011	-0.073	3	-1	0
				For	rmamide					
83-eas/woo	288.15	323.15	2.2	279.7	0.217	0.018	0.044	74	16	0
89-mor/nak	298.15	298.15	101.3	101.3	0.124	0.011	0.124	1	1	0
91-uos/kit	298.15	298.15	20.0	150.0	0.166	0.014	-0.138	4	-4	0
				N-Meth	ylformamide					
85-eas/woo-1	288.15	313.15	2.5	290.0	0.375	0.036	-0.055	37	-7	0
91-uos/kit	298.15	298.15	50.0	150.0	0.134	0.013	0.099	3	1	0
				N,N-Dime	ethylformamide				-	
85-eas/woo-1	288.15	313.15	2.5	290.0	0.392	0.038	-0.077	39	-7	0
89-mor/nak	298.15	298.15	101.3	101.3	0.326	0.033	0.326	1	1	0
91-00S/KIU	298.15	298.15	20.0	150.0	0.185	0.019	0.038	4	۲	0
01 wee/leit	200 15	200 15	50.0	N, N-Dim	ethylacetamide	0.004	0.000	4	9	
91-00S/KIU	298.15	298.15	50.0	200.0	0.043	0.004	0.000	4	$-\lambda$	0
22 hui	979 15	260 15	40.0	Trieth	nanolamine	0.027	0.021	20	9	
55-DI1	273.13	306.15	49.0	960.7	0.449	0.037	0.021	20	2	0
60 hil/goo	202.15	202 15	6 1	I-Methoxy	-2-nitrobenzene	0.016	0.029	e	0	
oo-mi/goc	293.15	295.15	0.1	40.0	0.196	0.010	0.038	0	0	0
01 une/kit	208 15	208 15	50.0	1-Methylp	oyrrolidin-2-one	0.007	_0.001	4	_9	0
91-008/KIU	290.15	296.15	50.0	200.0	0.073	0.007	-0.001	4	-2	0
91 mus/gan	200.40	505.00	5.0	3-Cya	nopropanal	0.027	-0.016	56	10	00
81-mus/gam	230.40	303.00	5.0	JO.9 9 El.,	0.340	0.037	-0.010	50	10	op
97200	278 15	338 13	24	2-FIU	0 211	0.018	0.074	134	18	0
57,000	270.15	556.15	2.1	200.0 2 2 Dif	0.211	0.010	0.074	154	40	0
95-mal/woo	278 15	338 15	25	2,2-DII 375.6	0 337	0.025	0.126	130	48	0
55-mai/ woo	270.15	556.15	2.0	999 Tw	fluoroothonol	0.025	0.120	150	40	0
80 bao/klo	313 15	413 16	0.5	15.0	0.657	0.052	-0.468	53	_33	n
90-sve/sid	293 15	293 15	2.0	10.0	0.037	0.020	-0.233	5	-5	P
91-mal/woo	278.15	338.15	2.5	281.7	0.590	0.039	0.165	138	52	0
92-kab/yam-1	350.00	420.00	0.5	200.0	0.754	0.059	0.359	195	101	0
93-sau/hol	317.78	433.28	1.7	59.7	0.897	0.071	0.113	30	8	e
93-sau/hol	263.15	363.15	2.0	10.0	0.269	0.020	0.020	35	-5	ор
94-mat/yam	298.15	323.15	0.5	30.0	0.284	0.020	-0.185	20	-18	0
94-mat/yam	298.15	323.15	0.5	40.0	0.307	0.022	-0.109	26	2	0
99-her/oli					3.421	0.281	-3.213	9	-9	e
				2,2,3,3,3-Pe	ntafluoropropanol	0.0.5			_	
94-mat/yam	298.15	323.15	0.5	80.0	0.205	0.013	0.015	42	2	0
04	000 17	000 17	<u> </u>	2,2,3,3-Tet	rafluoropropanol	0.040	0.010	4.0	~	
94-mat/yam	298.15	323.15	0.5	80.0	0.281	0.019	0.016	42	0	0
07.1	000	055	4 a -	2,2,2-Tri	chloroethanol	0.00-		4.0.1		
97-jen/san	300.15	355.15	10.0	280.0	1.539	0.096	-0.017	134	-10	р
00 1 9 11	070 50	007 01	4.0	Bis(difluo	romethyl) ether	0.001	0.000	~~	~	
92-aet/gil	2/3.58	307.31	1.0	5.3	0.264	0.021	-0.003	57	7	e

rof			D /MDo	D /MDo	PMSD/kg.m ⁻³	DMSD /0/	bias/kg.m ⁻³	N		DDa
Ter	I_{\min}/K	$I_{\text{max}}/\mathbf{K}$			KWSD/Kg·III *	RNISD _r / /0	Dias/kg·III	1 vp	T	KD ²
07 1/ 4	070 45	000 40	2,2,	2-Trifluoroeth	nyl Difluoromethyl	Ether	0.004		0.5	
95-mal/woo-1	278.15	338.13	2.5	377.3	1.210	0.079	0.364	145	35	ор
				Pentafluoro	ethyl Methyl Ethe	r				
01-oht/mor	279.99	369.98	0.5	3.0	0.291	0.024	-0.006	49	-13	0
01-wid/tsu	395.00	399.00	2.4	2.7	0.162	0.020	-0.020	12	-2	e
			1,2,2,1	2-Tetrafluoro	ethyl Difluorometh	yl Ether				
95-mal/woo-1	278.15	338.13	2.5	375.2	1.289	0.077	0.406	155	21	op
				Heptafluoro	propyl Methyl Eth	er				
01-oht/mor	279.99	369.98	0.5	3.0	0.546	0.041	0.021	80	-12	0
01-wid/uch								0	0	
				Pentaflı	ıorobenzonitrile					
90-pol/wei	283.20	363.20	5.0	200.0	0.004	0.000	0.000	62	4	0
				Tetram	ethvlstannane					
90-pol/wei	267.40	366.90	5.0	200.0	0.034	0.003	0.002	72	-18	0
				Tetra	methylsilane					
75-par/jon	348.00	373.00	10.4	450.0	4.886	0.641	-3.381	21	-15	р
89-bao/cac	198.16	268.11	0.2	101.7	1.057	0.144	-0.717	170	-128	0
90-yok/tak	283.15	333.15	10.0	100.0	0.485	0.069	0.017	70	-14	р
				Tetr	aethvlsilane					
90-yok/tak	283.15	333.15	10.0	100.0	0.122	0.016	-0.004	70	2	р
-				Hexan	nethyldisilane					-
82-bri/wue	303.20	323.20	10.0	40.0	0.654	0.089	0.038	7	3	0
				Totra	othovysilano					
90-vok/tak	283 15	333 15	10.0	100.0		0.015	-0.005	70	2	n
oo yow tak	200.10	000.10	10.0	100.0	0.140	0.010	0.000	10	~	Р
701 / 1	010.14	410.17	0.7	Octamethy	lcyclotetrasiloxane	0.004	0.000	070	05	
76-ben/win	313.14	413.17	0.7	213.3	0.320	0.034	0.023	2/3	25	0
84-eas/woo					3.078	0.376	-3.432	10	-10	0
90-wap/tar				_	2.770	0.280	1./38	22	12	р
00.0 / 1	000.07			Dimet	thyl Sulfoxide					
80-fuc/ghe	293.60	323.00	5.0	150.0	0.438	0.039	-0.054	67	-5	0

^{*a*} o, original reference density values as reported by authors were used or relative property (relative density, volume ratio, compression) was correlated by eq 1; p, reference values were obtained by the extrapolation of isothermal compressed-liquid data to reference pressure using eq 1; e, reference density values were calculated from functions given in Appendix 1.

the recommended values [90-cha/gad]. Unusual values of the parameters of the Tait equation (Table 3) also support the conclusion that the data for 4-methyl-1-aminobenzene [81-gus/naz] are highly suspicious.

Nitriles. Two fits are presented for ethanenitrile. The first one represents the data of Kratzke and Mueller [85-kra/mue], which give lower deviations of the fit (RMSD, Table 3) and better agreement in isothermal compressibility (Table 5) in the low temperature region. The second fit ("full range fit") extends both the temperature and pressure ranges, but the representation of data [85-kra/mue] is not significantly affected (see Table 4). A printing error was corrected in the data set [85-eas/woo] (volume ratio at 313.15 K and 250 MPa should be 0.8546, not 0.7546).

No information on normal boiling point temperature nor saturated vapor pressure was available for ethanenitriled₃. Therefore, the reference pressure $P_{\rm ref} = 0.101$ 325 MPa was assumed for the entire temperature range of data [77-sch/sch], which might be close to reality, since the normal boiling point temperature can be expected to be higher than that of ethanenitrile (354.8 K). It should be pointed out that the data [77-sch/sch] for ethanenitrile were rejected because of large positive deviations from other data at high pressures (see Table 4).

The fit of the two data sets available for propanenitrile gives good agreement for isothermal compressibilities at ambient temperatures (Table 5); the average deviation (positive) is 0.4%. A separate fit of isothermal data [90-uos/mat] resulted in $c_0 = 0.095$ 419, $b_0 = 86.6719$ MPa, T_{min}

= T_{max} = 298.15 K, P_{min} = 25.00 MPa, P_{max} = 150.00 MPa, RMSD = 0.316 kg·m⁻³, and RMSD_r = 0.037%. The isothermal compressibility calculated from this fit [$\beta_T(T = 298.15 \text{ K}, P = 0.1 \text{ MPa}) = 1.100 \text{ GPa}^{-1}$] is by 0.1% higher than the value obtained by the linear interpolation of literature values (Table 5).

Data of the same origin as for propanenitrile were available for butanenitrile; the mutual agreement is, however, rather worse (see RMSD in Table 4). The calculated isothermal compressibilities at 293.15 and 303.15 K are significantly lower than the literature data (average deviation 5%, Table 5). Similarly, a separate fit of the isothermal data [90-uos/mat] was performed: $c_0 = 0.091$ 501, $b_0 = 92.3304$ MPa, $T_{\min} = T_{\max} = 298.15$ K, $P_{\min} = 25.00$ MPa, $P_{\max} = 150.00$ MPa, RMSD = 0.614 kg·m⁻³, RMSD_r = 0.073%. The isothermal compressibility calculated from this fit $\beta_T(T = 298.15 \text{ K}, P = 0.1 \text{ MPa}) = 0.990 \text{ GPa}^{-1}$ is by 4.7% lower than the value obtained by the linear interpolation of data from Table 5. The recommended values of heat capacities [96-zab/ruz] are based on the data of Mirzaliev et al. [87-mir/sha]. The value reported in 1902 by Longinine (Ann. Chim. Phys. 1902, 27, 105) [02-zab] as the mean heat capacity in the range from 294.3 to 386.5 K (158.2 $J \cdot mol^{-1} \cdot K^{-1}$) is by 12% higher than the mean value [87mir/sha] in the range from 293 to 373 K (140.6 $J \cdot mol^{-1} \cdot K^{-1}$). If the values of Mirzaliev et al. [87-mir/sha] increased by 12% are used in eq 11, then the average deviation of isothermal compressibilities calculated from the fit in Table 3 from those calculated from eq 11 would decrease to 2.5% (remaining, however, negative).

Table 5. Selected Values of Isothermal Compressibility, $\beta_T = (1/\rho)(\partial \rho/\partial P)_T$, at P = 0.1 MPa from the Literature and Comparison with Values Calculated from the Fits in Table 3 (Eq 1)

	$\beta_{\rm T}/{ m GPa^{-1}}$					β_T /GPa ⁻	1		
<i>T</i> /K	eq 1 ^a	lit.	$\delta \beta_T / \%^b$	ref(s)	<i>T</i> /K	eq 1 ^a	lit.	$\delta \beta_T / \%^b$	ref(s)
	*	1	2-Ethan	ediamine		•	4-Meth	vl-1-ami	nobenzene
293.00		0.493	,~ Lunan	84-kar/bus ^c	333.15	0.444 ± 0.070	0.658	-32.5	49-bac, ^d 90-cha/gad, ^{f,g} 96-zab/ruz ^h
293.15		0.494		78-pat, ^{d,e} 48-vog, ^{f,g} 96-zab/ruz ^h			0.664	-33.1	49-bac, e90-cha/gad, f.g 96-zab/ruzh
298.00		0.508		84-kar/bus ^c		Ethar	nenitrile	(Fit of E	0ata 85-kra/mue)
298.15		0.490		93-rod ^c	273.15	0.927 ± 0.004	0.909	2.0	49-lag/mcm, ^d i, 96-zab/ruz ^h
303.15		0.531		81-rao/kri, ^{<i>a.e</i>} 48-vog, ^{<i>r.g</i>}	000 15	0.007 0.004	0.916	1.2	84-nie, a i, 96-zab/ruz ⁿ
313.00		0 572		96-ZaD/FUZ" 84-kar/bus ^c	283.15	0.997 ± 0.004	0.987	1.0	49-1ag/mcm, 1, 96-zab/ruz ⁴
333.00		0.651		84-kar/bus ^c	293.15	1.075 ± 0.004	1.068	0.3	78-nat d^{e} i 96-zab/ruz ^h
000100		0.001	1-Aminor	propane	200110		1.072	0.3	49-lag/mcm, di , 96-zab/ruz ^h
293.15		1.202		78-pat, ^d 90-cha/gad, ^{f,g} 96-zab/ruz ^h			1.074	0.1	44-sch, d.e i, 96-zab/ruzh
		1.205		78-pat, °90-cha/gad, ^{f.g} 96-zab/ruz ^h			1.079	-0.4	84-nie, ^d i, 96-zab/ruz ^h
			1-Amino	butane	298.00	1.116 ± 0.005	1.122	-0.5	95-gil/sin, ^{d,e} i, 96-zab/ruz ^h
293.15		1.049		78 -pat, a 93-das/fre, fg 96-zab/ruz ^{n}	298.15	1.117 ± 0.005	1.112	0.5	47-wil, ^a i, 96-zab/ruz ^a
		1.052		67-mar e93-das/fre ^{fg} 96-zab/ruz ^h			1.114	0.5	i 96-zab/ruz ^h
298.15		1.109		97-dom/lop, ^d 93-das/fre, ^{f,g}			1.115	0.2	98-cha/kum, d i, 96-zab/ruz ^h
				96-zab/ruz ^h			1.116	0.1	93-nak/chu, ^c 93-nak/chu-1 ^c
		1.117		97-dom/lop, e93-das/fre, f.g			1.117	0.0	92-miy/tam ^c
			.1.1.0	96-zab/ruz ^h			1.120	-0.3	95-ami/gop, ^{<i>d,e</i>} i, 96-zab/ruz ^{<i>h</i>}
202.15	1.604 ± 0.017	2-Me	ethyl-2-ar	ninopropane 78 pot $d\ell$ 02 doc/fro $\ell\ell$ 06 rob/mur			1.125	-0.7	86-bot/bre ^c
293.13	1.004 ± 0.017	1.570	2.2 0.4	78-pat,			1.125	-0.7	93-nak/chu ^{d,e} 93-nak/chu-1 ^{d,e}
		1.614	-0.6	67 -mar, d 93-das/fre, fg 96-zab/ruz ^h					95-nak/tam. ^{d,e} i, 96-zab/ruz ^h
			Aminob	enzene			1.126	-0.8	81-ben/d'a, ^d i, 96-zab/ruz ^h
273.15	0.409 ⁿ	0.405	1.0	29-fry/hub, ^d 90-cha/gad, ^{f,g}			1.154	-3.2	76-gra/mac ^c
				96-zab/ruz ^h			1.160	-3.7	76-gra/mac,/i
000 15	0.4015	0.408	0.2	14-tyr ^c	303.00	1.161 ± 0.005	1.169	-0.7	00-abr/abd, ^e i, 96-zab/ruz ^h
283.15	0.431"	0.429	0.5	29-try/hub, ^a 90-cha/gad, ^{i,g}	202.15	1 169 1 0 005	1.170	-0.8	00-abr/abd, ^a i, 96-zab/ruz ⁿ
		0.430	0.2	$90-2ab/ruz^{-1}$	303.13	1.102 ± 0.003	1.101	-0.4	49-lag/mcm ^d i 96-zab/ruz ^h
		0.430	0.0	71-ric/rog ^c			1.168	-0.5	93-rao/rao. ^{d,e} i, 96-zab/ruz ^h
293.15	0.455 ⁿ	0.448	1.6	24-bus, d90-cha/gad, f,g 96-zab/ruzh			1.172	-0.9	81-nar/dha, ^{d,e} 95-osw/pat-1, ^{d,e}
		0.453	0.4	14-tyr ^c					00-osw/pat, ^{d,e} i,
		0.454	0.2	71-ric/rog ^c					96-zab/ruz ^h
		0.455	0.0	29-try/hub, "90-cha/gad," g 96-zab/ruz"			1.173	-0.9	92-dew/meh, d, e i, 96-zab/ruz ^{<i>n</i>}
		0.456	-0.2	44-scn, 71-des/bna-1, 90-cna/gad, ^{1,8}	208.00	1 208 ± 0.005	1.1/4	-1.0	84-nie, "i, 96-zab/ruz" $00 abr/abd \notin 96 zab/ruz^h$
		0.457	-0.4	50-2ab/1 uz	308.00	1.208 ± 0.003	1.223	-1.2	95 -gil/sin d^{e} i 96 -zab/ruz ^h
293.25	0.455 ⁿ	0.456	-0.2	52-gab/poi, ^{d,e} 90-cha/gad, ^{f,g}			1.224	-1.3	$00-abr/abd, di, 96-zab/ruz^h$
				96-zab/ruz ^h	308.15	1.209 ± 0.005	1.205	0.3	76-gra/mac ^c
297.15	0.465 ⁿ	0.460	1.1	62-red/sub, d90-cha/gad, f.g			1.215	-0.5	76-gra/mac,/i
007.05	0.4075	0 400	0.0	96-zab/ruz ⁿ	313.00	1.258 ± 0.006	1.277	-1.5	00-abr/abd, ^e i, 96-zab/ruz ^h
297.95	0.467"	0.466	0.2	53-par/bak, "90-cna/gad," ⁸	313 15	1.260 ± 0.006	1.280	-1.7	$40-a \text{ abs/mem}^{d}$ $96-za \text{ bs/muz}^{h}$
298.15	0.467 ± 0.001	0.469	-0.4	71-des/bha ^c	515.15	1.200 ± 0.000	1.279	-1.5	84-nie di 96-zab/ruz ^h
200110		0.470	-0.6	52-gab/poi, ^{d,e} 80-tak, ^{d}	318.00	1.311 ± 0.006	1.332	-1.6	95-gil/sin, ^d i, 96-zab/ruz ^h
				90-cha/gad, ^{f,g} 96-zab/ruz ^h			1.334	-1.7	95-gil/sin, ^e i, 96-zab/ruz ^h
303.00	0.480 ± 0.001	0.483	-0.6	92-kan/raj, ^{d,e} 90-cha/gad, ^{f,g}	318.15	1.313 ± 0.006	1.300	1.0	76-gra/mac ^c
000 15	0.400 + 0.001	0 477	0.0	96-zab/ruz ^h	323.15	1.369 ± 0.006	1.387	-1.3	49-lag/mcm, d i, 96-zab/ruz ^h
303.15	0.480 ± 0.001	0.477	0.6	14-tyr, "90-cha/gad," g 96-zab/ruz" 78 tak d 5 tak/tar d 00 cha/gad f	226 15	1.405 ± 0.006	1.397	-2.0	84-nie, "i, 96-zab/ruz"
		0.400	0.0	96-zab/ruz ^h	333 15	1.403 ± 0.000 1.494 ± 0.006	1.555	-1.5	49-lag/mcm di 96-zab/ruz ^h
		0.482	-0.4	29-fry/hub, ^d 90-cha/gad, ^{f,g}	000110		1.527	-2.2	84-nie, di , 96-zab/ruz ^h
				96-zab/ruz ^h		E	thaneni	trile (Fu	ll Range Fit)
308.15	0.494 ± 0.001	0.494	0.0	71-des/bha ^c	273.15	0.935 ± 0.003	0.909	2.9	49-lag/mcm, ^d i, 96-zab/ruz ^h
		0.495	-0.2	85-raj/ram, ^{d,e} 90-cha/gad, ^{t,g}	000 15	1 000 + 0 004	0.916	2.1	84-nie, d i, 96-zab/ruz ^h
		0.400	_1.0	96-ZaD/rUZ" 71 dos/bba 1 d 00 cha/gad f g	283.15	1.006 ± 0.004	0.987	2.0	49-lag/mcm, 1, 96-zab/ruz"
		0.455	-1.0	96-zab/ruz ^h	293.15	1.086 ± 0.004	1.068	1.2	78-nat d^{e} i 96-zab/ruz ^h
313.15	0.507 ± 0.001	0.504	0.6	14-tyr ^c			1.072	1.3	49-lag/mcm, di , 96-zab/ruz ^h
		0.510	-0.6	29-fry/hub, ^d 90-cha/gad, ^{f,g}			1.074	1.1	44-sch, d.e i, 96-zab/ruzh
				96-zab/ruz ^h			1.079	0.6	84-nie, ^d i, 96-zab/ruz ^h
318.15	0.522 ± 0.001	0.523	-0.2	71-des/bha ^c	298.00	1.127 ± 0.004	1.122	0.4	95-gil/sin, ^{d,e} i, 96-zab/ruz ^h
323.15	0.536 ± 0.001	0.532	0.8	14-tyr ^c	298.15	1.129 ± 0.004	1.112	1.5	47-w11, "1, 96-zab/ruz"
		0.534	-0.9	71-110/10g ⁻ 29-frv/hub ^d 90-cha/gad ^{f,g}			1.114	1.5	i 96-zab/ruz ^h
		0.011	0.0	96-zab/ruz ^h			1.115	1.3	98-cha/kum. ^{d} i. 96-zab/ruz ^{h}
333.15	0.567 ± 0.002	0.564	0.5	14-tyr ^c			1.116	1.2	93-nak/chu, ^c 93-nak/chu-1 ^c
343.15	0.601 ± 0.002	0.597	0.7	14-tyr ^c			1.117	1.1	92-miy/tam ^c
353.15	$\begin{array}{c} 0.636 \pm 0.002 \\ \bullet \bullet \bullet \bullet \bullet \bullet \end{array}$	0.632	0.6	14-tyr ^c			1.120	0.8	95-ami/gop, ^{d,e} i, 96-zab/ruz ^h
363.15	0.673 ⁿ	0.670	0.4	14-tyr ^c			1.125	0.4	86-bot/bre ^c 84 pie d 02 min/t== de
293 15	0 407 ⁿ	2-IVIE 0.465	-19 5	24-hus ^d 90-cha/gad ^{f,g} 96-zah/ruz ^h			1.125	0.4	04-me, 92-my/(am, 4,e 93-nak/chu d.e 93-nak/chu-1 d.e
200.10	0.407	0.403	-13.4	44-sch. ^d 52-jac. ^{d,e} 90-cha/gad ^{f,g}					95-nak/tam. ^{d,e} i. 96-zab/ruz ^h
		5.170	10.1	96-zab/ruz ^h			1.126	0.3	81-ben/d'a, ^d i, 96-zab/ruz ^h
333.15	$\textbf{0.537} \pm \textbf{0.016}$	0.612	-12.3	49-bac, d,e 90-cha/gad, f,g 96-zab/ruzh			1.154	-2.2	76-gra/mac ^c
							1.160	-2.7	76-gra/mac,⁄i

Table 5. (Continued)

	β_T /GPa ⁻¹				β_T/GPa^{-1}				
<i>T</i> /K	eq 1 ^a	lit.	$\delta \beta_T / \%^b$	ref(s)	<i>T</i> /K	eq 1ª	lit.	$\delta \beta_T / \%^b$	ref(s)
	Ethan	enitril	e (Full R	ange Fit Continued)		В	enzoni	trile (Co	ntinued)
303.00	1.173 ± 0.004	1.169	0.3	00-abr/abd, ei, 96-zab/ruzh	308.15	0.641 ± 0.010	0.665	-3.6	85-raj/ram, ^{d,e} 78-gus/naz, ^{f,g}
000 15	1 174 + 0.004	1.170	0.3	00-abr/abd, ^d i, 96-zab/ruz ^h			0.070	4.0	86-gus, fg 96-zab/ruz ^h
303.15	1.174 ± 0.004	1.101	1.1	95-0SW/pat ^e 49-lag/mcm ^d i 96-zab/ruz ^h			0.670	-4.3	82-Kar/red, $\frac{f_g}{2}$ 96-gus/naz, $\frac{f_g}{2}$
		1.168	0.5	43-rag/rag/rag/rag/rag/rag/rag/rag/rag/rag/			0.681	-5.9	85-raj/ram. ^{<i>d.e</i>} i. 96-zab/ruz ^{<i>h</i>}
		1.172	0.2	81-nar/dha, ^{<i>d,e</i>} 95-osw/pat-1, ^{<i>d,e</i>}			0.686	-6.6	82-kar/red, d_e i, 96-zab/ruz ^h
				00-osw/pat, ^{<i>d,e</i>} i,	313.00	0.652 ± 0.011	0.680	-4.1	00-abr/abd, e78-gus/naz, f.g
				96-zab/ruz ^h					86-gus, ^{f.g} 96-zab/ruz ^h
		1.173	0.1	92-dew/meh, a,e i, 96-zab/ruz ⁿ			0.682	-4.4	00-abr/abd, a78-gus/naz, ig
308.00	1.221 ± 0.004	1.1/4	0.0	84-n1e, 1, 90-zab/ruz" 00-abr/abd & 96-zab/ruz ^h			0 697	-6.5	86-gus," ⁵ 96-zab/ruz" 00-abr/abd & 96-zab/ruz ^h
500.00	1.221 ± 0.004	1.223	-0.2	95-gil/sin ^{d,e} i, 96-zab/ruz ^h			0.699	-6.7	$00-abr/abd$, i, $96-zab/ruz^h$
		1.224	-0.2	00-abr/abd, ^d i, 96-zab/ruz ^h	313.15	0.652 ± 0.011	0.690	-5.5	01 -tak/fuj, $d78$ -gus/naz, f_{g}
308.15	1.222 ± 0.004	1.205	1.4	76-gra/mac ^c					86-gus, ^{f.g} 96-zab/ruz ^h
		1.215	0.6	76-gra/mac, ^j i			0.706	-7.6	01-tak/fuj, ^d i, 96-zab/ruz ^h
313.00	1.272 ± 0.004	1.277	-0.4	$00-abr/abd, e^{i}$, $96-zab/ruz^{n}$	318.00	0.663 ± 0.014	0.708	-6.4	95-gil/sin, ^{<i>d,e</i>} 78-gus/naz, ^{<i>t,g</i>}
313 15	1.273 ± 0.004	1.280	-0.6	49-lag/mcm ^d i 96-zab/ruz ^h			0 725	-8.6	95 -gul/sin d^e i 96-zab/ruz ^h
515.15	1.275 ± 0.004	1.279	-0.5	43-nag/meni, i, 30 -zab/ruz ^h			0.725 P	vridine	55-gil/sill, ~ 1, 50-Zab/1 uz
318.00	1.326 ± 0.004	1.332	-0.5	95-gil/sin, d i, 96-zab/ruz ^h	293.15	0.649 ⁿ	0.673	-3.6	71-ric/rog ^c
		1.334	-0.6	95-gil/sin, ^e i, 96-zab/ruz ^h			0.682	-4.8	71-des/bha-1, ^d 93-das/fre, ^{f,g}
318.15	1.327 ± 0.004	1.300	2.1	76-gra/mac ^c					96-zab/ruz ^h
323.15	1.385 ± 0.004	1.387	-0.1	49-lag/mcm, ^d i, 96-zab/ruz ^h	298.00	0.669 ⁿ	0.703	-4.8	95-gil/sin, ^{d,e} 93-das/fre, ^{f,g}
220 15	1 491 + 0 004	1.397	-0.9	84-mie, a_i , 96-zab/ruz ⁿ	909.15	0.0702	0 700	4.9	96-zab/ruz ⁿ
320.15	1.421 ± 0.004 1.511 ± 0.004	1.399	1.6	10-gra/mac, 1	298.15	0.670"	0.700	-4.3 -4.8	82-gr1/pn1 ⁸ / 47 -wil e^{03} -das/fre fg 96 -zab/ruz ^h
333.13	1.311 ± 0.004	1.510	-0.3	84-nie di 96-zab/ruz ^h			0.704	-4.0	47 -wil d_{93} -das/fre f_{g} 96-zab/ruz ^h
		1.0.27	Propan	enitrile	303.15	0.692 ± 0.006	0.720	-3.9	62-red/sub, ^{<i>d,e</i>} 93-das/fre, ^{<i>f,g</i>}
293.15	1.055 ± 0.005	1.050	0.5	78-pat, ^{d,e} i, 96-zab/ruz ^{h}					96-zab/ruz ^h
		1.051	0.4	78-pat, ^{d,e} 84-sha/gus ^{f,g} ,			0.726	-4.7	96-nat, ^{d,e} 93-das/fre, ^{f,g}
303 15	1.149 ± 0.006	1 1 4 5	03	96-ZAD/ruz" 95-osw/pat_d.e 95-osw/pat_1 d.e			0 720	-5.1	96-zab/ruz" 96-pat ^c
505.15	1.145 ± 0.000	1.145	0.5	84-sha/gus ^{f,g}	308.00	0.714 ± 0.006	0.723	-4.5	95-gil/sin. ^{d,e} 93-das/fre. ^{f,g}
				96-zab/ruz ^h					96-zab/ruz ^{h}
		1.148	0.1	95-osw/pat, ^{d,e} 95 -osw/pat-1, ^{d,e} i,	318.00	0.764 ± 0.006	0.797	-4.1	95-gil/sin, ^{d,e} 93-das/fre, ^{f,g}
			D (96-zab/ruz ^h				1.	96-zab/ruz ^h
909.15	0.041 + 0.010	0.004	Butane	nitrile	909.15		P 0 779	iperidin	e 79 met de 02 de elfre fe 00 met kome
293.13	0.941 ± 0.010	1 005	-4.4 -6.4	78-pat, a^{-1} , b^{-2} ab/ruz ⁿ 78-pat ^{d,e} 84-sha/gus ^{f,g} 96-zab/ruz ^h	293.13	-	0.778	- Juinolin	78-pat, 93-uas/110, 90-zab/1uz
303.15	1.035 ± 0.010	1.074	-3.6	92-dew/meh, de i, 96-zab/ruz ^h	298.55	0.467 ± 0.011	0.481	-2.9	53-par/bak, ^d 93-das/fre, ^{f,g}
		1.091	-5.1	92-dew/meh, ^{d,e} 84-sha/gus ^{f,g} ,					96-zab/ruz ^h
				96-zab/ruz ^h	303.15	0.477 ± 0.009	0.486	-1.9	88-dew/sha ^c
000 15	0.000	0 500	Benzo	nitrile			0.492	-3.0	92-nat/tev, ^{<i>d,e</i>} 93-das/fre, ^{<i>t,g</i>}
283.15	0.603"	0.588	2.6	01-tak/tuj, '1, 96-zab/ruz''			0 402	_22	96-zab/ruz" 86 pat/sin de 02 das/fra fe
293.13	0.010	0.000	1.7	96-zab/ruz ^h			0.495	-3.2	96-zab/ruz ^h
		0.622	-1.0	78-pat, de i, 96-zab/ruz ^h	313.15	0.499 ± 0.006	0.516	-3.3	86-nat/sin, ^{<i>d,e</i>} 92-nat/tev, ^{<i>d,e</i>}
298.00	0.623 ⁿ	0.626	-0.5	95-gil/sin, ^{d,e} 78-gus/naz, ^{f,g}					93-das/fre, ^{f,g} 96-zab/ruz ^h
				86-gus, ^{fg} 96-zab/ruz ^h			Nit	rometha	ine
		0.642	-3.0	95-gil/sin, ^{d,e} i, 96-zab/ruz ^h	274.10	0.629 ± 0.011	0.617	1.9	80-vit/ber, ^{d,e,f,g} 96-zab/ruz ^h
298.15	0.623 ± 0.009	0.628	-0.8	88-tak/ter, $d'/8$ -gus/naz, d_{g}	979 90	0.042 + 0.010	0.626	0.5	80-vit/ber, $defg$ 00, and $have h$
		0.642	_2 1	$80 \cdot gus, = 90 \cdot ZaD/FuZ=$	278.20	0.043 ± 0.010	0.035	1.3	80-vit/ber dei 96-zab/ruz ^h
		0.649	-4.0	01-tak/fui ^c	282 70	0.660 ± 0.009	0.654	0.2	80-vit/ber d,e,f,g 96-zab/ruz ^h
303.00	0.632 ± 0.009	0.639	-1.1	00-abr/abd. ^e 78-gus/naz. ^{f,g}	202.10	0.000 ± 0.000	0.662	-0.3	80-vit/ber. ^d i. 96-zab/ruz ^h
				86-gus, fg 96-zab/ruzh			0.665	-0.8	80-vit/ber, ^e i, 96-zab/ruz ^h
		0.641	-1.4	00-abr/abd, d78-gus/naz, f.g	283.15	0.662 ± 0.008	0.656	0.9	01-tro/tov, ^{d,e} i, 96-zab/ruz ^h
				86-gus, ^{fg} 96-zab/ruz ^h	288.15	0.682 ± 0.007	0.678	0.6	00-cer/tov, e01-tro/tov, d,e i,
		0.655	-3.5	$00-abr/abd, e^i$, $96-zab/ruz^h$	000.00	0.000 1.0.000	0.070		96-zab/ruz^{h}
202 15	0.622 0.000	0.657	-3.8	$00-abr/abd, {}^{d}i, 96-zab/ruz^{n}$	290.00	0.689 ± 0.006	0.679	1.5	80-vit/ber, ^{d,e,r,g} 96-zab/ruz ⁿ
303.15	0.032 ± 0.009	0.647	-2.3	$\delta\delta$ -tak/ter, 7δ -gus/naz, 5δ			0.680	-0.1	80-vit/ber, i, 96-zab/ruz" 80-vit/ber ei 96-zab/ruz ^h
		0.663	-4.7	88-tak/ter di 96-zab/ruz ^h	293.15	0.703 ± 0.006	0.696	1.0	$52-iac c^{e}i$ 96-zab/ruz ^h
308.00	0.641 ± 0.010	0.659	-2.7	00-abr/abd, ^e 78-gus/naz, ^{f,g}	200110		0.697	0.9	44-sch, d,e i, 96-zab/ruz ^h
				86-gus, fg 96-zab/ruzh			0.701	0.3	00-cer/tov ^{e,f,g,h}
		0.661	-3.0	00-abr/abd, ^d 78-gus/naz, ^{f,g}			0.702	0.1	01-tro/tov, ^{<i>d.e</i>} i, 96-zab/ruz ^{<i>h</i>}
		0.007	0.0	86-gus, ^{f,g} 96-zab/ruz ^h	298.15	0.725 ± 0.006	0.718	1.0	47-wil, d_e i, 96-zab/ruz ^h
		0.667	-3.9	95-gll/sln, ^{<i>u,e</i>} /8-gus/naz, ^{<i>i,g</i>}			0.720	0.7	U1-tro/tov, a,c,h,g 96-zab/ruz ^{n}
		0.675	_5.0	oo-gus," ^b 90-ZaD/TUZ" 00-abr/abd & 96-zab/ruz ^h			0.727	-0.3	$01-tro/tov^{c}$ 1, 96-ZaD/ruz"
		0.678	-5.5	$00-abr/abd, i, 96-zab/ruz^h$	303 15	0.750 ± 0.006	0.750	0.0	92-dew/meh ^{de} i 96-zah/ruz ^h
		0.683	-6.1	95-gil/sin, ^{d,e} i, 96-zab/ruz ^h	505.15	5.755 ± 0.000	0.752	-0.3	01-tro/tov, ^{<i>d,e</i>} i. 96-zab/ruz ^{<i>h</i>}
							0.796	-5.8	88-dew/sha ^c
					308.15	0.776 ± 0.006	0.779	-0.4	00-cer/tov ^{e,f,g,h}
							0.780	-0.5	01-tro/tov, d,e,f,g 96-zab/ruzh

Table 5. (Continued)

	β_T/GPa^-	1				β_T/GPa^{-1}	l		
<i>T</i> /K	eq 1^a	lit.	$\delta\beta_T/\%^b$	ref(s)	<i>T</i> /K	eq 1 ^a	lit.	$\delta \beta_T / \%^b$	ref(s)
	1		Nitre	athana		1		N Mot	hulformamida
283.15	0.711 ± 0.003	0.717	-0.8	00-tro/car ^{d.e.f.g} 96-zab/ruz ^h	298.15	0.594 ± 0.007	0.593	0.2	77-kaw/ohn ^{d,e} 94-pal/sin ^{d,e}
286.15	0.725 ± 0.003	0.733	-1.1	00-tro/car, ^{d,e,f,g} 96-zab/ruz ^h					85-eas/woo-1, ^{f,g} 96-zab/ruz ^h
288.15	0.735 ± 0.002	0.745	-1.3	00-tro/car, d.e.f.g 96-zab/ruz ^h			0.595	-0.2	86-bot/bre ^{c,k}
291.15	0.750 ± 0.002	0.762	-1.6	00-tro/car, d.e.f.g 96-zab/ruz ^h			0.598	-0.7	77-kaw/ohn, ^{d,e} 94-pal/sin, ^{d,e}
293.15	0.761 ± 0.002	0.774	-1.7	00-tro/car, $defg$ 96-zab/ruz ⁿ			0 000		91-pac, ^{I,g} 96-zab/ruz ^{n}
290.15	0.777 ± 0.002 0.788 + 0.002	0.792	-1.9 -2.1	$00-tro/car, defg 96-zab/ruz^h$	308 15	0.643 ± 0.007	0.608	-2.3	$50-D0L/DFe^{3h}$ 77-kaw/ohn <i>d.e</i> 85-eas/woo-1 <i>f.g</i> 96-zah/ruz <i>h</i>
301.15	0.700 ± 0.002 0.805 ± 0.002	0.824	-2.3	00-tro/car. ^{d.e.f.g} 96-zab/ruz ^h	500.15	0.040 ± 0.007	0.627	2.6	77-kaw/ohn. ^{<i>d,e</i>} 91-pac. ^{<i>f,g</i>} 96-zab/ruz ^{<i>h</i>}
303.15	0.817 ± 0.002	0.837	-2.4	00-tro/car, d.e.f.g 96-zab/ruzh			N	,N-Dim	ethylformamide
		0.841	-2.9	92-dew/meh, ^{d,e} 00-tro/car, ^{f,g}	293.15	0.625 ± 0.005	0.605	3.3	87-abd/mun ^c
				96-zab/ruz ^h			0.613	2.0	76-zel/dya, ^{d,e} i, 96-zab/ruz ^h
200.15	0.005 1.0.000	0.849	-3.8	88-dew/sha ^c			0.617	1.3	76-zel/dya, ^{<i>a,e</i>} 85-eas/woo-1, ^{<i>i,g</i>}
308.15	0.835 ± 0.002 0.847 ± 0.002	0.850	-2.5 -2.5	$00-tro/car, defg 96-zab/ruz^h$	298 15	0.640 ± 0.004	0 628	19	90-ZaD/FUZ" 98-ami/pat d_{e} i 96-zab/ruz ^h
500.15	0.047 ± 0.002	0.000	1-Nitr	opropane	200.10	0.040 ± 0.004	0.632	1.3	98-ami/pat. ^{<i>d,e</i>} 85-eas/woo-1. ^{<i>f,g</i>}
303.15	$\textbf{0.833} \pm \textbf{0.003}$	0.839	-0.7	88-dew/sha ^c					96-zab/ruz ^h
			2-Nitr	opropane			0.642	-0.3	75-dac/bir, ^c 98-cha/kum, ^{d,e} i,
303.15	0.919 ± 0.004	0.964	-4.7	88-dew/sha ^c					96-zab/ruz ^h
979 15	0 4 4 9 7	0 4 4 1	Nitro	benzene 14 trm			0.644	-0.6	97-ara/jad, d, e i, 96-zab/ruz ⁿ
280.65	0.443 0.460 ⁿ	0.441	-0.4	46-pel/gal ^d i 96-zab/ruz ^h			0.040	-0.9	96-zab/ruz ^h
283.15	0.466 ⁿ	0.467	-0.2	14-tyr ^c			0.647	-1.1	77-kaw/ohn, ^{d,e} i, 96-zab/ruz ^h
293.15	0.490 ± 0.001	0.478	2.5	24-bus, ^{d,e} i, 96-zab/ruz ^h			0.648	-1.2	94-pal/sin, d.e 97-ara/jad, d.e
		0.493	-0.6	14-tyr, ^c 52-jac, ^{c,e} i, 96-zab/ruz ^h					85-eas/woo-1, f.g 96-zab/ruzh
		0.494	-0.8	44-sch, ^{<i>d.e</i>} 52-gab/poi, ^{<i>d.e</i>} i, 96-zab/ruz ^{<i>h</i>}			0.648	-1.2	92-miy/tam, e93-nak/chu, e
		0.495	-1.0	71-ric/rog, 82-tak/ter, a_e					93-nak/chu-1, e
206.05	0.500 ± 0.001	0 504	-0.8	84-tak/ter,°1, 96-zab/ruz" 46-pol/gal di 96-zab/ruz ^h			0.651	-17	94-tam/mur, 1, 96-zab/ruz" 77-kaw/obn de 85-oas/woo-1 fg
298.15	0.500 ± 0.001 0.503 ± 0.001	0.504	-0.4	47-wil. ^{<i>d</i>} i. 96-zab/ruz ^{<i>h</i>}			0.031	1.7	96-zab/ruz ^h
		0.506	-0.6	95-nik/jad, ^{$d.e$} i, 96-zab/ruz ^{h}			0.652	-1.8	94-pal/sin, ^{d,e} 95-ami/gop, ^{d,e} i,
		0.507	-0.8	88-tak/ter, ^d i, 96-zab/ruz ^h					96-zab/ruz ^h
		0.508	-1.0	54-gab/poi, ^{d,e} i, 96-zab/ruz ^h			0.652	-1.8	92-miy/tam, ^d 93-nak/chu, ^d
298.35	0.504 ± 0.001	0.508	-0.8	53-par/bak, a_i , 96-zab/ruz ⁿ					93-nak/chu-1, a
301.15	0.511 ± 0.001	0.510	-1.0 -2.1	62-red/sub.°i, 96-zab/ruz"					94-tam/mur, "85-eas/w00-1," ⁵ 96-zab/ruz ^h
303.15	0.517 ± 0.001	0.513	0.8	86-red. ^{<i>d,e</i>} i. 96-zab/ruz ^{<i>h</i>}			0.655	-2.3	97-miy/nak ^c
		0.521	-0.8	14-tyr ^c			0.656	-2.4	95-ami/gop, ^{d,e} 85-eas/woo-1, ^{f,g}
		0.522	-1.0	88-tak/ter, ^d 95-kri/ram, ^{d,e} 95-nik/jad, ^{d,e}					96-zab/ruz ^h
				i, 96-zab/ruz ^h	303.15	0.660 ± 0.006	0.638	3.4	76-zel/dya, ^{d,e} i, 96-zab/ruz ^h
		0.523	-1.1	85-jay/red, 65-cop/bey, 82-tak/ter, a.e			0.643	2.6	76-zel/dya, ^{<i>a,e</i>} 85-eas/woo-1, ^{<i>i,g</i>}
				64-tak/ter," 84.jas/dun d 88.ram/sur d_e i 96.zab/ruz h			0 649	17	90-zab/ruz ^{h} 90-ven/rao d_e i 96-zab/ruz ^{h}
		0.528	-2.1	90-ven/bab, ^{<i>d,e</i>} i, 96-zab/ruz ^{<i>h</i>}			0.657	0.5	99-ven/rao, ^{<i>d,e</i>} 85-eas/woo-1, ^{<i>f,g</i>}
308.15	0.530 ± 0.001	0.537	-1.3	85-raj/ram, ^{d,e} i, 96-zab/ruz ^h					96-zab/ruz ^h
313.15	0.545 ± 0.001	0.549	-0.7	14-tyr ^c			0.665	-0.8	87-raj/red, ^{<i>d.e</i>} 95-osw/pat-1, ^{<i>d.e</i>}
		0.550	-0.9	86-red, ^{d,e} i, 96-zab/ruz ^h					00-osw/pat, ^{d,e} i
		0.553	-1.4	82-tak/ter, ^{<i>a.e</i>} 84-tak/ter, ^{<i>a</i>} i, 96-zab/ruz ^{<i>a</i>}			0 660	1 9	96-zab/ruz" 97 roj/rod de 05 ogw/pot 1 de
		0.554	-1.0	63-cop/bey, 1, 90-zab/ruz ⁻ , e 1, 90-zab/ruz ⁻ 84-ias/dun ^d i 96-zab/ruz ^h			0.009	-1.5	$00-0$ sw/pat d^{e}
		0.598	-8.9	85-jav/red ^c					85-eas/woo-1. ^{f,g} 96-zab/ruz ^h
323.15	0.575 ± 0.001	0.587	-2.0	65-cop/bey, ^d 84-jas/dun, ^d i, 96-zab/ruz ^h	308.15	0.685 ± 0.007	0.690	-0.7	77-kaw/ohn, ^{d,e} i, 96-zab/ruz ^h
333.15	0.607 ± 0.002	0.622	-2.4	65-cop/bey, ^d i, 96-zab/ruz ^h			0.694	-1.3	77-kaw/ohn, ^{d,e} 85-eas/woo-1, ^{f,g}
343.15	0.642 ± 0.002	0.660	-2.7	65-cop/bey, ^d i, 96-zab/ruz ^h	010.15	0.710 - 0.000	0.070		96-zab/ruz ^h
202.15	0.200 + 0.001	0 979	Form	namide 64 mil/wag d60 dum/sta fg 01 gab/mugh	313.15	0.716 ± 0.008	0.673	6.4 5 9	76-zel/dya, de 95. aachyaa 1 fg
295.15	0.398 ± 0.001	0.372	6.4	64-mik/roz ^d i 01-zab/ruz ^h			0.077	5.0	96-zab/ruz ^h
296.10	0.401 ± 0.001	0.381	5.2	84-goo/whi, ^{d,e} 69-dun/sto, ^{f,g} 01-zab/ruz ^h			Λ	<i>l.N</i> -Din	iethylacetamide
		0.382	5.0	84-goo/whi, ^{d,e} i, 01-zab/ruz ^h	298.15	0.645 ± 0.002	0.639	0.9	91-ino/oga ^c
298.15	0.403 ± 0.002	0.398	1.3	47-wil, d69-dun/sto, f.g i, 01-zab/ruzh			0.648	-0.5	98-ami/pat, ^{d,e} i, 96-zab/ruz ^h
		0.403	0.0	86-bot/bre ^c			0.652	-1.1	77-kaw/ohn, ^{d,e} i, 96-zab/ruz ^h
200.20	0.405 + 0.002	0.411	-1.9	69-dun/sto^{c}			0.655	-1.5	95-ami/gop, ^{<i>a,e</i>} 97-ara/jad, ^{<i>a,e</i>} i,
300.30	0.403 ± 0.002	0.369	4.1	84-goo/whit d_e 69-dup/sto f_g 01-zab/ruz ^h			0 657	-18	90-ZaD/TuZ ²⁴ 91_ino/oga d_e 94_na]/sin d_e i
303.70	0.409 ± 0.002	0.392	4.3	84-goo/whi, ^{d,e} i, 01-zab/ruz ^h			0.007	1.0	96-zab/ruz ^h
		0.394	3.8	84-goo/whi, ^{d,e} 69-dun/sto, ^{f,g} 01-zab/ruz ^h			0.661	-2.4	77-oba/mur ^c
306.90	0.414 ± 0.002	0.401	3.2	84-goo/whi, de 69-dun/sto, fg 01-zab/ruzh	303.15	-	0.667		01-sek/ven, ^{d,e} i, 96-zab/ruz ^h
		0.398	4.0	84-goo/whi, ^{d,e} i, 01-zab/ruz ^h			0.675		95-osw/pat-1, ^{<i>d,e</i>} 00-osw/pat, ^{<i>d,e</i>} i,
309.90	0.418 ± 0.002	0.402	4.0	84-goo/whi, ^{<i>a.e.</i>} i, 01-zab/ruz ^{<i>h</i>}	200 17		0.000		96-zab/ruz ⁿ 77 kow/ohn $de = 00$ h
316.80	0.429 ± 0.002	0.407	2.1 5.7	o4-goo/whit de i 01-zab/ruz ^h	308.15	-	0.099	Methyl	//-KaW/UIII," I, 90-ZAD/FUZ" nvrrolidin-2-one
510.00	5.420 ± 0.002	0.414	3.6	84-goo/whi, <i>d.e</i> 69-dun/sto. ^{<i>f.g</i>} 01-zab/ruz ^{<i>h</i>}	298.15	0.525 ± 0.003	0.535	-1.9	94-pal/sin, ^{d,e} 84-mur/rod. ^{f,g}
319.50	0.433 ± 0.003	0.409	5.9	84-goo/whi, ^{<i>d.e</i>} i, 01-zab/ruz ^{<i>h</i>}					96-zab/ruz ^h
		0.419	3.3	84-goo/whi, ^{d,e} 69-dun/sto, ^{f,g} 01-zab/ruz ^h			0.565	-7.1	94-pal/sin, ^{d,e} 89-mel/sch, ^{f,g}
326.90	0.448 ⁿ	0.419	6.9	84-goo/whi, ^{d,e} i, 01-zab/ruz ^h					96-zab/ruz ^h
		0.433	3.5	84-goo/whi, ^{a,e} 69-dun/sto, ^{t,g} 01-zab/ruz ^h					

Table 5. (Continued)

	β_T/GPa^{-1}	I				β_T/GPa^{-1}	1		
<i>T</i> /K	eq 1 ^a	lit.	$\delta \beta_T / \%^b$	ref(s)	<i>T</i> /K	eq 1 ^a	lit.	$\delta \beta_T / \%^b$	ref(s)
		2,2,2	-Trifluoi	roethanol			Т	etraetho	xysilane
293.15	1.194 ± 0.004	1.174	1.7	92-tak/nog, di , 96-zab/ruz hm	283.15	1.078 ± 0.004	1.072	0.6	89-tak/ter, ^d 90-yok/tak, ^{f,g} 96-zab/ruz ^d
		1.175	1.6	67-mar, ^e i, 96-zab/ruz ^{h,m}	293.15	1.163 ± 0.004	1.154	0.8	89-tak/ter, ^d 90-yok/tak, ^{f,g} 96-zab/ruz ^d
298.15	1.240 ± 0.004	1.225	1.2	92-tak/nog, d, e i, 96-zab/ruz ^h	298.15	1.209 ± 0.004	1.245	-2.9	78-phi/del ^c
		1.228	1.0	92-miy/tam-1, u^{e} 1, 96-zab/ruz"	202 15	1 257 0 004	1.197	1.0	89-tak/ter, a 90-yok/tak, r,g 96-zab/ruz ⁴
		1.229	0.9	96-zab/ruz ^h	313 15	1.257 ± 0.004 1.362 ± 0.005	1.243	1.1	$89-tak/ter \frac{d}{9}0-yok/tak \frac{fg}{9}96-zab/ruz^{2}$
		1.232	0.6	81-pat/ali. di . 96-zab/ruz ^h	323.15	1.479 ± 0.006	1.448	2.1	89-tak/ter. ^d 90-vok/tak. ^{f,g} 96-zab/ruz ^j
303.15	1.287 ± 0.005	1.279	0.6	92-tak/nog, ^d i, 96-zab/ruz ^{h,m}	333.15	1.611 ± 0.007	1.566	2.9	89-tak/ter, ^d 90-yok/tak, ^{f,g} 96-zab/ruz ^d
	2	,2,3,3,3	-Pentafl	uoropropanol			Octame	ethylcycl	otetrasiloxane
298.15	1.274 ± 0.006	1.371	-7.1	92-tak/nog, ^{e,h} 96-nak/sak, ^{f,g}	293.15	1.456 ⁿ	1.591	-8.4	58-wat/van, ^d i, 96-zab/ruz ^h
		1.375	-7.3	92-tak/nog ^c	005 15	1 470 2	1.586	-8.2	80-nie/sch, a i, 96-zab/ruz ⁿ
		1.3/0	-7.4 Totroflu	92-tak/hog,"" 96-nak/sak,"	295.15	1.476"	1.465	0.8	63-r05/h11,/1
298.15	0.788 ± 0.007	0.771	2.2	92-tak/nog ^c			1.610	-8.3	80-nie/sch d i 96-zab/ruz ^h
200110		0.836	-5.7	92-tak/nog, ^{d,h} 96-nak/sak, ^{f,g}	297.60	1.502 ⁿ	1.493	0.6	63-ros/hil, ^j i
		2,2,2	-Trichlo	roethanol			1.517	-1.0	63-ros/hil ^c
303.15	$\textbf{0.678} \pm \textbf{0.010}$	0.638	6.3	98-meh/sha ^c			1.635	-8.1	80-nie/sch, di, 96-zab/ruzh
		0.684	-0.9	98-meh/sha, ^{d,e,h} 97-jen/san ^{f,g}	298.15	1.508 ⁿ	1.499	0.6	63-ros/hil, ^j i
000 15	1 5 4 0 1 0 0 0 1	Tetr	amethyl	stannane			1.523	-1.0	63-ros/hil ^c
293.15	1.546 ± 0.001	1.557	-0.7	80-keh/vog ^c			1.531	-1.5	77-ewi/mar ^c
		1.572	-1.7	80-keh/vog, $^{d}77$ -ahm/dix fg 96-zab/ruz ^h			1.54	-2.1	$01-S\Pi /\Pi^{\circ}$ 80-nio/sch ^d i 96-zah/ruz ^h
		1.586	-2.5	80-keh/vog e^{77} -ahm/dix f_g^{e} 96-zab/ruz ^h	302 71	1 558 ⁿ	1.553	-0.3	63-ros/hil <i>j</i> i
		1.593	-3.0	80-keh/vog. ^e 90-pol/wei. ^{f.g} 96-zab/ruz ^h	502.71	1.000	1.574	-1.0	63-ros/hil ^c
298.15	1.616 ± 0.001	1.582	2.1	78-phi/del, ^c 84-rie/del ^c			1.699	-8.3	80-nie/sch, di, 96-zab/ruzh
		1.641	-1.5	80-keh/vog, ^d 90-pol/wei, ^{f,g} 96-zab/ruz ^h	308.15	1.622 ⁿ	1.775	-8.6	80-nie/sch, di, 96-zab/ruzh
		1.662	-2.8	80-keh/vog, e90-pol/wei, fg 96-zab/ruzh	308.80	1.630 ⁿ	1.653	-1.4	63-ros/hil, ^j i
		1.663	-2.8	80-keh/vog, ^d 77-ahm/dix, ^{f,g} 96-zab/ruz ^h			1.669	-2.3	63-ros/hil ^c
000 15	1 000 1 0 001	1.665	-2.9	80-keh/vog, ^e 77-ahm/dix, ^{t,g} 96-zab/ruz ^h	017.00	1 7 4 7 1 0 000	1.785	-8.7	80-nie/sch, ^{<i>d</i>} i, 96-zab/ruz ^{<i>h</i>}
303.15	1.690 ± 0.001	1.715	-1.5	80-keh/vog, "90-pol/wei," 96-zab/ruz"	317.99	1.747 ± 0.006	1.820	-4.0	63-ros/hil ^c
		1.730	-2.0	80-keh/vog, 90 -p0/wel, 90 -2ab/ruz ^h	203 15	0.518 ⁿ	0.515	nnetnyi i	Sulloxide 78-zol/dva ^{d.e} i 96-zab/ruz ^h
		1 751	-3.5	80-keh/vog e77-ahm/dix ^f g 96-zah/ruz ^h	293 35	0.519 ⁿ	0.510	1.8	69-lau/mal /i
		Te	tramethy	/lsilane	296.65	0.523 ± 0.006	0.517	1.2	69-lau/mal,/i
224.86	1.275 ± 0.018	1.363	-6.5	94-mcl/bar, d89-bao/cac, f.g 96-zab/ruzh	297.15	0.524 ± 0.006	0.525	-0.2	76-cha/mac, <i>j</i> i
		1.384	-7.9	94-mcl/bar ^c	298.15	0.526 ± 0.006	0.52	1.2	76-cha/mac ^c
226.70	1.300 ± 0.018	1.385	-6.1	94-mcl/bar, ^d 89-bao/cac, ^{f,g} 96-zab/ruz ^h			0.522	0.8	65-for/moo, ^{d,e} i, 96-zab/ruz ^h
000.07	1 004 + 0 017	1.404	-7.4	94-mcl/bar ^c			0.523	0.6	$75 \cdot \text{dac/bir}^c$
232.67	1.384 ± 0.017	1.462	-5.3	94-mcl/bar, "89-bao/cac," 96-zab/ruz"			0.524	0.4	98-cha/kum, ^{a,e} 1, 96-zab/ruz"
235 79	1.431 ± 0.016	1.474	-0.1	94-mcl/bar d 89-bao/cac fg 96-zab/ruzh			0.525	0.2	71-mat/mym, $7195-ami/gon d_e 98-ami/pat d_e$
233.13	1.451 ± 0.010	1.513	-5.4	94-mcl/bar ^c			0.520	0.0	i. 96-zab/ruz ^h
240.08	1.498 ± 0.015	1.564	-4.2	94-mcl/bar, ^d 89-bao/cac, ^{f,g} 96-zab/ruz ^h			0.527	-0.2	92-ara/ami, ^{d,e} 97-ara/jad, ^{d,e}
		1.570	-4.6	94-mcl/bar ^c					95-ami/gop, ^{d,e}
247.55	1.626 ± 0.015	1.678	-3.1	94-mcl/bar, d89-bao/cac, f.g 96-zab/ruzh					i, 96-zab/ruz ^h
		1.682	-3.3	94-mcl/bar ^c			0.529	-0.6	92-miy/tam-1, ^{d,e} 93-nak/chu, ^{d,e}
252.99	1.727 ± 0.014	1.767	-2.3	94-mcl/bar, ^a 89-bao/cac, ^{r,g} 96-zab/ruz ⁿ					94-tam/mur, a,e
954.05	1 749 1 0 014	1.774	-2.6	94-mcl/bar d					97-miy/nak, <i>a.e</i> 99-nai/ali, <i>a.e</i> 1,
234.03	1.740 ± 0.014	1.705	-2.1 -2.5	94-mcl/bar ^c			0 530	-0.8	$50-2ab/ruz^{h}$ 78-wer/les d_{e} i 96-zab/ruz ^h
260.25	1.875 ± 0.013	1.897	-1.2	94-mcl/bar. ^d 89-bao/cac. ^{f,g} 96-zab/ruz ^h			0.531	-0.9	93-das/haz. ^{d,e} i, 96-zab/ruz ^h
		1.910	-1.8	94-mcl/bar ^{c}	298.65	0.527 ± 0.006	0.530	-0.6	71-mac/hyn, /i
264.71	1.974 ± 0.013	1.983	-0.5	94-mcl/bar, d89-bao/cac, f.g 96-zab/ruzh	299.75	0.528 ± 0.006	0.532	-0.8	69-lau/mal,/i
		2.003	-1.4	94-mcl/bar ^c	303.15	0.534 ± 0.006	0.530	0.8	78-zel/dya, ^{d,e} i, 96-zab/ruz ^h
268.61	2.066 ± 0.013	2.063	0.1	94-mcl/bar, ^d 89-bao/cac, ^{f,g} 96-zab/ruz ^h			0.539	-0.9	95-osw/pat-1, ^{d,e} i, 96-zab/ruz ^h
070.00	0.100 + 0.010	2.091	-1.2	94-mcl/bar ^c			0.541	-1.3	92-ara/ami, de^{i} , 96-zab/ruz ⁿ
273.28	2.183 ± 0.013	2.165	0.8	94-mcl/bar, 89-bao/cac, 96-zab/ruz"	202.45	0.534 ± 0.006	0.543	-1.7	99-nal/all, "" 1, 96-zad/ruz"
283 15	2457 ± 0.014	2.203	2.3	89-tak/ter ^d 89-bao/cac ^{f.g} 96-zab/ruz ^h	303.45	0.334 ± 0.000	0.544	-4.5	76-cha/mac <i>j</i> i
293.15	2.781 ± 0.016	2.699	3.0	89-tak/ter. ^d 89 -bao/cac. ^{f,g} 96 -zab/ruz ^h	308.15	0.542 ± 0.006	0.557	-2.7	92-ara/ami. d^{a} i. 96-zab/ruz ^h
298.15	2.961 ± 0.017	2.860	3.5	89-tak/ter, ^d 89-bao/cac, ^{f,g} 96-zab/ruz ^h			0.558	-2.9	99-nai/ali, ^{d,e} i, 96-zab/ruz ^h
		Т	etraethy	lsilane	309.45	0.544 ± 0.06	0.562	-3.2	69-lau/mal,⁄i
283.15	0.991 ± 0.004	1.016	-2.5	89-tak/ter, ^d 90-yok/tak, ^{f,g} 96-zab/ruz ^h	310.05	0.545 ± 0.006	0.564	-3.4	69-lau/mal,/i
293.15	1.061 ± 0.004	1.076	-1.4	89-tak/ter, ^{<i>a</i>} 90-yok/tak, ^{<i>t,g</i>} 96-zab/ruz ^{<i>h</i>}	310.95	0.546 ± 0.006	0.549	-0.5	71-mac/hyn,/i
		1.082	-1.9	80 keh/vog ^c	313.15	0.550 ± 0.007	0.545	0.9	/ð-zel/dya,°i, 96-zab/ruz"
298 15	$1 100 \pm 0.004$	1 107	-2.0 -0.6	89-tak/ter ^d 90-vok/tak ^{f,g} 96-zah/ruz ^h			0.549	-3.5	10-2e1/uya, 1, 30-2a0/fu2" 92-dew/meh-1 dei 96-zah/ruzh
200.10	1.100 ± 0.004	1.112	-1.1	80-keh/vog. ^{d,e} 90-vok/tak. ^{f,g} 96-zab/ruz ^h			0.573	-4.0	99-nai/ali. ^{d.e} i. 96-zab/ruz ^h
303.15	1.140 ± 0.005	1.139	0.1	89-tak/ter, ^d 90-yok/tak, ^{f,g} 96-zab/ruz ^h	318.15	0.558 ± 0.008	0.591	-5.6	99-nai/ali, ^{d,e} i, 96-zab/ruz ^h
313.15	1.227 ± 0.006	1.209	1.5	89-tak/ter, ^d 90-yok/tak, ^{f,g} 96-zab/ruz ^h			0.60	-3.6	76-cha/mac ^c
323.15	1.323 ± 0.006	1.307	1.2	89-tak/ter, ^d 90-yok/tak, ^{f,g} 96-zab/ruz ^h	322.65	0.566 ± 0.008	0.618	-4.2	76-cha/mac, ^j i
333.15	1.431 ± 0.007	1.365	4.8	89-tak/ter, ^a 90-yok/tak, ^{f,g} 96-zab/ruz ^h	324.95	0.571 ⁿ	0.599	-4.7	71-mac/hyn, ^j i
					990 0F	0 5917	0.607	-5.9	76-cha/mac,/i
					33U.0 3	0.301"	0.045	-9.9	10-01a/mac,/1

^{*a*} Uncertainty is estimated as ±2*s*, where *s* is a standard deviation derived from a covariance matrix of each fit. ^{*b*} [$\beta_{T}(eq 1)$ - $\beta_{T}(lit)$] 100/ $\beta_{T}(lit)$. ^{*c*} Isothermal compressibility, $\beta_{T} = (1/\rho) (\partial \rho/\partial P)_{T} = -(1/V)(\partial V/\partial P)_{T}$. ^{*d*} Sound speed. ^{*e*} Isentropic compressibility, $\beta_{S} = (1/\rho) (\partial \rho/\partial P)_{S} = -(1/V)(\partial V/\partial P)_{S}$. ^{*f*} Density. ^{*s*} Thermal expansivity, $\alpha_{P} = (1/V)(\partial V/\partial T)_{P}$. ^{*h*} Isobaric heat capacity. ^{*i*} Density and/or thermal expansivity evaluated from a fit of selected density data taken from more than one source. ^{*j*} Thermal pressure coefficient, $\gamma_{V} = (\partial P/\partial T)_{V}$; β_{T} was obtained as $\beta_{T} = \alpha_{P}/\gamma_{V}$. ^{*k*} Obtained using densimeter and piezometer, respectively ^{*m*} Value of heat capacity at T = 298.15 K was used. ^{*n*} Extrapolated beyond temperature limits of eq 1.

Table 6. Parameters a_i of Smoothing Functions 12 or 13 Fitted to Selected Density Values, $\rho[T,P = 0.1 \text{ MPa or } P_{sat}(T)]$,
Critical Densities, ^a ρ_c , Critical Temperatures, T_c , Temperature Ranges of Density Data, T_{min} and T_{max} , and RMSDs of the
Fits

F 11	S										
eq	a_0	a_1	a_2	a_3	a_4 a_5	$\frac{\rho_{\rm c}}{\rm kg \cdot m^{-3}}$	$\frac{T_{\rm c}}{\rm K}$	$\frac{T_{\min}}{K}$	$\frac{T_{\text{max}}}{K}$	$\frac{\text{RMSD}}{\text{kg} \cdot \text{m}^{-3}}$	ref
12	1.957 811	0.987 548	-1.967 087	1.879 882	1-Aminopropane	259.259	497.00	188.39	496.00	0.190	90-cha/gad
12	1,921 817	1.015 999	-1.793 001	1.615 440	1-Aminobutane	264.036	531.90	224.05	531.00	0.235	93-das/fre
12	1.663 549	1.520 586	-2.521 972	3,724,154	2-Methyl-2-propanami -1.616.855	ne 250.473	483.90	206.20	483.00	0.316	93-das/fre
12	5 494 614	-11 684 60	13 867 142	-4 810 753	1-Aminopentane	254 125 ^b	553 90 ^c	223 15	423 15	0.552	86-trc
12	2 323 597	1 401 463	-6 017 565	5 828 077	Aminobenzene 1 303 453 –2 068 705	332 602	699.00	267 13	698.00	0.216	90-cha/gad
12	1 691 182	0.606.118	0 293 326	0 190 586	2-Methyl-1-aminobenze	ene 321 788	707.00	256 80	706.00	0.210	90-cha/gad
12	1 730 166	0 591 646	0 295 498	0 196 531	4-Methyl-1-aminobenze	ene	706.00	316.90	705.00	0.202	90-cha/gad
10	2 210 762	-7 066 222	99 255 911	_24 088 40	Ethanenitrile	227 2080	545 500	222.45	522 20	0.320	75 fra/fra
12	3.319703	-7.900 222	22.333 211	-24.088 40	Ethopopitrilo d	231.290-	545.50	233.45	523.30	0.272	85-kra/mue
13	983.898 74	8.097 200	-19.955 56		Ethanemurne- a_3			303.15	363.15	0.000^{d}	77-sch/sch
12	10.096 843	-51.158 87	120.754 42	-121.136 8	45.110 512	240.522 ^c	561.30 ^c	190.36	467.55 ^{e,f}	0.142	84-sha/gus
12	2.857 821	-9.613 227	32.385 023	-38.628 62	Butanenitrile 16.469 494	242.479 ^c	585.40°	176.94	490.46 ^{e,g}	0.310	84-sha/gus
13	1158.482 9	-122.581 5			2-Methylpropenenitri	le		293.00	373.00 ^{e,h}	0.423	83-gus/naz
12	14.596 031	$-50.449\ 85$	68.653 071	-30.128 55	Benzonitrile	301.532 ^c	699.40 ^c	290.00	523.00 ^{e,i}	0.909	78-gus/naz, 86-gus
12	1.999 947	0.890 974	-1.851 331	1.875 984	Pyridine	325.521	620.00	231.49	619.00	0.210	93-das/fre
12	1.675 910	0.589 116	0.268 956	0.165 816	Piperidine	295.657	594.00	262.12	593.00	0.254	93-das/fre
12	1.000 294	1.486 565			1-Azaindene	371.318 ^c	803.56 ^c	323.15	353.15	0.112	95-yok/ebi
12	2.274 707	1.447 414	-4.620742	3.798 895	Quinoline	348.145	782.00	258.37	781.00	0.299	93-das/fre
12	10.059 166	-19.564 52	13.104 731		Nitromethane	352.834 ^c	588.00 ^c	247.40	308.15	0.424	80-vit/ber, 90-uos/mat-1,
12	2.861 827	-2.019 428	2.363 097		Nitroethane	329.242 ^c	592.00 ^c	283.15	363.15	0.361	77-gup/han, 90-uos/mat-1, 00-tro/car
13	995.6				1-Nitropropane			298.15	298.15		90-uos/mat-1
13	983.7				2-Nitropropane			298.15	298.15		90-uos/mat-1
13	1236.283 9	-84.262 38	-3.375 000		2-Methyl-2-nitropropa	ne		313.15	353.15	0.000 ^j	96-jen/reu
12	4.479 294	-5.728 456	4.394 779		Nitrobenzene	362.093 ^c	718.00 ^c	273.15	373.15	0.319	14-tyr, 39-gib/loe-1 60-hil/goc, 79-abd/dzh, 82-tak/ter, 90-uos/mat-1
12	1.246 017	1.660 539			Formamide	346.468 ^c	773.00 ^c	278.94	338.15	0.082	69-dun/sto, 86-bot/bre
13	1252.839 6	-85.284 21			N-Methylformamide			288.15	313.15	0.039	85-eas/woo-1
13	1172.052 5	-59.967 20	-5.600 000		N,N-Dimethylformami	de		288.15	313.15	0.000 ^j	85-eas/woo-1
13	1191.632 3	-79.255 86	-2.132 163		N,N-Dimethylacetami	de		283.15	343.15	0.230	79-gri/goa, 80-khi/gri,
13	1254.2				1-Methoxy-2-nitrobenze	ene		293.15	293.15		91-pac 60-hil/goc
13	1210.156 6 1278.283 1	-34.246 74 -73 754 41	-9.251 797 -3 350 590		1-Methylpyrrolidin-2-o	ne		283.15 253 15	333.15 298.15	0.368	84-mur/rod 89-mel/sch

Table 6. (Continued)

							$ ho_{c}$	$T_{\rm c}$	T_{\min}	$T_{\rm max}$	RMSD	
eq	a_0	a_1	a_2	a_3	a_4	a_5	kg∙m ⁻³	K	K	K	kg•m ^{−3}	ref
13	1108.718 1	82.590 046	-73.986 39	14.409 592	3-Cyanoprop -1.092 390	anal			290.40	505.00 ^{e,k}	0.309	81-mus/gan
13	1354.963 6	-57.929 43	-8.841 580		2-Fluoroetha	anol			278.15	338.13	0.024	97-woo
13	1621.061 3	-77.470 29	-10.579 75		2,2-Difluoroet	hanol			278.15	338.15	0.041	95-mal/woo
12	1.975 513	0.944 766	-0.292 081		2,2,2-Trifluoroe	thanol	484.000 ¹	499.29 ⁷	263.15	430.627	0.816	89-bae/klo, 90-sve/sid, 92-kab/yam, 92-kab/yam-1, 93-sau/hol, 94-mat/yam, 99-her/oli
				2,2	2,3,3,3-Pentafluor	ropropan	nol					
12 13	3.086 144 2106.093 7	$-2.053\ 610$ $-201.152\ 000$	1.789 255				523.000 ^m	497.70 ^m	278.54 298.15	318.40 323.15	0.106 0.000 ^j	96-nak/sak 94-mat/yam
				2	,2,3,3-Tetrafluoro	opropano	ol 					
12 13	1.878 745 1977.296 1	$0.883\ 004$ -166.588\ 000					495.001 ^m	557.20 ^m	278.54 298.15	328.37 323.15	0.239 0.000 ^j	96-nak/sak 94-mat/yam
13	1885.138 2	-81.695 80	-9.775 200		2,2,2-Trichloroe	thanol			290.15	355.15	1.034	97-jen/san
12	17.112 497	-100.596 9	252.226 02	-278.196 4	Bis(difluoromethy 114.876 27	yl) Ether	529.000	420.25	273.58	367.37	0.029	92-def/gil
12	2512 832 1	-775 201 7	216 070 70	2,2,2-1ri	ifluoroethyl Diflu	orometh	yl Ether		974 15	228 12n	0.063	05 mal/waa 1
12	1.815 682	1.449 995	-1.839450	1.531 503			515.600	444.03	274.13	370.00	0.003	97-def/mol
12	2.143 027	$-5.487\ 065$	32.463 157	–75.307 81	82.004 440 -33	.886 162	her 509.001°	406.83°	259.98	404.25	0.416	01-oht/mor, 01-wid/tsu
12	2.119 506	0.230 471	0.605 628	1,2,2,2-Tet	rafluoroethyl Dif	luorome	thyl Ether 533.000 ^p	428.95 ^p	274.15	338.13 ^q	0.072	95-mal/woo-1
12	1.839 776	0.686 292	0.057 145	Hep 0.250 296	otafluoropropyl M	lethyl Et	ther 530.001	437.70	249.98	435.11	0.542	01-oht/mor,
												01-wid/uch
13	2085.724 6	-170.701 0			Pentafluorobenz	onitrile			283.20	363.20	0.002	90-pol/wei
10	1051 014 1	101 000 0			Tetramethylsta	innane			007 40	200.00	0.000	00
13 13	1851.014 1 1606.343 3	-181.3963 -33.42429	-24.27508						267.40 273.15	323.18	0.002 0.175	90-pol/wei 77-ahm/dix
12	5.245 941	-13.198 68	18.122 199	-7.568 344	Tetramethyls	ilane	244.390 ^r	448.64 ^{<i>r</i>}	198.16	342.18	0.485	89-bao/cac, 90-yok/tak
12	7.429 032	-14.964 80	10.243 597		Tetraethylsil	lane	293.358 ^c	603.70 ^c	283.15	336.55	0.210	90-yok/tak
13	-257.364 3	675.515 40	-117.350 0		Hexamethyldis	silane			303.20	323.20	0.000 ^{<i>i</i>}	82-bri/wue
12	4.181 934	$-5.966\ 881$	4.748 205		Tetraethoxys	ilane	317.093 ^c	592.20 ^c	283.13	333.31	0.160	90-yok/tak
12	1.152 753	5.090 081	-7.557 288	Oc 4.611 995	tamethylcyclotet	rasiloxai	ne 301.441 ^s	586.00 ^s	292.06	413.17	0.256	68-mar, 76-ben/win, 84-eas/woo,
12	2.906 627	-2.200 901	2.502 712				301.441 ^s	586.00 ^s	313.14	413.17	0.057	94-mci/bar-1 76-ben/win, 84-eas/woo
					Dimethyl Sulf	oxide						
12 12	0.833 186 2.175 588	$1.722\ 722 \\ -1.998\ 848$	2.517 888		·		375.652° 375.652°	738.00 ^c 738.00 ^c	293.60 292.23	323.00 398.15	0.803 0.162	80-fuc/ghe 22 various sources

^{*a*} Critical densities are given with three decimal places, since they were calculated from rounded values of critical molar volumes in some cases. ^{*b*} Estimated by the Lydersen method. ^{*c*} From database [93-cda]. ^{*d*} Interpolation using values obtained by extrapolation from elevated pressures to 0.1 MPa. ^{*e*} Densities were obtained by extrapolation of values at elevated pressures to saturated vapor pressure. ^{*f*} Extrapolated values for T > 368.19 K. ^{*g*} Extrapolated values for T > 368.19 K. ^{*g*} Extrapolated values for T > 330.62 K. ^{*h*} Extrapolated values for T > 353 K. ^{*i*} Extrapolated values for T > 333.75 K, extrapolation to 0.1 MPa. ^{*l*} From [93-sau/hol]. ^{*m*} From [92-tak/nog]. ^{*n*} Values for T > 293.15 K were estimated by the modified Rackett method [85-cam/tho] using experimental density values at 274.15 and 293.15 K and critical parameters from [98-goo/def]. ^{*e*} From [01-oht/mor, 01-yos/miz]. ^{*p*} From [96-sak/sat]. ^{*q*} Values for T > 288.15 K were estimated by the modified Rackett method [85-cam/tho] using experimental density values at 274.15 and 288.15 K and critical parameters from [77-mcg/mck]. ^{*s*} From [01-nov].

Table 7. Parameters a_i of Smoothing Function 14, Critical Temperatures, T_c , Critical Pressures, P_c , Temperature Ranges of Saturated Vapor Pressure Data, T_{min} and T_{Max} , and Relative Standard Deviations, δP_s

				$T_{\rm c}$	$P_{\rm c}$	T_{\min}	T_{\max}	$\delta P_{\rm s}$	
a_0	a_1	a_2	a_3	K	MPa	K	K	%	ref
				2-1	Methylp	ropenen	itrile ^a		
-8.884 543	5.133 985	-7.856 370	2.832 724	Bis 420.25	(difluoro 4.228	omethyl) 279.00	Ether 420.00	0.01	92-def/gil
-7.771 214	1.735 502	-2.371 910	-10.938 413	Penta 406.83	fuoroetl 2.887	nyl Meth 259.98	yl Ethe 406.15	r 0.10	01-oht/mor, 01-wid/tsu
-8.133 251	2.101 659	-3.556 315	1,2,2 -5.050 692	,2-Tetraf 428.95 ^b	luoroetł 3.050 ^b	nyl Diflu 269.15	orometh 428.95	yl Et	her c
-7.997 881	1.820 040	-2.952 480	-10.592 214	Heptaf 437.70	luoropro 2.476	opyl Met 299.99	hyl Eth 437.50	er 0.14	01-oht/mor, 01-wid/uch
7 406 979	1 700 902	9 710 790	2 9 40 9 46	T	etramet	hylstani	nane	0.20	20 hul/hou 26 the/lin 78 hug/mog
-7.400 272	1.790 803	-2.710 780	-3.249 240	521.61	L.901 Totram	273.23 othyleila	520.07	0.38	50-bul/nau, 50-tho/nn, 78-nug/nicg
-7.258 475	1.817 999	-2.394098	-2.870 613	448.64 ^e	2.821 ^e	208.98	448.58	0.89	41-ast/ken, 53-tan/kay, 76-hic/you, 77-mcg/mck

^{*a*} Antoine equation $\ln(P/kPa) = 14.1148664 - 2970.78355/(T/K - 50.602)$ evaluated from data [48-pet/mar] in the range from 273.15 to 373.15 K was employed. ^{*b*} From [96-sak/sat]. ^{*c*} Fit of values estimated by the Riedel method [54-rie] using critical parameters from [96-sak/sat] and the normal boiling point temperature from [98-mat/tan]. ^{*d*} From [78-hug/mcg]. ^{*e*} From [77-mcg/mck].

The isothermal compressibility calculated from the fit of data [90-uos/mat] for 2-methylpropanenitrile is $\beta_T(T = 298.15 \text{ K}, P = 0.1 \text{ MPa}) = 1.139 \text{ GPa}^{-1}$. No data for a comparison were available, as well as for 2-methylpropenenitrile. It is worthy of mention that the value of the parameter c_0 (Table 3) for 2-methylpropenenitrile is unusually large.

Four data sets were available for benzonitrile. Two of them [90-uos/mat, 01-tak/fuj] present data along the isotherm 298.15 K, and their pressure ranges overlap. Separate fits of these two sets resulted in $c_0 = 0.095$ 664, $b_0 = 151.6381$ MPa, $T_{\min} = T_{\max} = 298.15$ K, $P_{\min} = 1.66$ MPa, $P_{\text{max}} = 150.00$ MPa, RMSD = 0.246 kg·m⁻³, and $RMSD_r = 0.024\%$. The isothermal compressibility calculated from the fit $\beta_T(T = 298.15 \text{ K}, P = 0.1 \text{ MPa}) = 0.630$ GPa^{-1} deviates by -1.6% from the average literature value (0.640 GPa⁻¹, Table 5). The other two sets [78-gus/naz, 86gus] deviate from the data [90-uos/mat, 01-tak/fuj], and therefore the data points [78-gus/naz] retained for the final fit (Table 3) were those for higher temperatures only. The point of inflection appears on the B(T) curve at T = 388 K, which indicates an inconsistency of the retained data sets. Deviations of isothermal compressibilities calculated from the fit from literature values are negative and slightly increase with increasing temperature (Table 5). Extrapolation toward lower temperatures leads to positive deviations in isothermal compressibilities.

The isothermal compressibility calculated from the fit of the data [90-uos/mat] for phenylethanenitrile is $\beta_T(T = 298.15 \text{ K}, P = 0.1 \text{ MPa}) = 0.465 \text{ GPa}^{-1}$. No data for a comparison were available.

Heterocyclic C–H–N Compounds. The final fit for pyridine (Table 3) represents predominantly smoothed values [79-fur/mun]. The uncertainty of the original experimental data is rather large (4 kg·m⁻³), as declared by the authors [79-fur/mun]. The RMSD of the fit is much smaller, obviously because of the fact that the smoothed values were fitted. The calculated isothermal compressibilities are systematically lower than the data from the literature (average deviation -4.5%, including extrapolated values, see Table 5).

One data set was available for 1-azaindene at T = 333.15 K. The isothermal compressibility calculated from the fit is $\beta_T(T = 333.15 \text{ K}, P = 0.1 \text{ MPa}) = 0.509 \text{ GPa}^{-1}$. No data were available for a comparison.

A tentative correlation of all data points available for quinoline resulted in the fit with two inflection points on the B(T) curve (at 423 and 440 K) and the deviations of calculated isothermal compressibilities from literature values (Table 5) -9.1% (298.55 K), -7.1% (303.15 K), and -4.1% (313.15 K). The fit of the data [88-sid/tej] resulted in even lower values of isothermal compressibility. A separate fit of the data [96-cha/lee, 96-cha/lee-1] [$c_0 =$ 0.059 029, $b_0 = 93.3176$ MPa, $b_1 = -49.7806$ MPa·K⁻¹, b_2 = 5.3620 MPa·K^-2, T_0 = 353.15 K, T_{\min} = 298.15 K, T_{\max} = 413.15 K, P_{\min} = 1.00 MPa, P_{\max} = 30.00 MPa, RMSD = $0.105 \text{ kg} \cdot \text{m}^{-3}$, RMSD_r = 0.010%, bias = $-0.044 \text{ kg} \cdot \text{m}^{-3}$, N_{p} = 63, \pm = -25, s_w = 0.474] yields isothermal compressibilities at 0.1 MPa: $\beta_T (T = 298.55 \text{ K}) = 0.483 \text{ GPa}^{-1}, \beta_T$ $(T = 303.15 \text{ K}) = 0.493 \text{ GPa}^{-1}$, and $\beta_T(T = 313.15 \text{ K}) =$ 0.517 GPa⁻¹, which are in excellent agreement with literature data (Table 5). The data [96-ran/eat] are not consistent with the data [96-cha/lee-1] in the overlapping T and P intervals, and therefore only high-temperature data [96-ran/eat] were retained in the final fit (Table 3). The representation of data [96-cha/lee, 96-cha/lee-1] is, however, affected, and the agreement in isothermal compressibilities is worse (Table 5).

C–*H*–*O*–*N Compounds. Nitro Compounds.* Two data sets per substance were available for nitromethane and nitroethane [77-gup/han, 90-uos/mat-1]. The two sets are mutually in good agreement except for the isotherm T = 318.15 K [77-gup/han] of nitromethane that was rejected from the final fit. The isothermal compressibilities calculated from the fit for nitromethane are in very good agreement with the values from the literature (Table 5); the deviations are mostly below 1%. Rather worse agreement is observed for nitroethane, where the deviations are systematically negative (2.2% on the average).

One source of $P-\rho-T$ data [90-uos-mat-1] was available for 1-nitropropane and 2-nitropropane. A comparison of the fits with isothermal compressibilities taken from the literature resulted in the deviations -0.7% and -4.7%, respectively (Table 5). A conclusion is, however, difficult to make, since the values used for the comparison were taken from one source only [88-dew/sha]. It should be noted that isothermal compressibilities taken from [88-dew/sha] for nitromethane and nitroethane exhibit positive deviations from other literature data.

Figure 1. Temperature and pressure coordinates of data points retained in the correlations for the fits in Table 3 where P-T areas of retained data points are not rectangular. Solid–liquid equilibrium curves (full lines) represent smoothed experimental data (generated from the Simon equation) taken mostly from [63-bab] except for 2-methyl-2-nitropropane [96-jen/reu], *N*-methylformamide [85-eas/woo-1], 2-fluoroethanol [97-woo], 2,2,2-trichloroethanol [97-jen/san], hexamethyldisilane [82-bri/wue], and dimethyl sulfoxide [80-fuc/ghe]. Vapor–liquid equilibrium curves for pentafluoroethyl methyl ether and heptafluoropropyl methyl ether (dashed lines with critical point, C.P.) correspond to functions presented in Appendix 2.

An objective of the investigation of 2-methyl-2-nitropropane [96-jen/reu] was the state behavior of both the liquid and solid phases, including the solid—liquid phase transition. The final fit represents 18 data points (smoothed values) related to the liquid phase. No data on isothermal compressibility were available for a comparison.

The data [79-abd/dzh] for nitrobenzene at atmospheric pressure are in agreement with other values (see Apendix 1, Table 6) while large deviations from other available data were observed for the compressed-liquid region (see Table 4). The isothermal compressibilities calculated from the final fit are mostly lower than values taken from the literature (Table 5); the deviations are around 1% up to 313.15 K (including the values extrapolated toward lower temperatures and except for the value from [85-jay/red] at 313.15 K). Larger negative deviations are observed for higher temperatures.

Amides. The data available for formamide are mutually consistent, and no data points were rejected from the final

fit. The deviations of calculated isothermal compressibilities from literature data are mostly positive (average deviation 4.4%) and practically the same over the temperature range from 293 to 327 K, except for T = 298.15 K, where the agreement is much better. A separate fit of the data [91-uos/kit] yielded $\beta_T(T = 298.15$ K, P = 0.1 MPa) = 0.400 GPa⁻¹.

Except the isothermal data at T = 298.15 K [91-uos/kit], the analytical functions [85-eas/woo-1] were available for *N*-methylformamide. The values of volume ratio were generated from the functions (F-data, see Table 2), taking into account the solid—liquid equilibrium line [85-eas/woo-1]. The value of [91-uos/kit] at P = 200 MPa was rejected because of the larger positive deviation and the fact that the freezing pressure at 298.15 K is 173 MPa [85-eas/woo-1]. Fits of all three isotherms (288.15, 298.15, 313.15 K) separately resulted in the set of parameters c_0 and b_0 with a nonmonotonic temperature dependence. The final fit with $N_c = 1$ and $N_B = 2$ (see eqs 2 and 3 and Table 3) resulted in a slightly worse description of the data compared to that of the separate isothermal fits. It is worth mentioning that the magnitude of the parameter c_1 is comparable to that of the parameter c_0 .

A similar situation occurs with the data for *N*,*N*-dimethylformamide. No information on the freezing line was available. When the F-type data were generated from the functions of [85-eas/woo-1], the pressure ranges at T = 288.15 K and T = 298.15 K were, however, limited up to 100 MPa and 200 MPa, respectively, which might avoid any extrapolation to the solid-phase region (the normal melting point temperature of *N*,*N*-dimethylformamide). The final fit gives isothermal compressibilities close to the values taken from the literature; the deviations are around 1%, except for values evaluated from speed-of-sound data [76-zel/dya].

The isothermal compressibilities evaluated by Easteal and Woolf [85-eas/woo-1] for N-methylformamide and N,Ndimethylformamide from their smoothing functions (separate for each isotherm 288.15, 298.15, and 313.15 K) indicate that there might be a flat minimum on the temperature dependences of $\beta_T(T, P = 0.1 \text{ MPa})$ around T = 300 K. No such behavior was observed with the fits by eq 1 (even with the separate fits for each isotherm). According to the private correspondence of the authors with Prof. L. A. Woolf, the original experimental values are not available any more and thus a detailed analysis is impossible. Therefore, new accurate experimental data are desirable to verify this unusual behavior of β_T for these two coumpounds (and possibly for formamide, as well). The scatter of β_T values calculated from speed-of-sound, volumetric, and caloric data is too large to distinguish any anomaly.

One set of isothermal data (298.15 K) was available for N,N-dimethylacetamide [91-uos/kit]. Agreement with isothermal compressibilities taken from the literature (Table 5) is good (average deviation 1.5%).

Other C-H-O-N **Compounds.** The fit for triethanolamine represents data of Bridgman [33-bri] for three isotherms (273.15, 323.15, and 363.15 K). No data on isothermal compressibility were available for a comparison.

The experimental temperature of measurements of 1-methoxy-2-nitrobenzene [60-hil/goc] was not found in the original source, and its value was derived by a comparison of density at atmospheric pressure with literature data (similarly for nitrobenzene). No data on isothermal compressibility were available for a comparison. It should be, however, pointed out that the data [60-hil/goc] for nitrobenzene were rejected and thus the results for 1-methoxy-2-nitrobenzene are of uncertain reliability. The low value of the parameter c_0 is rather unusual.

One set of isothermal data (298.15 K) was available for 1-methylpyrrolidin-2-one [91-uos/kit]. The deviations of isothermal compressibility calculated from the fit from values in Table 5 are negative and rather large. Both literature values of isothermal compressibility in Table 5 are derived from speed-of-sound data [94-pal/sin] and two sources of volumetric data [84-mur/rod, 89-mel/sch]. Densities at atmospheric pressure [89-mel/sch] seem to be in better agreement with single-temperature data from other sources (including [94-pal/sin]) than those of [84-mur/rod], and thus, the isothermal compressibility $\beta_T(T = 298.15 \text{ K}, P = 0.1 \text{ MPa}) = 0.565 \text{ GPa}^{-1}$ calculated using data [94pal/sin, 89-mel/sch, 96-zab/ruz] is probably more correct.

No saturated vapor pressures or critical data were found for 3-cyanopropanal. The final fit (Table 3) was therefore performed with setting $P_{\rm ref} = 0.101$ 325 MPa in the entire temperature range; that is, density values reported for P= 0.1 MPa [81-mus/gan] in the temperature range from 290.4 to 333.75 K and density values obtained by extrapolation from elevated pressures to 0.1 MPa for T > 333.75K were used as the reference densities. No data for speed of sound were available, and no recommended values for isobaric heat capacity were found in [96-zab/ruz, 01-zab/ ruz]. Mustafaev and Ganiev [81-mus/gan-1] published experimental isobaric heat capacities and calculated isochoric heat capacities and speeds of sound using their $P-\rho-T$ data [81-mus/gan]. The values of speed of sound calculated from eq 11 using $P-\rho-T$ data [81-mus/gan] and heat capacities [81-mus/gan-1] are, however, significantly higher than their values (e.g., in the temperature interval from 300 to 370 K and at P = 0.1 MPa by 10%).

C–*H*–*O Halogen Compounds. Halogenated Alcohols.* A printing error was corrected for 2-fluoroethanol [97-woo]: the density at T = 288.15 K and atmospheric pressure should probably be 1114.61 kg·m⁻³ instead of 1146.10 kg·m⁻³. No data on isothermal compressibility were available for a comparison of the final fit with independent data, similarly as for 2,2-difluoroethanol.

Reasonable mutual agreement of $P-\rho-T$ data for 2,2,2trifluoroethanol at pressures up to 40 MPa was observed. At higher pressures, the differences between [91-mal/woo] and [92-kab/yam-1] data increase up to 6 kg·m⁻³ at 200 MPa in the overlaping temperature range. Since the [91mal/wool data are consistent with other data in the lower temperature range, this set was retained while the [92kab/yam-1] isotherms from 310 to 340 K were rejected. The agreement in isothermal compressibilities (Table 5) is satisfactory; the average deviation in the 10 K wide temperature interval is 1.2%. The isobaric heat capacity [96-zab/ruz] was found only for T = 298.15 K: $c_P = 177.8$ J·mol⁻¹·K⁻¹. This value was used to calculate isothermal compressibilities not only at 298.15 K but also at 293.15 and 303.15 K; the influence on isothermal compressibility is negligible in this case; a 1% change in heat capacity causes a 0.16% change in isothermal compressibility.

Values for 2,2,3,3,3-pentafluoropropanol and 2,2,3,3tetrafluoropropanol were generated using the parameters of the Tait equation [94-mat/yam] separately for the temperatures 298.15 and 323.15 K. The fits in Table 3 are therefore interpolations between these two temperatures. The isothermal compressibility at T= 298.15 K calculated from the fit for 2,2,3,3,3-pentafluoropropanol is by about 7% lower than literature values (Table 5). A rather large discrepancy is observed for literature values of isothermal compressibility for 2,2,3,3-tetrafluoropropanol; the value calculated from the fit is between them.

The fit for 2,2,2-trichloroethanol represents the liquidphase density data below the solid–liquid equilibrium lines for stable solid phases (denoted as s_{II} , s_I by Jenau et al. [97-jen/san]) that cross each other at the s_{II} – s_I –1 triple point (308.3 K, 125.6 MPa; see Figure 1). The isothermal compressibility calculated from the fit at T = 303.15 K is closer to the value obtained from speed of sound [98-meh/ sha] and volumetric behavior [97-jen/san]. Recommended values for the isobaric heat capacity of 2,2,2-trichloroethanol were not found in [96-zab/ruz, 01-zab/ruz]; the value reported by Mehta et al. [98-meh/sha] is the value estimated by a group contribution method.

Halogenated Ethers. The data reported by Defibaugh et al. [92-gef/gil] for bis(difluoromethyl) ether cover a rather narrow pressure range (maximum pressure 5.3 MPa). The sample of purity 96.7 mol % was used for experiments (see Table 2); the presented data are those corrected by the researchers with respect to impurity (3.3 mol % 1,1,2-trifluoroethane, HFC143). No data were available to calculate isothermal compressibility for a comparison.

Malhotra and Woolf [95-mal/woo-1] measured volume ratios k = V(P)/V(P = 0.1 MPa) for two fluorinated ethers: 2,2,2-trifluoroethyl difluoromethyl ether and 1,2,2,2-tetrafluoroethyl difluoromethyl ether in a large pressure range (up to about 380 MPa). Experimental densities at atmospheric pressure are reported for the temperature ranges 274.15-293.15 K and 274.15-288.15 K, respectively. Reported volume ratios are related either to the experimental densities at P = 0.1 MPa (up to normal boiling point temperature) or to hypothetical values obtained by a linear extrapolation of experimental densities toward temperatures above the normal boiling point temperature (up to the highest experimental temperature 338.13 K). Densities $\rho(P)$ at each temperature were calculated from volume ratios as $\rho(P) = \rho(P = 0.1 \text{ MPa})/k$, and reference values $\rho(T, P_{ref}(T))$ for temperatures above normal boiling point temperature were obtained by extrapolation to saturation pressure using the Tait equation.

The liquid densities of pentafluoroethyl methyl ether and heptafluoropropyl methyl ether were measured in limited pressure ranges by Ohta, Widiatmo, and co-workers [01oht/mor, 01-wid/tsu, 01-wid/uch]. The parameters of the modified BWR equation of state were evaluated by Widiatmo and Watanabe [01-wid/wat]. References to data in [01-wid/wat] are given as conference proceedings, but it is likely that the data [01-oht/mor, 01-wid/tsu, 01-wid/uch] were used. The fit presented here for heptafluoropropyl methyl ether (Table 3) represents the data in a rather limited temperature range because of instability of evaluation of parameters at temperatures close to the critical temperature. The deviations of the fits are lower than the experimental uncertainty declared by the authors (0.2%), as they are lower than 0.05%. Consequently, the weighted standard deviations are significantly lower than unity (see Table 3).

Fluorinated ethers are substances proposed as prospective refrigerants, and therefore a significant effort to measure their properties can be noticed. Besides the abovementioned sources, there are other papers in the literature that present $P-\rho-T$ data for fluorinated ethers in the form of an equation of state. Defibaugh and Moldover [97-def/ mol] evaluated parameters of the modified BWR equation of state for 16 halogenated derivatives of hydrocarbons (C₁, C_2 , C_3) and two fluorinated ethers: pentafluorodimethyl ether and 2,2,2-trifluoroethyl difluoromethyl ether. Critical properties and parameters of smoothing functions for both the saturated vapor pressures and $P-\rho-T$ data are summarized in [91-wan/adc] (CF₃OCF₂OCF₃, CF₃OCF₂CF₂H, cyclo-CF2CF2CF2O, CF3OCF2H, and CF3OCH3), [92-sal/ wan] (CF₃OCF₂CF₂H, CF₃OCF₂H, CF₃OCH₃, CF₃OCF₂- OCF_3 , cyclo- $CF_2OCF_2OCF_2$, and cyclo- $CF_2CF_2CF_2O$, and [93-sal/adc] (CF₃OCF₂CF₂CF₃, cyclo-CF₂CF₂CF₂CF₂O, CF₃- OCF_2OCF_3 , and $CF_3OCF_2CF_2H$). A group-contribution volume-ratio method (GCVRM) to estimate the parameters of the Tait equation for fluorinated ethers was proposed by Malhotra et al. [95-mal/van].

Miscellaneous Compounds. The fits for pentafluorobenzonitrile and tetramethylstannane are correlations of values generated from the equations (the linear temperature dependence for density at 0.1 MPa and the Tait equation for the compressed-liquid region) given by Polzin and Weiss [90-pol/wei]. The deviations of the fits are therefore small and do not express the accuracy of the

original experimental data. No data on isothermal compressibility were found for pentafluorobenzonitrile for a comparison. The isothermal compressibilities for tetramethylstannane in the temperature range from 293.15 to 303.15 K are compared in Table 5. Values calculated from the fit are mostly lower (average deviation 2.5%) than values based on speed-of-sound data [80-keh/vog]. A positive deviation is observed for the value reported by Delmas et al. [78-phi/del, 84-rie/del] at 298.15 K calculated from isobaric thermal expansivity and thermal pressure coefficients, $\beta_T = \alpha_{P}/\gamma_V$. The coefficient of isobaric expansivity given by Delmas et al. (1.28 kK⁻¹) is, however, significantly lower than values from the fits of densities (1.380 kK⁻¹ [77-ahm/dix] and 1.385 kK⁻¹ [90-pol/wei]).

The data available for tetramethylsilane are not in mutual agreement. Separate fits of the data at T = 298.15K yielded $\beta_T(T = 298.15 \text{ K}, P = 0.1 \text{ MPa}) = 2.519 \text{ GPa}^{-1}$ [75-par/jon], 2.677 GPa⁻¹ [89-bao/cac], and 2.927 GPa⁻¹ [90yok/tak]. The final fit is based on data in the low temperature range [89-bao/cac], in the middle temperature range [90-yok/tak], and at high temperatures [75-par/jon]. The deviations from isothermal compressibilities taken from the literature are therefore negative at low temperatures and become positive at temperatures close to 298.15 K (Table 5). The isothermal compressibilities reported by McLure et al. [94-mcl/bar] were obtained from speed-of-sound data in the temperature interval from 224.86 to 273.28 K using the same values of isobaric heat capacity as those recommended in [96-zab/ruz]; the densities and isobaric thermal expansivities reported in [94-mcl/bar] are slightly higher (by 0.2% and 4%, respectively) than those resulting from density data [89-bao/cac].

The fits for tetraethylsilane and tetraethoxysilane represent the data measured by Yokoyama et al. [90-yok/tak]. Agreement with isothermal compressibilities (Table 5) is very satsifactory (average deviations 2.1% and 1.8%, respectively). It should be pointed out that the heat capacity values for tetraethylsilane in the temperature range from 303.15 to 333.15 K were obtained by a quasipolynomial extrapolation [96-zab/ruz] from experimental data at lower temperatures. The deviations of the isothermal compressibilities of tetraethoxysilane are positive except for the value from [78-phi/del] that was obtained from isobaric expansivity and thermal pressure coefficients, $\beta_T = \alpha_P / \gamma_V$. The coefficient of isobaric thermal expansivity reported in [78-phi/del] (1.168 kK⁻¹) is, however, slightly higher than that evaluated from density data (1.123 kK⁻¹) [90-yok/tak].

The data reported for hexamethyldisilane by Briese and Wuerflinger [82-bri/wue] cover mostly the solid-phase region. After the value at 313.2 K and 30 MPa was rejected (too high density, probably because of partial solidification of the sample), seven liquid-density data points remained for the final fit that represents data along three isotherms (303.2, 313.2, and 323.2 K).

The data available for octamethylcyclotetrasiloxane are not in mutual agreement. The data at T = 323.15 K from [84-eas/woo] are lower than values from an extensive set [76-ben/win] (deviations up to 4.5 kg·m⁻³), and a separate fit yielded $\beta_T(T = 323.15$ K, P = 0.1 MPa) = 1.572 GPa⁻¹, which is too low (Table 5). The isothermal compressibilities calculated from a separate fit of data from [96-wap/tar] are, on the other hand, higher (e.g., $\beta_T(T = 308.80$ K, P = 0.1MPa) = 1.716 GPa⁻¹). The final fit represents data by Benson and Winnick [76-ben/win]; the agreement in isothermal compressibilities is satisfactory (Table 5), even for values extrapolated more than 20 K beyond the tempera-

ture range of the fit. There are, however, large negative deviations when the isothermal compressibilities calculated from the fit are compared with values obtained from speedof-sound, volumetric, and heat capacity data. Two sources of data for speed of sound [58-wat/van, 80-nie/sch] report nearly identical values at 293.15 K (933.1 and 935.3 $\text{m}\cdot\text{s}^{-1}$). The volumetric data (ρ and α_P) used seem to be correct, since the isothermal compressibilities obtained from values of the thermal pressure coefficient [63-ros/hil] and independent evaluations of α_P are within 2% identical with those reported in the same source [63-ros/hil]. Isobaric heat capacities [96-zab/ruz] are based on measurements by Mekhtiev et al. [75-mek/kar] (e.g., $c_P(T = 298.15 \text{ K}) = 337.9$ J·mol⁻¹·K⁻¹). If the value of c_P in eq 11 is varied (using speed-of- sound data [80-nie/sch]), then with $c_P(T = 298.15)$ K) = 469 J·mol⁻¹·K⁻¹ the value identical with that measured directly (using a dilution piezometer) by Ewing and Marsh [77-ewi/mar] (β_T (T = 298.15 K) = 1.531 GPa⁻¹) can be obtained. This indicates that the heat capacity data [75mek/kar] might be lower than correct values. The approximate value of the heat capacity of octamethylcyclotetrasiloxane ($c_P(T = 291.15 \text{ K}) \approx 500 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$) derived from a comparison with the rate of cooling of glacial acetic acid [53-ost/gru] supports the above conclusion.

Density values for the fit for dimethyl sulfoxide were generated from equations reported in [80-fuc/ghe] in the form of a quadratic function of pressure, the parameters of which are given separately for each of four temperatures in the range from 293.6 to 323.0 K. The fit with $N_{\rm B} = 1$ (eq 3) only was selected, since an extreme appeared on the B(T)dependence at T = 319 K with $N_{\rm B} = 2$. The extreme B(T)corresponds to the extreme on the $\beta_T(T)$ dependence, but here the existence of this anomalous behavior should be verified using more data (preferably direct experimental ones). The agreement for the isothermal compressibilities (Table 5) is good for temperatures up to 303 K; at higher temperature, larger negative deviations are observed.

Acknowledgment

Thanks are extended to Dr. Květoslav Růžička for his assistance in evaluation of saturated vapor pressures.

Appendix 1

Representation of Reference Density Data ρ [**T**,**P**_{ref}-(**T**)] = ρ (**T**). The functions of temperature selected to represent reference density data ρ [*T*, *P*_{ref} = 0.101 325 MPa or *P*_{ref} = *P*_{sat}(*T*)] = ρ (*T*) are as follows

$$\rho(T/K)/(kg \cdot m^{-3}) = \rho_c \{1 + \sum_{i=0}^{5} a_i (1 - T_r)^{(i+1)/3}\},$$

 $T_r = T/T_c \quad (12)$

$$\rho(T/\mathbf{K})/(\mathbf{kg}\cdot\mathbf{m}^{-3}) = \sum_{i=0}^{4} a_i (T/100)^i$$
(13)

The values of the adjustable parameters a_i obtained by fitting to selected data using a weighted least-squares method are recorded in Table 6 along with some characteristics of the fits. The statistical weights of density values were estimated from information in the original papers. The absence of extremes and inflection points on the function $\rho(T)$ was checked for all fits. Equation 12 was preferably used in those cases where respective critical parameters (ρ_c , T_c) were available to enlarge the use of the fits beyond the temperature range of the data, particularly in the region between T_{max} and T_c . Therefore, the fits by eq 12 with $a_0 > 0$ were selected to get the correct derivative of the liquid–vapor saturation line at the critical point, $(d\rho/dT) \rightarrow -\infty$ for $T \rightarrow T_c$.

The fits of selected data on reference densities are presented here as auxiliary information that might be useful, particularly for less common substances. Any other data at the reference pressure may be, however, employed for the practical use of the fits given in Table 3 to calculate densities at elevated pressures, for example, the densities of a particular liquid sample, data taken from critical evaluations, and so forth. The fits in Table 3 are independent of the data given in Table 6 in those cases where either original reference densities or values obtained by extrapolation from particular compressed-liquid density data (denoted as "o" or "p" in Table 4, respectively) were used for the fits. Reference density values calculated from smoothing functions (Table 6) were employed for some data sets (RD = "e", Table 4) for ethanenitrile, 2,2,2-trifluoroethanol, bis(difluoromethyl) ether, and pentafluoroethyl methyl ether.

The results in Table 6 are either (i) the fits of recommended values available in the literature [86-trc, 90-cha/ gad, 93-das/fre] or (ii) the fits of reference densities presented by the authors of respective data at elevated pressures or (iii) the fits employed for evaluation of isothermal compressibilities (Table 5) or (iv) the fits of data taken from selected sources that present results of measurements at atmospheric or saturation pressure in wider temperature ranges. In a few cases, the density reported by the authors of isothermal $P-\rho-T$ data at one temper-ature is recorded in Table 6 ($T_{\min} = T_{\max}$ and $\rho = a_0$ (eq 13) hold in these cases). With the exception of fits i, the other fits in Table 6 are not the results of a critical evaluation; that is, not all available data were considered. No parameters are presented for those substances where the compressed-liquid $P-\rho-T$ data were reported in the original sources as relative properties (relative density, volume ratio, compression), and no densities at reference pressure were needed for other purposes (1,2-ethanediamine, 2-methylpropanenitrile, phenylethanenitrile, triethanolamine). A few remarks concerning the fits are given below.

Data [79-gus/far] for 2-methyl-1-aminobenzene up to the normal boiling point (473.5 K) are lower by 2.9 kg·m⁻³ (average deviation) than those represented by the fit of the data [90-cha/gad]. The deviations between the densities for 4-methyl-1-aminobenzene [81-gus/naz, 90-cha/gad] are of the same sign but, however, are much larger (e.g., -10 kg·m⁻³ at 323 K, -155 kg·m⁻³ at 448 K) and difficult to explain.

The fit for acetonitrile is predominantly based on values obtained by Kratzke and Mueller [85-kra/mue] by an extrapolation of their compressed-liquid data. The temperature range of the fit is enlarged by retaining rather inaccurate data [75-fra/fra] (the uncertainty declared by the researchers is 1 kg·m⁻³). A comparison of the fit with selected data from other sources in the range from 278.15 to 348.16 showed deviations within 0.4 kg·m⁻³. No experimental data were available for ethanenitrile- d_3 ; the fit in Table 6 represents an interpolation of values obtained by extrapolation of compressed-liquid density data to atmospheric pressure (three isotherms).

The inflection point appears on function 12 for benzonitrile at T = 364 K. Density values at T > 473 K were obtained by the extrapolation of rather imprecise compressed-liquid densities (see RMSD = 1.858 kg·m⁻³ of the [78-gus/naz] data in Table 4) to saturated vapor pressure. Their reliability is doubtful, and retaining them may cause a distortion of the fit.

The two fits that are presented for 1-methylpyrrolidin-2-one differ from each other by 3.2 kg·m⁻³ (0.3%) in the overlaping temperature range from 283.15 to 298.15 K. The fit of the [89-mel/sch] data gives higher densities and isobaric thermal expansivities (by 5.6% on average) than those of the [84-mur/rod] data. The effect of this discrepancy on the isothermal compressibility calculated using eq 11 is significant (see Table 5).

As was mentioned above, a printing error was corrected for 2-fluoroethanol. The density value reported for T =288.15 K (1146.10 kg·m⁻³) was replaced by the value which is probably correct (1114.61 kg·m⁻³) and lies close to the smooth curve obtained using data for other temperatures. Two fits each are presented for 2,2,3,3,3-pentafluoropanol and 2,2,3,3-tetrafluoropanol. The first one represents experimental data [96-nak/sak]; the second one is a linear interpolation of values [94-mat/yam]. Densities [96-nak/ sak] are lower for both alcohols. Differences between the fits are, on average, 1.3 kg·m⁻³ (2,2,3,3,3-pentafluoropanol) and 2.5 kg·m⁻³ (2,2,3,3-tetrafluoropanol) in the overlaping temperature range.

Experimental densities [95-mal/woo-1] for 2,2,2-trifluoroethyl methyl ether and 1,2,2,2-tetrafluoroethyl methyl ether were available in the temperature ranges 274.15-293.15 K and 274.15–288.15 K, respectively. Densities at higher temperatures (above the normal boiling point temperatures up to 338.15 K) were obtained by extrapolation using the modified Rackett equation [85-cam/tho]. The average deviation between the fitted set of both the experimental and extrapolated values [95-mal/woo-1] and the function [97-def/mol] for 2,2,2-trifluoroethyl methyl ether (see Table 6) is 0.44 kg·m⁻³, which confirms a good performance of the extrapolations for the two ethers. Also, the agreement of critical densities obtained from the extrapolation with the values from other sources is very good: 506 kg·m⁻³ for 2,2,2-trifluoroethyl methyl ether (the estimated value reported in [97-def/mol] is 515.6; that is, the deviation is 1.9%) and 556 kg·m⁻³ for 1,2,2,2-tetrafluoroethyl methyl ether (the experimental value [96-sak/sat] is 533 kg·m⁻³; that is, the deviation is 4.2%).

The fits for pentafluorobenzonitrile and tetramethylstannane are recorrelations of the values generated from the linear functions $\rho(T)$ given by Polzin and Weiss [90pol/wei]. The densities of tetramethylstannane taken from other source [77-ahm/dix] are, however, significantly lower (deviations are between 19.2 and 21.6 kg·m⁻³ in the overlaping temperature range), but the values of thermal expansivity α_P differ by about 1% only.

Two fits are presented for octamethylcyclotetrasiloxane. The first fit, which is valid for a slightly wider temperature range, gives higher densities than the second one; the average deviation between the fits is $0.39 \text{ kg} \cdot \text{m}^{-3}$.

The first fit given in Table 6 for dimethyl sulfoxide represents values calculated from polynomial functions of pressure given for each of four experimental temperatures in [80-fuc/ghe]. The second fit represents experimental data taken from 22 various sources (not cited here); the value of RMSD = 0.16 kg·m⁻³ indicates good agreement between the data. Densities calculated from the first fit are significantly higher (deviations 1.8 kg·m⁻³ at 296.6 K, 4.3 kg·m⁻³ at 323.0 K; average deviation 3.1 kg·m⁻³).

Appendix 2

Parameters of the Wagner Function for Saturated Vapor Pressure. Saturated vapor functions for several substances were not found in the literature or in the database [93-cda], or the form of the function was differerent from that of eq 14 below. The available data for those substances were correlated by the Wagner function

$$\ln(P_{\rm s}/P_{\rm c}) = \{a_0(1-T_{\rm r}) + a_1(1-T_{\rm r})^{1.5} + a_2(1-T_{\rm r})^{2.5} + a_3(1-T_{\rm r})^5\}/T_{\rm r} \qquad T_{\rm r} = T/T_{\rm c}$$
(14)

where P_s is the saturated vapor pressure and P_c and T_c are the critical pressure and the critical temperature, respectively. The adjustable parameters of eq 14, the critical properties, and references to literature sources of data are given in Table 7. The temperature ranges T_{\min} , T_{\max} are the ranges of data for $T < T_c$ used to evaluate the parameters. The temperature ranges cover a wide interval from the normal boiling point temperature (or lower temperature) up to the critical temperature, except for 2-methylpropenenitrile, for which the Antoine equation was used to obtain the saturation pressure slightly above the normal boiling point temperature needed for the correlation of $P-\rho-T$ data.

Experimental data for 1,2,2,2-tetrafluoroethyl difluoromethyl ether were not found in the literature. Susay et al. [96-sus/smi] reported parameters of the Antoine equation of desflurane (according to our knowledge, the names (-)-desflurane and (+)-desflurane are used for optical isomers of 1,2,2,2-tetrafluoroethyl difluoromethyl ether, employed as an anaesthetic agent) valid in the temperature range from 274.15 to 311.25 K. The normal boiling point temperature issuing from their equation (295.5 K) is by 1 K lower than that reported in [98-mat/tan]. Since the accuracy of these data is rather uncertain and the temperature range is limited, saturated vapor pressures were estimated using the Riedel method [54-rie] and then fitted by eq 14.

Literature Cited

14-tyr	Tyrer, D. CCXXXVIAdiabatic and Isothermal Compressibilities of Liquids between One and Two Atmospheres Pressure. <i>J. Chem. Soc.</i> 1914 , <i>105</i> , 2534–2553.
24-bus	Busse, W. Über Schallgeschwindigkeit und Verhältnis der spezifischen Wärmen von organischen Flüssigkeiten (On the velocity of sound and a relation to the specific heat of organic liquids). <i>Ann. Phys.</i> 1924 , <i>75</i> , 657–664.
29-fry/hub	Fryer, E. B.; Hubbard, J. C.; Andrews, D. H. Sonic Studies of the Physical Properties of Liquids. I. The Sonic Interferometer. The Velocity of Sound in Some Organic Liquids and their Compressibilities. <i>J. Am. Chem. Soc.</i> 1929 , <i>51</i> , 759–770.
30-bul/hau	Bullard, R. H.; Haussmannm, A. C. The Vapor Pressure of Some Stannanes. <i>J. Phys. Chem.</i> 1930 , <i>34</i> , 743–747.
33-bri	Bridgman, P. W. The Pressure-Volume-Temperature Relations of Fifteen Liquids. <i>Proc. Am. Acad. Arts Sci.</i> 1933 , <i>68</i> , 1–25.
36-tho/lin	Thompson, H. W.; Linneti, J. W. The Vapor Pressures and Association of Some Metallic and Non-Metallic Alkyls. <i>Trans. Faraday Soc.</i> 1936 , <i>32</i> , 681–685.
39-gib/loe	Gibson, R. E.; Loeffler, O. H. Pressure–Volume- Temperature Relations in Solutions. I. Observations on the Behavior of Solutions of Benzene, and Some of its Derivatives. <i>J. Phys.</i> <i>Chem.</i> 1939 , <i>43</i> , 207–217.
39-gib/loe-1	Gibson, R. E.; Loeffler, O. M. Pressure–Volume- Temperature Relations in Solutions. II. The Energy-Volume Coefficients of Aniline, Nitrobenzene, Bromobenzene and

	Chlorobenzene. J. Am. Chem. Soc. 1939 , 61, 2515–2522.	
40-bhi/ven	Bhimasenachar, J.; Venkateswarlu, K. Ultrasonic Velocities and Adiabatic Compressibilities of Some Organic Liquids. <i>Proc.</i> — <i>Indian Acad. Sci., Sect. A</i> 1940 , <i>11</i> , 28– 31.	61-shi/hil
41-ast/ken	Aston, J. G.; Kennedy, R. M.; Messerly, G. H. The Heat Capacity and Entropy, Heats of Fusion and Vaporization and the Vapor Pressure of Silicon Tetramethyl. <i>J. Am. Chem.</i> <i>Soc.</i> 1941 , <i>63</i> , 2343–2347.	62-red/sub
44-sch	Schaaffs, W. Unterschungen über Schallgeschwindigkeit und Konstitution. I. Teil: Die Schallgeschwindigkeit in organischen Flüssigkeiten (A Study of Speed of Sound and Constitution. I. Speed of Sound in Organic Liquids). Z. Phys. Chem. (Leipzig) 1944 , 194, 28–38.	63-bab 63-ros/hil
46-pel/gal	Pellam, J. R.; Galt, J. K. Ultrasonic Propagation in Liquids: I. Application of Pulse Technique to Velocity and Absorption Measurements at 15 Megacycles. <i>J. Chem. Phys.</i> 1946 , <i>14</i> , 608–314.	64-mik/roz
47-wil	Willard, G. W. Temperature Coefficient of Ultrasonic Velocity in Solutions. <i>J. Acoust. Soc. Am.</i> 1947 , <i>19</i> , 235–241.	
48-pet/mar	Peters, L. M.; Marple, K. E.; Evans, T. W.; McAllister, S. H.; Castner, R. C. Methacrylonitrile and Acrylonitrile. Production by Oxidation of Methallyl- and Allylamine. <i>Ind.</i> <i>Eng. Chem.</i> 1948 , <i>40</i> , 2046–2053.	65-cop/bey
48-vog	Vogel, A. I. Physical Properties and Chemical Constitution. Part XXII. Some Primary, Secondary, and Tertiary Amines. <i>J. Chem. Soc.</i> 1948 , 1825–1833.	65-for/moo
49-bac	Baccaredda, M. Ultrasonic Velocity and Isomerism. <i>Ric. Sci.</i> 1949 , <i>19</i> , 358–363 (in Italian).	68 mar
49-lag/mcm	Lagemann, R. T.; McMillan, D. R.; Woolf, W. E. Temperature Variation of Ultrasonic Velocity in Liquids. J. Chem. Phys. 1949 , <i>17</i> , 369–373.	60 dup/sto
52-gab/poi	Gabrielli, I.; Poiani, G. Measurements of Ultrasonic Velocity in Some Mixtures of Liquids. <i>Ric. Sci.</i> 1952 , <i>22</i> , 1424–1432 (in Italian).	69 lau/mal
52-jac	Jacobson, B. Intermolecular Free Lengths in the Liquid State. I. Adiabatic and Isothermal Compressibilities. <i>Acta Chem. Scand.</i> 1952 , <i>6</i> , 1485–1498.	71-des/bha
53-ost/gru	Osthoff, R. C.; Grubb, W. T.; Burkhard, C. A. Physical Properties of Organosilicon Compounds. I. Hexamethylcyclotrisiloxane and Octamethylcyclotetrasiloxane. <i>J. Am. Chem.</i> <i>Soc.</i> 1953 , <i>75</i> , 2227–2229.	71-des/bha-1
53-par/bak	Parthasarathy, S.; Bakhshi, N. N. Sound Velocity Measurements in Organic Liquids. Indian J. Phys. 1953 , 27, 73–76.	71-ham/smi
53-tan/kay	Tannenbaum, S.; Kaye, S. K.; Lewenz, G. F. Synthesis and Properties of Some Alkylsilanes. <i>J. Am. Chem. Soc.</i> 1953 , <i>75</i> , 3753–3757.	71-mac/hvn
54-gab/poi	Gabrielli, I.; Poiani, G. Ultrasonic Velocity in Mixtures Containing Aniline and Nitrobenzene. <i>Ric. Sci.</i> 1954 , <i>24</i> , 1037–1044 (in Italian).	71 macriyii
54-rie	Riedel, L. Eine neue universelle Dampfdruckformel. Unterschungen über eine Erweiterung des Theorems der übereinstimmmenden Zustände. Teil I (A New Universal Formula for Vapor Pressure. Examination of an Extension of Theorem of Corresponding States. Part I). <i>ChemIngTech.</i> 1954 , <i>26</i> , 83–89.	71-ric/rog 75-dac/bir
56-stu	Stutchbury, J. E. Compressions of Organic Liquids and their Mixtures with Water. <i>Aust. J.</i> <i>Chem.</i> 1956 , <i>9</i> , 536–540.	75-fra/fra
58-wat/van	Waterman, H. I.; van Herwijnen, W. E. R.; den Hartog, H. W. Statistical-Graphical Survey of Series of Linear and Cyclic Dimethylsiloxanes. <i>J. Appl. Chem.</i> 1958 , <i>8</i> , 625–631.	75-mek/kar
60-hil/goc	Hilczer, T.; Goc, R. Density of Liquids under	

	High Pressure. Bull. Soc. Amis Sci. Lett. Poznan, Ser. B 1960 , 16, 201–206.
1-shi/hil	$\begin{array}{l} Shinoda, K.; Hildebrand, J. H. Compressibilities\\ and Isochores of (C_3H_7COOCH_2)_4C,\\ c-Si_4O_4(CH_3)_8, n-C_5H_{12}, n-C_8H_{18},\\ 2,2,4-C_5H_9(CH_3)_3, c-C_5H_{10}, c-C_6H_{12}, c-C_6H_{11}CH_3,\\ C_6H_5CH_3, p-C_6H_4(CH_3)_2, s-C_6H_3(CH_3)_3, CH_2Cl_2.\\ J. Chem. Phys. 1961, 65, 183-183.\\ \end{array}$
2-red/sub	Reddy, K. C.; Subrahmanyam, S. V.; Bhimasenachar, J. Ultrasonic Behaviour of Binary Liquid Mixtures Containing Triethylamine. <i>Trans. Faraday Soc.</i> 1962 , <i>58</i> , 2352–2357.
3-bab	Bab, S. E., Jr. Parameters in the Simon Equation Relating Pressure and Melting Temperature. <i>Rev. Mod. Phys.</i> 1963 , <i>35</i> , 400– 413.
3-ros/hil	Ross, M.; Hildebrand, J. H. Energy Volume Relations of Octamethylcyclotetrasiloxane and its Mixtures with Carbon Tetrachloride. <i>J.</i> <i>Phys. Chem.</i> 1963 , <i>67</i> , 1301–1303.
4-mik/roz	Mikhailov, I. G.; Rozina, M. V.; Schutilov, V. A. Velocity of Sound and Compressibility of Solutions of Salts of Inorganic Acids in Formamide. <i>Akust. Zh.</i> 1964 , <i>10</i> , 213–217 (in Russian).
5-cop/bey	Coppens, A. B.; Beyer, R. T.; Seiden, M. B.; Donohue, J.; Guepin, F.; Hodson, R. H.; Townsend, C. Parameter of Nonlinearity in Fluids. II. <i>J. Acoust. Soc. Am.</i> 1965 , <i>38</i> , 797– 804.
5-for/moo	Fort, R. J.; Moore, W. R. Adibatic Compressibilities of Binary Liquid Mixtures. <i>Trans. Faraday Soc.</i> 1965 , <i>61</i> , 2102–2110.
7-mar	Marks, G. W. Acoustic Velocity with Relation to Chemical Constitution in Alcohols. J. Acoust. Soc. Am. 1967 , 41, 103–117.
8-mar	Marsh, K. N. Thermodynamics of Octamethylcyclotetrasiloxane Mixtures. <i>Trans.</i> <i>Faraday Soc.</i> 1968 , <i>64</i> , 883–893.
9-dun/sto	Dunn, L. A.; Stokes, R. H. Pressure and Temperature Dependence of the Electrical Permittivities of Formamide and Water. <i>Trans.</i> <i>Faraday Soc.</i> 1969 , <i>65</i> , 2906–2912.
9-lau/mal	Lau, C. F.; Malcolm, G. N.; Fenby, D. V. The Thermal Pressure Coefficient of Dimethyl Sulfoxide. <i>Aust. J. Chem.</i> 1969 , <i>22</i> , 855–858.
1-des/bha	Deshpande, D. D.; Bhatgadde, L. G. Heat Capacities at Constant Volume, Free Volumes, and Rotational Freedom in Some Liquids. <i>Aust.</i> <i>J. Chem.</i> 1971 , <i>24</i> , 1817–1822.
1-des/bha-1	Deshpande, D. D.; Bhatgadde, L. G.; Oswal, S.; Prabhu, C. S. Sound Velocities and Related Properties in Binary Solutions of Aniline. <i>J.Chem. Eng. Data</i> 1971 , <i>16</i> , 469–473.
1-ham/smi	Hamann, S. D.; Smith, F. The Effect of Pressure on the Volumes and Excess Volumes of Aqueous Solutions of Organic Liquids. <i>Aust.</i> <i>J. Chem.</i> 1971 , <i>24</i> , 2431–2438.
1-mac/hyn	MacDonald, D. D.; Hyne, J. B. The Thermal Pressure and Energy-Volume Coefficients of Dimethyl Sulfoxide–Water Mixtures. <i>Can. J.</i> <i>Chem.</i> 1971 , <i>49</i> , 611.
1-ric/rog	Richard, A. J.; Rogrers, K. S. The Isothermal Compressibility of Organic Liquids by Ultracentrifugation. Correlation with Surface Tension. <i>Can. J. Chem.</i> 1971 , <i>49</i> , 3956–3959.
5-dac/bir	Dack, M. R. J.; Bird, K. J.; Parker, A. J. Solvation of Ions. XXV. Partial Molal Volumes of Single Ions in Protic and Dipolar Aprotic Solvents. <i>Aust. J. Chem.</i> 1975 , <i>28</i> , 955–963.
5-fra/fra	Francesconi, A. Z.; Franck, E. U.; Lentz, H. Die PVT-daten des Acetonitrils bis 450 °C und 2500 bar (The <i>PVT</i> -Data of Acetonitrile up to 450 °C and 2500 Bars). <i>Ber. Bunsen-Ges. Phys. Chem.</i> 1975 , <i>79</i> , 897–901.
5-mek/kar	Mekhtiev, S. A.; Karasharli, K. A; Dzhafarov, O. I. Investigation of Heat Capacity of 1,1,3,3,5,5,7,7-Octamethylcyclotetrasiloxane in

75	the Interval 13–310 K. <i>Zh. Fiz. Khim.</i> 1975 , <i>49</i> , 259 (in Russian). Data were taken from the deposited document VINITI No.2585-74.	78-phi/del	Philippe, R.; Delmas, G.; Couchon, M. State Equation Parameters of Three Homologous Series: Tetraalkyltin Compounds, Tetraalkoxysilanes, Trialkylamines. <i>Can. J.</i>
75-par/jon	Parkhurst, H. J.; Jonas, J. Dense Liquids. I. The Effect of Density and Temperature on Self- Diffusion of Tetramethylsilane and Benzene- d_6 . <i>J. Chem. Phys.</i> 1975 , <i>63</i> , 2698–2704.	78-tak	Chem. 1978 , 56, 370–378. Takagi, T. Ultrasonic Velocity in Binary Mixtures under High Pressures and their
76-ben/win	Benson, M. S.; Winnick, J. Liquid Phase <i>PVTx</i> Properties of Carbon Tetrachloride–Octamethylcyclotetrasiloxane		Thermodynamic Properties I. Binary Mixture for Nitrobenzene–Aniline. <i>Rev. Phys. Chem.</i> <i>Jpn.</i> 1978 , <i>48</i> , 10–16.
	Binary Mixtures. <i>J. Chem. Eng. Data</i> 1976 , <i>21</i> , 432–443. Data were taken from the Supporting Information.	78-wer/les	Werblan, L.; Lesinski, J. Structure and Selected Properties of Water–Dimethylsulfoxide Mixtures. <i>Pol. J. Chem.</i> 1978 , <i>52</i> , 1211–1219.
76-cha/mac	Chapman, K. M.; MacDonald, D. D. Thermal Pressure and Energy-Volume Coefficients for Dimethyl Sulfoxide + Methanol. <i>J. Chem.</i> <i>Thermodyn.</i> 1976 , <i>8</i> , 685–682.	78-zel/dya	Zeliznyi, A. M.; Dyakiv, V. F.; Schevtschenko, E. F. Investigation of Binary Systems <i>p</i> -(<i>m</i> -)- Xylene–Dimethyl Sulfoxide. <i>Zh. Obshch. Khim.</i> 1978 , <i>48</i> , 970–975 (in Russian).
76-gra/mac	Grant-Taylor, D. F.; MacDonald, D. D. Thermal Pressure and Energy-Volume Coefficients for the Acetonitrile + Water System. <i>Can. J. Chem.</i> 1976 , <i>54</i> , 2813–2819.	79-abd/dzh	Abdullaev, F. G.; Dzhabiev, Yu. A. Experimental Observation of <i>P</i> – <i>V</i> – <i>T</i> Dependence of Nitrobenzene. <i>Izv. Vyssh.</i> <i>Uchebn. Zaved., Neft Gaz</i> 1979 , <i>22</i> (11), 52–54
76-hic/you	Hicks, C. P.; Young, C. L. Critical Properties of Binary Mixtures. <i>J. Chem. Soc., Faraday Trans.</i> <i>I</i> 1976 , <i>72</i> , 122–133.	79-fur/mun	(in Russian). Fury, M.; Munie, G.; Jonas, J. Transport Processes in Compressed Liquid Pyridine. J.
76-zel/dya	Zeliznyi, A. M.; Dyakiv, V. F.; Schevtschenko, E. F. Investigation of Binary Systems Xylene– Dimethylformamide. <i>Zh. Obshch. Khim.</i> 1976 , <i>46</i> . 1913–1919 (in Russian)	79-gri/goa	Grigg, R. B.; Goates, J. R.; Ott, J. B. Excess Volumes for Tetrachloromethane + NNDimethylformamide. + N
77-ahm/dix	Ahmed, A.; Dixon, D. T.; McGlashan, M. L. The Properties of Binary Mixtures of Tetramethylmethane, Tetramethylsilane, and		<i>N</i> -Dimethylacetamide, + <i>p</i> -Diaxane, and + Dimethylsulfoxide. <i>J. Chem. Thermodyn.</i> 1979 , <i>11</i> , 703–708.
	Tetramethylstannane I. Excess Enthalpies nad Excess Volumes. <i>J. Chem. Thermodyn.</i> 1977 , <i>9</i> , 1087–1093.	79-gus/far	Guseinov, S. O.; Farzaliev, B. I.; Naziev, Ya. M. Investigation of Density and Dynamic Viscosity of <i>o</i> -Methylaniline at Various Temperatures and Pressures <i>Lev Vysch Uchebn Zaved Not</i>
77-ewi/mar	Ewing, M. B.; Marsh, K. N. Isothermal Compressibilities of Cyclopentane + Cyclo-octane and + Octamethylcyclotetrasiloxane at 298.15 K. J.	79-lue/sch	<i>Gaz</i> 1979 , <i>22</i> (7), 52–54 (in Russian). Luehrs, C.; Schwitzgebel, G. Beziehungen zwischen der Kompressibilitat und der
77-gun/han	Chem. Thermodyn. 1977 , 9, 371–374.		Druckabhangigkeit der Dielektrizitatskonstante. Wasser–Acetonitril
, , gup, null	Data for Binary Mixtures of Toluene with Nitroethane and Acetone, and Benzene with Acetonitrile, Nitromethane, and Ethanol. <i>Thermochim. Acta</i> 1977 , <i>21</i> , 143–152.		Mischungen bei 25 °C und Drucken bis 850 bar (Relation of Compressibility and the Pressure Dependence of Dielectric Constant. Water-Acetonitrile Mixture at 25 °C and pressures up to 850 bar). <i>Ber. Bunsen-Ges.</i>
77-kaw/ohn	Kawaizumi, F.; Ohno, K.; Miyahara, Y. Ultrasonic and Volumetric Investigation of Aqueous Solutions of Amides. <i>Bull. Chem. Soc.</i> <i>Jpn.</i> 1977 , <i>50</i> , 2229–2233.	80-fuc/ghe	Phys. Chem. 1979, 83, 623–627. Fuchs, A. H.; Ghelfenstein, M.; Szwarc, H. Melting Curve and Pressure–Volume–Temperature Data of Liquid
77-mcg/mck	McGlashan, M. L.; McKinnon, I. R. The Vapour Pressure, Orthobaric Volumes, and Critical Constants of Tetramethylsilane. <i>J. Chem.</i>	80-keh/vog	Dimethyl sulfoxide up to 150 MPa. <i>J. Chem.</i> <i>Eng. Data</i> 1980 , <i>25</i> , 206–208. Kehlen, H.; Vogel, L.; Zettler, M.
77-oba/mur	<i>Thermodyn.</i> 1977 , <i>9</i> , 1205–1212. Oba, M.; Murakami, S.; Fujishiro, R. Excess Enthalpies and Volumes for <i>N</i> , <i>N</i> -Dimethylacetamide + n-Alcohols at 298.15 K. <i>J. Chem. Thermodyn.</i> 1977 , <i>9</i> , 407–414.		Schallgeschwindigkeiten und Kompressibilitäten in binären flüssigen Mischungen aus Tetraalkylen des Siliciums und des Zinns (Speed of Sound and Compressibilities of Binary Liquid Mixtures of
77-rei/pra	Reid, R. C.; Prausnitz, J. M.; Sherwood, T. K. <i>Properties of Gases and Liquids</i> , 3rd ed.; McGraw-Hill: New York, 1977.	80-khi/gri	<i>Chem. (Leipzig)</i> 1980 , <i>261</i> , 24–32. Khimenko, M. T.; Gritsenko, N. N.
77-sch/sch	Schroeder, J.; Schiemann, V. H.; Sharko, P. T.; Jonas, J. Raman Study of Vibrational Dephasing in Liquid CH ₃ CN and CD ₃ CN. <i>J.</i> <i>Cham. Phys.</i> 1977 <i>66</i> 3215–3226		Determination of Polarizability and the Radius of Acetonitrile and Dimethylacetamide Molecules. <i>Zh. Fiz. Khim.</i> 1980 , <i>54</i> , 198–199 (in Russian).
77-sri/kay	Srinivasan, K. R.; Kay, R. L. The Pressure Dependence of the Dielectric Constant and Density of Acetonitrile at Three Temperatures.	80-lan/wue	Landau, R.; Wuerflinger, A. High-Pressure Apparatus for PVT Measurements of Liquids and Plastic Crystals at Low Temperatures. <i>Rev.</i> <i>Sci. Instrum.</i> 1980 , <i>51</i> , 533–535.
78-gus/naz	Guseinov, S. O.; Naziev, Ya. M.; Farzaliev, B. I.; Movsunov, T. G. Experimental Observation of Density and Dynamic Viscosity of Benzonitrile. <i>Izv. Vyssh. Uchebn. Zaved., Neft Gaz</i> 1978 , <i>21</i> (12), 48–50 (in Russian).	80-lan/wue-1	Landau, R.; Wuerflinger, A. PVT-Daten von Acetonitril, Undecan und Dodecan bis 3 kbar und -50 °C. Druckabhaengigkeit der Umwandlungsvolumina, -enthalpien und -entropien (PVT Data of Acetonitrile, Undecane, and Dodecane up to 3 kbar and -50 °C.
78-hug/mcg	Hugill, J. A.; McGlashan, M. L. The Vapour Pressure and Critical Constants of Tetramethylstannane. <i>J. Chem. Thermodyn.</i>	90 / J	Pressure Dependence of Changes in Volumes, Enthalpies, and Entropies). <i>Ber. Bunsen-Ges.</i> <i>Phys. Chem.</i> 1980 , <i>84</i> , 895–902.
78-pat	1978, 10, 85–93. Patil, K. J. Ultrasonic Sound Velocity Behaviour in Organic Polar Liquids, Indian J.	δυ-nie/sch	Niepmann, R.; Schmidt, U. Speeds of Sound in Liquid Octamethylcyclotetrasiloxane. <i>J. Chem. Thermodyn.</i> 1980 , <i>12</i> , 1133–1137.
	Pure Appl. Phys. 1978, 16, 608–613.	80-tak	Takagi, T. Ultrasonic Speeds and

	Thermodynamics of (Benzene + Aniline) and		Dev. 1983, 22, 313-332.			
80-vit/her	(Chlorobenzene + Aniline) under High Pressures. <i>J. Chem. Thermodyn.</i> 1980 , <i>12</i> , 277– 286. Vitali G.: Berchiesi G.: Berchiesi M. A.: Gioia	84-eas/woo	Easteal, A. J.; Woolf, L. A. Self-Diffusion and Volumetric Measurements for Octamethylcyclotetrasiloxane under Pressure at 323 K. J. Chem. Soc. Faraday Trans. 1 1984			
00 10000	Lobbia, G. Mesures Ultrasonores dans des		<i>80</i> , 549–551.			
	Liquides Organiques: Relation entre Pression Interne et Temperature de Fusion. Note II (Ultrasonic Measurements of Organic Liquids: Relation between the Internal Pressure and the	84-goo/whi	Goodman, M. A.; Whittenburg, S. L. Sound Velocity in Formamide. <i>J. Chem. Eng. Data</i> 1984 , <i>29</i> , 125–126.			
81-ben/d'a	Temperature of Fusion). <i>J. Chim. Phys.</i> 1980 , <i>77</i> , 865–868. Benson, G. C.; D'Arcy, P. J.; Handa, Y. P.	84-jas/dun	Jaschull, G.; Dunker, H.; Woermann, D. Ultrasonic Study of Nitro-Benzene/Isooctane Mixtures near the Critical Consolute Point. <i>Ber.</i> <i>Bungen Core</i> , <i>Bunger Cham</i> , 1094 , <i>429</i> , 620, 625			
	Thermodynamics of Aqueous Mixtures of Nonelectrolytes. V. Isobaric Heat Capacities and Ultrasonic Speeds for Water + Ethanenitrile Mixtures at 25 °C. <i>Thermochim.</i> <i>Acta</i> 1981 , <i>46</i> , 295–301.	84-kar/bus	Kartsev, V. N.; Buslaeva, M. N.; Tsepulin, V. V.; Dubnikova, K. T. Isothermal Compressibility in Homologous Series of Alkanes, Alcohols, and Diamines. <i>Zh. Fiz. Khim.</i> 1984 , <i>58</i> , 2687–2691 (in Russian)			
81-gus/naz	Guseinov, S. O.; Naziev, Ya. M.; Farzaliev, B. I. Observation of Density and Dynamic Viscosity of <i>p</i> -Toluidine at Various Temperatures and Pressures. <i>Izv. Vyssh. Uchebn. Zaved.</i> , <i>Neft Gaz</i> 1981 , <i>24</i> (6), 65–68 (in Russian).	84-mur/rod	Murrieta-Guevara, F.; Rodriguez, A. T. Liquid Density as a Function of Temperature of Five Organic Solvents. <i>J. Chem. Eng. Data</i> 1984 , <i>29</i> (9), 204–206.			
81-mus/gan	Mustafaev, R. A.; Ganiev, D. K. Investigation of Thermal Properties of β -Cyanopropionaldehyde. <i>Izv. Vyssh. Uchebn. Zaved.</i> , <i>Neft Gaz</i> 1981 , <i>24</i> (4), 91–92 (in Russian).	84-nie	Niepmann, R. Thermodynamic Properties of Acetonitrile. 1. Speeds of Sound between 240 and 475 K and up to 60 MPa. <i>J. Chem.</i> <i>Thermodyn.</i> 1984 , <i>16</i> , 779–785.			
81-mus/gan-1	Mustafaev, R. A.; Ganiev, D. K. Investigation of Caloric and Acoustic Properties of β -Cyanopropionaldehyde. <i>InzhFiz. Zh.</i> 1981 , <i>40</i> , 898–900 (in Russian).	84-rie/del	Riedl, B.; Delmas, G. Excess Heat Capacities and Excess Volumes of Tetraalkyltin Compounds: $SnR_4 + SnR_4'$. Effect of Corelations of Molecular Orientations and			
81-nar/dha	Narayanaswamy, G.; Dharmaraju, G.; Raman, G. K. Excess Volumes and Isentronic		Steric Hindrance. Part 1. <i>Can. J. Chem.</i> 1984 , <i>62</i> , 1008–1015.			
	Compressibilities of Acetonitrile + <i>n</i> -Propanol, + <i>i</i> -Propanol, + <i>n</i> -Butanol, + <i>i</i> -Butanol, and Cyclohexanol at 303.15 K. <i>J. Chem. Thermodyn.</i> 1981 , <i>13</i> , 327–331.	84-sha/gus	Shakhmuradov, Sh. G.; Guseinov, S. O. Investigation of Thermodynamic Properties of Saturated Nitriles in a Wide Intervals of Temperature and Pressure. <i>Izv. Vyssh. Uchebn.</i>			
81-pat/ali	Patil, K. J.; Ali, S. I. Volumetric and Isentropic Compressibility Behaviour of Aqueous Solutions of Trifluoroethanol at 25 °C. <i>Indian J. Pure</i>	84-tak/ter	Zaved., Nett Gaz 1984 , 27 (12), 65–69 (in Russian). Takagi, T.; Teranishi, H. Ultrasonic Speed in			
81-rao/kri	Rao, D. N.; Krishnaiah, A.; Naidu, P. R. Excess Thermodynamic Properties of Liquid		(Chlorobenzene + Nitrobenzene) under High Pressures. <i>J. Chem. Thermodyn.</i> 1984 , <i>16</i> , 591– 595.			
82-bri/wue	<i>J. Chem. Thermodyn.</i> 1981 , <i>13</i> , 677–682. Briese, M.; Wuerflinger, A. <i>pvT</i> data for Liquid	85-cam/tho	Campbell, S. E.; Thodos, G. Prediction of Saturated-Liquid Densities and Critical Volumes for Polar and Nonpolar Substances. J. Chem. Eng. Data 1995 30, 102–111			
	High Temp.—High Pressures 1982 , <i>14</i> , 323– 326	85-eas/woo	Easteal, A. J.; Woolf, L. A. <i>P</i> , <i>V</i> , <i>T</i> and Derived			
82-eas/woo	Easteal, A. J.; Woolf, L. A. Measurement of (<i>p</i> , <i>V</i> , <i>x</i>) for (Water + Acetonitrile) at 298.15 K. <i>J. Chem. Thermodyn.</i> 1982 , <i>14</i> , 755–762.		Thermodynamic Data for Toluene, Trichloromethane, Dichloromethane, Acetonitrile, Aniline, and <i>n</i> -Dodecane. <i>Int. J.</i> <i>Thermophys.</i> 1985 , <i>6</i> , 331–351.			
82-gri/phi	Griot, A. P.; Philippe, R.; Merlin, JC. Coefficients de Presion Thermique et d'Expansion a 298.15 K de Composes de la Serie Pyridinique (Thermal Pressure Coefficients and Coefficient of Expansion at 298.15 K of Compounds of Pyridine Series). J. Chim. Phys. 1982 , 79, 671–675.	85-eas/woo-1	Easteal, A. J.; Woolf, L. A. Self-diffusion and Volumetric Measurements for <i>N</i> -Methylformamide and <i>N</i> , <i>N</i> -Dimethylformamide at Temperatures from 240 to 313 K and Pressures up to 300 MPa. <i>J.</i> <i>Chem. Soc., Faraday Trans. 1</i> 1985 , <i>81</i> , 2821– 2833.			
82-kar/red	Karunakar, J.; Reddy, K. D.; Rao, M. V. P. Isentropic Compressibilities of Mixtures of Aliphatic Alcohols with Benzonitrile. <i>J. Chem.</i> <i>Eng. Data</i> 1982 , <i>27</i> , 348–350.	85-jay/red	Jayalakshmi, T.; Reddy, K. S. Excess Volumes of Binary Liquid Mixtures. Methyl Ethyl Ketone + Benzene, + Toluene, + Chlorobenzene, + Bromobenzene, and +			
82-tak/ter	Takagi, T.; Teranishi, H. Ultrasonic Speeds and Thermodynamic Properties of (Benzene + Nitrobenzene) under High Pressures. J. Chem.	85-kra/mue	Nitrobenzene at 303.15 and 313.15 K. J. Chem. Eng. Data 1985 , <i>30</i> , 51–53. Kratzke, H.; Mueller, S. Thermodynamic			
83-eas/woo	<i>Thermodyn.</i> 1982 , 14, 1167–1173. Easteal A. L. Woolf I. A. (p, V, T) Behaviour		Properties of Acetonitrile. 2. (p, ρ, I) of Saturated and Compressed Liquid Acetonitrile.			
	for Formamide in the Range 288 to 323 K and 0.1 to 280 MPa J Chem Thermodyn 1983 15	85-rai/ram	J. Chem. Thermodyn. 1985, 17, 151–158. Raikumar, X. R.; Raman, K. V.; Arulrai, S. J.			
83-gus/naz	195–201. Guseinov, S. O.; Naziev, Ya. M.; Shakhmuradov, Sh. G. Experimental Investigation of Some Thermochemical Perpendicus of Mathacryalonitrile at Various		Isentropic Compressibilities and Excess Volumes of Binary Systems of Anisole with some Aromatic Compounds Having Different Functional Groups. <i>J. Indian Chem. Soc.</i> 1985 , <i>52</i> , 516–518.			
	Temperatures and Pressures. <i>Izv. Vyssh.</i> <i>Uchebn. Zaved., Neft Gaz</i> 1983 , <i>26</i> (6), 54–59 (in Russian).	85-tak/ter	Takagi, T.; Teranishi, H. Ultrasonic Speeds and Thermodynamics for (Toluene + <i>o</i> -Xylene) and (Toluene + Aniline) under High Pressures. J. Chem Thermodyn 1985 17 1057–1062			
83-mcg	McGarry, J. Correlation and Prediction of the Vapor Pressures of Pure Liquids over Large Pressure Ranges. <i>Ind. Eng. Chem., Process Des.</i>	85-tek/cib	Tekáč, V.; Cibulka, I.; Holub, R. <i>PVT</i> Properties of Liquids and Liquid Mixtures: A Review of			

96 hot/hro	the Experimental Methods and the Literature Data. <i>Fluid Phase Equilib.</i> 1985 , <i>19</i> , 33–149.		Aqueous Binary Mixtures Containing Amides and Carbamic-acid Derivatives at 298.15 K and 101.3 MPa. J. Chem. Thermodyn. 1989 , 21, 73–
80-D01/Dre	Molar Volumes at 273–373 K in Propylene Carbonate, <i>N</i> -Methylformamide, Formamide and Methanol: Their Relation to Solvent Compressibility. Ion Association Constants on Acetonitrile at 298 K. <i>Aust. J. Chem.</i> 1986 , <i>39</i> , 1959–1981.	89-tak/ter	79. Takagi, T.; Teranishi, H. Ultrasonic Speeds and Thermodynamic Properties for Tetramethylsilane, Tetraethylsilane and Tetraethoxysilane under High Pressures. <i>Thermochim. Acta</i> 1989 , <i>141</i> , 291–299.
86-gus	Guseinov, S. O. Correlation of Density of Nitriles, Olefines, Toluidines with Density of Related Paraffinic and Aromatic Hydrocarbons in Terms of Molecular Refraction. <i>Izv. Vyssh.</i> <i>Uchebn. Zaved., Neft Gaz</i> 1986 , <i>29</i> (12), 65–69 (in Russian).	90-cha/gad	Chao, J.; Gadalla, N. A. M.; Gammon, B. E.; Marsh, K. N.; Rodgers, A. S.; Somayajulu, G. R.; Wilhoit, R. C. Thermodynamic and Thermophysical Properties of Organic Nitrogen Compounds. Part I. Methanamine, Ethanamine, 1- and 2-Propanamine, Benzenamine, 2-, 3-, and
86-nat/sin	Nath, J.; Singh, G. Ultrasonic Velocities in, and Adiabatic Compressibilities for, Binary Liquid Mixtures of 1,2-Dichloroethane with Benzene, Toluene, <i>p</i> -Xylene, Quinoline, and Cyclohexane.	90-lai/how	 4-Methylbenzenamine. J. Phys. Chem. Ref. Data 1990, 19, 1547–1615. Laird, D. G.; Howat, C. S. Vapor-Liquid-Phase Equilibria and Molar Volumes of the Butdiana. Acatamitrilo System from 200 to 225
86-red	Reddy, K. S. Isentropic Compressibilities of Binary Liquid Mixtures at 303.15 and 313.15 K.	90-pol/wei	K. <i>Fluid Phase Equilib.</i> 1990 , <i>60</i> , 173–190. Polzin, B.; Weiss, A. Transport Properties of
86-trc	J. Chem. Eng. Data 1986 , 31, 238–240. TRC Tables 23-18-2-(1.0111)-d. C–N–H. 1-Alkanamines, C ₁ to C ₂₀ . TRC Thermodynamic Tables Nankudracarbeam Thermodynamic		Liquids. VIII. Molar Volume and Selfdiffusion of Organic Liquids at Pressures up to 200 MPa. <i>Ber. Bunsen-Ges. Phys. Chem.</i> 1990 , <i>94</i> , 746– 758.
	Research Center, The Texas A&M University System: College Station Texas, TX, 1986; pp 9000–9001.	90-sve/sid	Svejda, P.; Siddiqi, M. A.; Hahn, G.; Christoph, N. Excess Volume, Isothermal Compressibility, and Excess Entalpy of Binary Liquid System
87-abd/mun	Abdel-Azim, A. AA.; Munk, P. Light Scattering of Liquids and Liquid Mixtures. 1. Compressibility of Pure Liquids. <i>J. Phys. Chem.</i>	00 / /	2,2,2-Trifluoroethanol + 2,5,8,11,14-Pentaoxapentadecane. J. Chem. Eng. Data 1990 , 35, 47–49.
87-mir/sha	1987 , <i>91</i> , 3910–3914. Mirzaliev, A. A.; Shakmuradov, Sh. G.; Guseinov, S. O. Isobaric Heat Capacity of Nitrilies at Different Temperature. <i>Izv. Vusch</i>	90-uos/mat	Uosaki, Y.; Matsumura, H.; Ogiyama, H.; Moriyoshi, T. Compressions of Some Nitriles under Pressures up to 150 MPa at 298.15 K. J. Chem. Thermodyn. 1990, 22, 797–801.
87 rai/rad	Uchebn. Zaved., Neft Gaz 1987 , 30 (4), 55–58 (in Russian).	90-uos/mat-1	Uosaki, Y.; Matsumura, H.; Wakasa, S.; Moriyoshi, T. Compressions of Nitro-compounds at Pressures up to 150 MPa and at the
67-raj/ieu	Rajaseknar, P.; Reddy, K. S. Excess Thermodynamic Properties for Mixtures of Water and <i>N,N</i> -Dimethylformamide at 303.15 K. <i>Thermochim. Acta</i> 1987 , <i>117</i> , 379–383.	90-ven/bab	Temperatures 298.15 K and 323.15 K. <i>J. Chem.</i> <i>Thermodyn.</i> 1990 , <i>22</i> , 313–318. Venkateswarlu, P.; Babu, K. R.; Choudary, N.
88-dew/sha	Dewan, R. K.; Sharma, A. K.; Mehta, S. K. Excess Volumes of Quinoline with Nitroalkanes: Interpretation by the Prigogine- Flory-Patterson Theory. J. Solution Chem.		V.; Raman, G. K. Ultrasonic Sound Velocities in Mixtures of Alcohols with Nitrobenzene and Chlorobenzene. <i>Indian J. Technol.</i> 1990 , <i>28</i> , 27–32.
88-eas/woo	1988 , <i>17</i> , 459–465. Easteal, A. J.; Woolf, L. A. (p , V_{np} , <i>T</i> , <i>x</i>) Measurements for {(1- <i>x</i>)H ₂ O + <i>x</i> CH ₃ CN} in the Range 278 to 323 K and 0.1 to 280 MPa. <i>J.</i> <i>Chem. Thermodyn.</i> 1988 , <i>20</i> , 693–699.	90-yok/tak	Yokoyama, C.; Takagi, T.; Takahashi, S. Densities of Tetramethylsilane, Tetraethylsilane, and Tetraethoxysilane under High Pressures. <i>Int. J. Thermophys.</i> 1990 , <i>11</i> , 477–486.
88-ram/sur	Ramanjaneyula, K.; Surendranath, K. N.; Krishnaiah, A. Isentropic Compressibilities for Binary Mixtures of Tetrachloroethylene with Some Aliphatic, Alicyclic and Substituted Aromatic Hydrocarbons. <i>Acoust. Lett.</i> 1988 , <i>11</i> , 152–157.	91-dym/awa	Dymond, J. H.; Awan, M. A.; Glen, N. F.; Isdale, J. D. Transport Properties of Nonelectrolyte Mixtures. IX. Viscosity Coefficients for Acetonitrile and for Three Mixtures of Toluene + Acetonitrile from 25 to 100 °C at Pressures up to 500 MPa. <i>Int. J.</i> <i>Thermophys</i> 1991 <i>12</i> 433–447
88-sid/tej	Siddiqi, S. A.; Teja, A. S. High-Pressure Densities of Mixtures of Coal Chemicals. <i>Chem.</i> <i>Eng. Commun.</i> 1988 , <i>72</i> , 159–169.	91-ino/oga	Internaphys. 1001, 12, 100 447. Inoue, H.; Ogawa, H.; Tamura, K.; Murakami, S. Thermodynamic Properties of Dimethylacetamide + Alkane Mixtures at
88-tak/ter	Takagi, T.; Teranishi, H. Ultrasonic Speed in (Benzonitrile + Nitrobenzene) under High Pressures. <i>J. Chem. Thermodyn.</i> 1988 , <i>20</i> , 809– 814.		298.15 K. I. Excess Molar Enthalpy, Excess Molar Volume and Excess Isothermal Compressibility. <i>Netsu Sokutei</i> 1991 , <i>18</i> , 3–8 (in Japanese).
89-bae/klo	Baehr, H. D.; Klobasa, F.; Scharf, R. Vapor Pressure and Liquid and Gas Densities of 2,2,2- Trifluoroethanol. <i>Int. J. Thermophys.</i> 1989 , <i>10</i> , 577-580	91-mal/woo	Malhotra, R.; Woolf, L. A. Thermodynamic Properties of 2,2,2-Trifluoroethanol. <i>Int. J.</i> <i>Thermophys.</i> 1991 , <i>12</i> , 397–407.
89-bao/cac	Baonza, V. G.; Caceres, M.; Nunez Delgado, J. Equation of State and Derived Thermodynamic	91-pac	Pacak, P. Refractivity and Density of Some Organic Solvents. <i>Chem. Pap.</i> 1991 , <i>45</i> , 227– 232.
80 mol/sch	198 to 298 K and Pressures up to 102 MPa. J. Chem. Thermodyn. 1989 , 21, 1045–1052.	91-uos/kit	Uosaki, Y.; Kitaura, S.; Iwama, F.; Moriyoshi, T. Compressions of Some Amides at Pressures up to 200 MPa and at the Temperature 298.15 K. J. Cham. Thermedy. 1901 - 22 1125-1130
65-mersen	Solubilities of Methane, Propane and Carbon Dioxide in Solvent Mixtures Consisting of Water, <i>N</i> , <i>N</i> -Dimethylformamide, and <i>N</i> -Methyl- 2-pyrrolidone. <i>Fluid Phase Equilib.</i> 1989 , <i>49</i> , 167–186.	91-wan/adc	Wang, BH.; Adcock, J. L.; Mathur, S. B.; Van Hook, W. A. Vapor Pressures, Liquid Molar Volumes, Vapor Non-Idealities, and Critical Properties of Some Fluorinated Ethers: CF ₃ - OCF ₂ OCF ₂ , CF ₂ OCF ₆ CF ₂ OL CF ₂ CF ₂ OCF ₂
89-mor/nak	Moriyoshi, T.; Nakagawa, M. Compressions of		OCF_2H , and CF_3OCH_3 ; and of CCl_3F and

	CF ₂ ClH. J. Chem. Thermodyn. 1991 , 23, 699–710.	
92-ara/ami	Aralaguppi, M. I.; Aminabhavi, T. M.; Harogoppad, S. B.; Balundgi, R. H. Thermodynamic Interactions in Binary Mixtures of Dimethyl Sulfoxide with Benzene, Toluene, 1,3-Dimethylbenzene, 1,3,5-Trimethylbenzene, and Methoxybenzene from 298.15 to 308.15 K. <i>J. Chem. Eng. Data</i> 1992 , <i>37</i> , 298–303.	93-das/haz
92-def/gil	Defibaugh, D. R.; Gillis, K. A.; Moldover, M. R.; Morrison, G.; Schmidt, J. W. Thermodynamic Properties of CHF ₂ –O–CHF ₂ , bis(Difluoromethyl) Ether. <i>Fluid Phase Equilib.</i> 1992 , <i>81</i> , 285–305.	93-nak/chu
92-dew/meh	Dewan, R. K.; Mehta, S. K.; Ahmad, S. T. Isentropic Compressibilities of Binary Mixtures of Ethylbenzene with Nitroalkanes and Nitriles. <i>Acoust. Lett.</i> 1992 , <i>15</i> , 193–198.	
92-dew/meh-1	Dewan, R. K.; Mehta, S. K. Ultrasonic Speeds and Isentropic Compressibility for Binary Mixtures of DMSO with Alkanols. <i>Asian J.</i> <i>Chem.</i> 1992 , <i>4</i> , 152–160.	93-nak/chu
92-kab/yam	Kabata, Y.; Yamaguchi, S.; Takada, M.; Uematsu, M. Densities of 2,2,2-Trifluoroethanol in the Temperature Range from 310 K to 420 K. I. Saturated-Liquid Densities. <i>J. Chem.</i> <i>Thermodyn.</i> 1992 , <i>24</i> , 1019–1026.	93-rao/rao
92-kab/yam-1	Kabata, Y.; Yamaguchi, S.; Takada, M.; Uematsu, M. Densities of 2,2,2-Trifluoroethanol in the Temperature Range from 310 K to 420 K. II. Compressed-Liquid Densities at Pressures up to 200 MPa. J. Chem. Thermodyn. 1992 , 24,	93-rod
92-kan/raj	785–796. Kannappan, A. N.; Rajendran, V. Acoustic Parameters of some Ternary Liquid Mixtures. Indian J. Pure Appl. Phys. 1992 , 30, 240–242.	93-sal/adc
92-miy/tam	Miyanaga, S.; Tamura, K.; Murakami, S. Excess Molar Volumes, Isentropic and Isothermal Compressibilities, and Isochoric Heat Capacities of (Acetonitrile + Benzene), (Benzene + Dimethylformamide), and (Acetonitrile + Dimethylformamide) at Temperature 298.15 K. J. Chem. Thermodyn. 1992 , 24, 1077–1086.	93-sau/hol
92-miy/tam-1	Miyanaga, S.; Tamura, K.; Murakami, S. Excess Volumes, Isentropic and Isothermal Compressibilities and Isochoric Heat Capacities of the Mixtures of 2,2,2-Trifluoroethan-1-ol + Benzene; Benzene + Dimethyl Sulfoxide, and 2,2,2-Trifluoroethan-1-ol + Dimethyl Sulfoxide at 298.15 K. <i>J. Chem. Thermodyn.</i> 1992 , <i>24</i> , 237–248.	94-cib/zik 94-mat/yan
92-nat/tev	Nath, J.; Tevari, M. Ultrasonic and Dielectric Behaviour of Binary Systems of Quinoline with Methylene Chloride, Chloroform, Carbon Tetrachloride, Benzene and Cyclohexane. J. Chem. Soc., Faraday Trans. 1992 , 88, 2197– 2202.	94-mcl/bar
92-sal/wan	Salvi-Narkhede, M.; Wang, BH.; Adcock, J. L.; Van Hook, W. A. Vapor Pressures, Liquid Molar Volumes, Vapor Non-Ideality, and Critical Properties of Some Partially Fluorinated Ethers (CF ₃ OCF ₂ CF ₂ H, CF ₃ OCF ₂ H, and CF ₃ OCH ₃), Some Perfluoroethers (CF ₃ OCF ₂ OCF ₃ , <i>c</i> -CF ₂ - OCF ₂ OCF ₂ , and <i>c</i> -CF ₂ CF ₂ CP ₃ O, and of CHF ₂ Br and CF ₃ CFHCF ₃ . <i>J. Chem. Thermodyn.</i> 1992 , <i>24</i> , 1065–1075.	94-mcl/bar- 94-pal/sin
92-tak/nog	Takagi, T.; Noguchi, M. Ultrasonic Speeds and Thermodynamic Properties for Pentafluoropropyl Alcohol, Tetrafluoropropyl Alcohol and Trifluoroethyl Alcohol under High Pressures. <i>Thermochim. Acta</i> 1992 , <i>195</i> , 239– 249.	94-tam/mu
93-cda	CDATA, Database of Physical and Transport Properties of Pure Fluids; Department of Physical Chemistry, Institute of Chemical Technology, Prague; FIZ CHEMIE GmbH, Berlin: 1993.	95-ami/gop
93-das/fre	Das, A.; Frenkel, M.; Gadalla, N. A. M.; Kudchadker, S.; Marsh, K. N.; Rodgers, A. S.; Wilhoit, R. C. Thermodynamic and Thermophysical Properties of Organic Nitrogen	

	Compounds. Part II. 1- and 2-Butanamine, 2-Methyl-1-Propanamine, 2-Methyl-2-Propanamine, Pyrrole, 1-, 2-, and 3-Methylpyrrole, Pyridine, 2-, 3-, and 4-Methylpyridine, Pyrrolidine, Piperidine, Indole, Quinoline, Isoquinoline, Acridine, Carbazole, Phenanthridine, 1- and 2-Naphthalenamine, and 9-Methylcarbazole. J. Phys. Chem. Ref. Data 1993 , 22, 659–782.
-das/haz	Das, S.; Hazra, D. K.; Lahiri, S. C. Compressibility Studies of Tetraalkylammonium Halides in DMSO + Water Mixtures at 298 K. <i>J. Indian Chem. Soc.</i> 1993 , <i>70</i> , 43–46.
-nak/chu	Nakamura, M.; Chubachi, K.; Tamura, K.; Murakami, S. Thermodynamic Properties of $[x{HCON(CH_3)_2 \text{ or } CH_3CN} + (1-x)(CH_3)_2SO]$ at the Temperature 298.15 K. <i>J. Chem.</i> <i>Thermodyn.</i> 1993 , <i>25</i> , 1311–1318.
-nak/chu-1	Nakamura, M.; Chubachi, K.; Tamura, K.; Murakami, S. Excess Molar Volumes, Excess Isentropic and Isothermal Compressibilities, and Excess Molar Isochoric Heat Capacities of $[xCF_3CH_2OH + (1-x){HCON(CH_3)_2 or CH_3CN}]$ at the Temperature 298.15 K. <i>J. Chem.</i> <i>Thermodyn.</i> 1993 , <i>25</i> , 525–531.
-rao/rao	Rao, P. S.; Rao, R.; Swamy, G. N. Ultrasonic Speeds and Isentropic Compressibilities of Acetonitrile with Some Amines at 303.15 K. <i>Acoust. Lett.</i> 1993 , <i>16</i> , 163–166.
-rod	Rodnikova, M. N. Specific Features of Solvents with a Spatial Network of H-Bonds. <i>Russ. J.</i> <i>Phys. Chem.</i> 1993 , <i>67</i> , 248–252.
-sal/adc	Salvi-Narkhede, M.; Adcock, J. L.; Gakh, A.; Van Hook, W. A. Vapor Pressures, Liquid Molar Volumes, Vapor Non-Ideality, and Critical Properties of CF ₃ OCF ₂ CF ₂ CF ₃ , <i>c</i> -CF ₂ CF ₂ CF ₂ - CF ₂ O, CF ₃ OCF ₂ OCF ₃ , and CF ₃ OCF ₂ CF ₂ H. <i>J.</i> <i>Chem. Thermodyn.</i> 1993 , <i>25</i> , 643–647.
-sau/hol	Sauermann, P.; Holzapfel, K.; Oprzynski, J.; Nixdorf, J.; Kohler, F. Thermodynamic Properties of Saturated and Compressed Liquid 2,2,2-Trifluoroethanol. <i>Fluid Phase Equilib.</i> 1993 , <i>84</i> , 165–182.
-cib/zik	Cibulka, I.; Ziková, M. Liquid Densities at Elevated Pressures of 1-Alkanols from C ₁ to C ₁₀ : A Critical Evaluation of Experimental Data. <i>J. Chem. Eng. Data</i> 1994 , <i>39</i> , 876–886.
-mat/yam	Matsuo, S.; Yamamoto, R.; Kubota, H.; Tanaka, Y. Volumetric Properties of Mixtures of Fluoroalcohols and Water at High Pressures. <i>Int. J. Thermophys.</i> 1994 , <i>15</i> , 245–259.
-mcl/bar	McLure, I. A.; Barbarin-Castillo, JM.; Neville, J. F.; Pethrick, R. A. Ultrasonic Velocities, Specific Volumes, Isobaric Thermal Expansivities, Isothermal Compressibilities and Isochoric Thermal Pressure Coefficients for Liquid Tetramethylsilane from 224.86 to 273.28 K. Thermochim. Acta 1994 , 233, 325–328.
-mcl/bar-1	McLure, I. A.; Barbarin-Castillo, JM. Orthobaric Liquid Densities for Octamethylcyclotetrasiloxane, Decamethylcyclopentasiloxane, Dimethicone 20, and a Cyclic Poly(dimethylsiloxane). <i>J. Chem.</i> <i>Eng. Data</i> 1994 , <i>39</i> , 12–13.
-pal/sin	Pal, A.; Singh, Y. P.; Singh, W. Excess Volumes and Ultrasonic Velocities of Some Amide + Water Systems at 298.15 K. <i>Indian J. Chem. A</i> 1994 , <i>33</i> , 1083–1087.
-tam/mur	Tamura, K.; Murakami, S.; Akagi, Y.; Fukumori, M.; Kawasaki, Y. Thermodynamic Properties of Binary Mixtures: Hexamethylphosphoric Triamide + a Polar Liquid at 25 °C. <i>J. Solution Chem.</i> 1994 , <i>23</i> , 263–273.
-ami/gop	Aminabhavi, T. M.; Gopalakrishna, B. Density, Viscosity, Refractive Index, and Speed of Sound in Aqueous Mixtures of <i>N</i> , <i>N</i> -Dimethylformamide, Dimethyl Sulfoxide, <i>N</i> , <i>N</i> -Dimethylacetamide, Acetonitrile, Ethylene Glycol, Diethylene Glycol, 1,4-Dioxane, Tetrahydrofuran, 2-Methoxyethanol, and

95-gil/sin	2-Ethoxyethanol at 298.15 K. <i>J. Chem. Eng.</i> <i>Data</i> 1995 , <i>40</i> , 856–861. Gill, D. S.; Singh, P.; Singh, J.; Singh, P.;		Wuerflinger, A. Crystal and <i>pVT</i> Data and Thermodynamics of the Phase Transitions of 2-Methyl-2-nitropropane. <i>J. Chem. Soc.</i> , <i>Faraday Trans</i> 1996 <i>92</i> 1899–1904	
	Senanayake, G.; Hefter, G. T. Ultrasonic Velocity, Conductivity, Viscosity and Calorimetric Studies of Copper(I) and Sodium Perchlorates in Cyanobenzene, Pyridine and Cyanomethane. J. Chem. Soc., Faraday Trans. 1995 , 91, 2789–2795.	96-nak/sak	Nakazawa, N.; Sako, T.; Nakane, T.; Sekiya, A.; Sato, M.; Gotoh, Y.; Suga, A. Densities and Viscosities of Fluorinated Alcohols and Fluorinated Ethers. <i>Kagaku Kogaku Ronbushu</i> 1996 , <i>22</i> , 184–189 (in Japanese).	
95-kip/woo	Kipkemboi, P. K.; Woolf, L. A. <i>PVTx</i> Property Measurements for 2-Methyl-2-propanamine + Water from 278 to 313 K. <i>J. Chem. Eng. Data</i> 1995 , <i>40</i> , 943–947.	96-nat	Nath, J. Speeds of Sound in and Isentropic Compressibilities of (1,1,2,2-Tetrachloroethane + Anisole, 1,4-Dioxane, Methylethylketone, and Pyridine) at <i>T</i> =303.15 K. <i>J. Chem. Thermodyn.</i> 1006 , 22 (1022–1002)	
95-kri/ram	Krishnan, K. M.; Ramabu, K.; Venkateswarlu, P.; Raman, G. K. A Study on Mixing Properties of Binary Mixtures of 2-Methoxyethanol with Aromatic Hydrocarbons. <i>J. Chem. Eng. Data</i> 1995 , <i>40</i> , 132–135.	96-ran/eat	Randzio, S. L.; Eatough, D. J.; Lewis, E. A.; Hansen, L. D. Thermophysical Properties of Quinoline as a Function of Temperature (303– 503 K) and Pressure (0.1–400 MPa). <i>Int. J.</i> <i>Thermophys.</i> 1996 . <i>17</i> , 405–422.	
95-mal/van	Malhotra, R.; Van Hook, W. A.; Woolf, L. A. Correlation of the Volumetric Properties of Fluorinated Ethers by the Group-Contribution Volume-Ratio Method. <i>Int. J. Thermophys.</i> 1995 <i>16</i> 111–110	96-sak/sat	Sako, T.; Sato, M.; Nakazawa, N.; Oowa, M. Critical Properties of Fluorinated Ethers. <i>J.</i> <i>Chem. Eng. Data</i> 1996 , <i>41</i> , 802–805.	
95-mal/woo	Malhotra, R.; Woolf, L. A. Thermodynamic Properties of Liquid 2,2-Difluoroethanol. <i>Int. J.</i> <i>Thermophys.</i> 1995 , <i>16</i> , 901–908.	96-sus/smi	Susay, S. R.; Smith, M. A.; Lockwood, G. G. The Saturated Vapor Pressure of Desflurane at Various Temperatures. <i>Anesth. Analg.</i> 1996 , <i>83</i> , 864–866.	
95-mal/woo-1	Malhotra, R.; Woolf, L. A. Volumetric Measurements of the Liquid Fluorinated Ethers CHF ₂ OCH ₂ CF ₃ and CHF ₂ OCHFCF ₃ at temperatures from 278.15 K to 338.15 K and Pressures from 0.1 MPa to 380 MPa. <i>J. Chem.</i>	96-wap/tar	Wappmann, S. J.; Tarassov, I. N.; Luedemann, HD. Densities of Octamethylcyclotetrasiloxane + Methane and 2,2-Dimethylpropane + Methane from 10 to 200 MPa and from 294 to 433 K. <i>J. Chem. Eng. Data</i> 1996 , <i>41</i> , 84–88.	
95-nak/tam	Nakamura, M.; Tamura, K.; Murakami, S. Isotope Effects of Thermodynamic Properties: Mixtures of $x(D_2O \text{ or } H_2O) + (1-x)CH_3CN$ at 298.15 K. <i>Thermochim. Acta</i> 1995 , <i>253</i> , 127–	96-zab/ruz	Zábranský, M.; Rüžička, V.; Majer, V.; Domalski, E. S. Heat Capacities of Liquids. Review and Recommended Values. <i>J. Phys.</i> <i>Chem. Ref. Data</i> , Monograph No. 6; American Chemical Society: Washington, DC, 1996.	
95-nik/jad	Nikam, P. S.; Jadhav, M. C.; Hasan, M. Acoustical Properties of Nitrobenzene–Alcohol Binary Mixtures at 298.15 and 303.15 K. Indian J. Pure Appl. Phys. 1995 , <i>33</i> , 398–401.	97-ara/jad	Aralaguppi, M. I.; Jadar, C. V.; Aminabhavi, T. M. Density, Refractive Index, and Speeds of Sound in Binary Mixtures of 2-Ethoxyethanol with Dimethyl Sulfoxide, <i>N,N</i> -Dimethylformamide,	
95-osw/pat	Oswal, S. L.; Patel, N. B. Speed of Sound, Isentropic Compressibility, Viscosity, and Excess Volume of Binary Mixtures. 1. Alkanenitriles with Alkyl Acetates. <i>J. Chem.</i>	97-cib/hne	N,N-Dimethylacetamide at Different Temperatures. J. Chem. Eng. Data 1997 , 42, 301–303. Cibulka, I.; Hnědkovský, L.; Takagi, T. <i>P</i> -ρ-T	
95-osw/pat-1	<i>Eng. Data</i> 1995 , <i>40</i> , 840–844. Oswal, S. L.; Patel, N. B. Speed of Sound, Isentropic Compressibility, Viscosity, and Excess Volume of Binary Mixtures. 2.		Data of Liquids: Summarization and Evaluation. 3. Ethers, Ketones, Aldehydes, Carboxylic Acids, and Esters. <i>J. Chem. Eng.</i> <i>Data</i> 1997 , <i>42</i> , 2–26.	
05 /	Alkanenitriles + Dimethylformamide, + Dimethylacetamide, and + Dimethyl Sulfoxide. J. Chem. Eng. Data 1995 , 40, 845–849.	97-cib/hne-1	Cibulka, I.; Hnědkovský, L.; Takagi, T. $P-\rho-T$ Data of Liquids: Summarization and Evaluation. 4. Higher 1-Alkanols (C ₁₁ , C ₁₂ , C ₁₃ , C ₁₄), Secondary, Tertiary and Branched	
95-pap/pan	Papaioannou, D.; Panayiotou, C. Viscosity of Binary Mixtures of Propylamine with Alkanols at Moderately High Pressures. <i>J. Chem. Eng.</i> <i>Data</i> 1995 , <i>40</i> , 202–209.		Alkanols, Cycloalkanols, Alkanediols, Alkanetriols, Ether Alkanols, and Aromatic Hydroxy Derivatives. <i>J. Chem. Eng. Data</i> 1997 , <i>42</i> , 415–433.	
95-yok/ebi	Yokoyama, C.; Ebina, T.; Takahashi, S. High- Pressure Solid–Liquid Equilibria and <i>PVTx</i> Relationships for the 1-Methylnaphthalene– Indole System. <i>Fluid Phase Equilib.</i> 1995 , <i>104</i> , 391–402.	97-def/mol	Defibaugh, D. R.; Moldover, M. R. Compressed and Saturated Liquid Densities for 18 Halogenated Organic Compounds. <i>J. Chem.</i> <i>Eng. Data</i> 1997 , <i>42</i> , 160–168.	
96-ara/jad	Aralaguppi, M. I.; Jadar, C. V.; Aminabhavi, T. M. Density, Refractive Index, Viscosity, and Speed of Sound in Binary Mixtures of 2-Ethoxyethanol with Dioxane, Acetonitrile, and Tetrahydrofuran at (298.15, 303.15, and 308.15 K). J. Chem. Eng. Data 1996 , 41, 1307–1310.	97-dom/lop	Dominguez, M.; Lopez, M. C.; Santafe, J.; Royo, F. M.; Urieta, J. S. Densities, Speeds of Sound, and Isentropic Compressibilities of Binary and Ternary Mixtures Containing $CH_3(CH_2)_3OH$, $CH_3(CH_2)_4OH$, and $CH_3(CH_2)_3NH_2$ at a temperature of 298.15 K. J. Chem. Thermodyn. 1997 , 29, 99–109.	
96-cha/lee	Chang, JS.; Lee, MJ. Densities of <i>m</i> -Cresol + Quinoline and <i>m</i> -Cresol + 1-Methylnaphthalene Mixtures at (298 to 348) K and up to 30 MPa. <i>J. Chem. Eng. Data</i> 1996 , <i>41</i> , 275–278.	97-jen/san	Jenau, M.; Sandmann, M.; Wuerflinger, A.; Tamarit, J. L. Differential Thermal Analysis and <i>PVT</i> Measurements on 2,2,2-Trichloroethanol under High Pressure. <i>Z.</i>	
96-cha/lee-1	Chang, JS.; Lee, MJ.; Lin, HM. Densities of <i>m</i> -Xylene + Quinoline and <i>m</i> -Xylene + Tetralin from (333 to 413) K and up to 30 MPa. <i>J. Chem. Eng. Data</i> 1996 , <i>41</i> , 1117–1120.	97-miy/nak	Naturforsch. A: Phys. Sci. 1997 , 52, 493–501. Miyai, K.; Nakamura, M.; Tamura, K.; Murakami, S. Isotope Effects on Thermodynamic Properties in Four Binary Systems: Water (or Heavy Water) + Dimethylsulfoxide (or <i>N</i> , <i>N</i> -Dimethylformamide) at 25°C. J. Solution Chem. 1997 , 26, 973–988.	
96-cib/hne	Cibulka, I.; Hnědkovský, L. Liquid Densities at Elevated Pressures of <i>n</i> -Alkanes from C_5 to C_{16} : A Critical Evaluation of Experimental Data <i>L Chem Eng. Data</i> 1006 41 657–669			
96-jen/reu	Jenau, M.; Reuter, J.; Tamarit, J. L.;	97-woo	Woolf, L. A. Volumetric and Thermodynamic Properties of Liquid 2-Fluoroethanol. <i>Int. J.</i>	

	Thermophys. 1997, 18, 65-72.	00-sah/das	Saha, N.; Das, B. Viscosities of Some
98-ami/pat	Aminabhavi, T. M.; Patil, V. B. Density, Viscosity, Refractive Index, and Speed of Sound in Binary Mixtures of Ethenylbenzene with NN-Dimethylacetamide. Tetrahydrofuran. NN-		Symmetrical Tetraalkylammonium Salts in Acetonitrile at (288.15, 298.15, 308.15, and 318.15) K. <i>J. Chem. Eng. Data</i> 2000 , <i>45</i> , 1125–1128.
	Dimethylformanide, 1,4-Dioxane, Dimethyl Sulfoxide, Chloroform, Bromoform, and 1-Chloronaphthalene in the Temperature Interval (298.15–308.15 K). <i>J. Chem. Eng. Data</i> 1998 , <i>43</i> , 497–503.	00-tro/car	Troncoso, J.; Carballo, E.; Cerdeirina, C. A.; Gonzales, D.; Romani, L. Systematic Determination of Densities and Speeds of Sound of Nitroethane + Isomers of Butanol in the Range (283.15–308.15) K. J. Chem. Eng. Data 2000, 45: 594–500
98-cha/kum	Chauhan, M. S.; Kumar, A.; Chauhan, S. Ultrasonic Velocity, Viscosity and Density Studies of Binary Mixtures. Part 2. 1,2-Dimethoxyethane and Tetrahydrofuran in Some Dipolar Aprotic Solvents. <i>Acoust. Lett.</i> 1998 , <i>21</i> , 228–235.	01-cib/tak	Data 2000, 42, 594–595. Cibulka, I.; Takagi, T.; Růžička, K. $P-\rho-T$ Data of Liquids: Summarization and Evaluation. 7. Selected Halogenated Hydrocarbons. J. Chem. Eng. Data 2001, 46, 2–28 (Correction: J. Chem. Eng. Data 2001, 46, 456)
98-goo/def	Goodwin, A. R. H.; Defibaugh, D. R.; Weber, L. A. Vapor Pressure of 2-(Difluoromethoxy)-1,1,1-trifluoroethane $CHF_2-O-CH_2CF_3$ (HFE-245). <i>J. Chem. Eng. Data</i> 1998 , <i>43</i> , 846–848.	01-nov	Novak, J. P. Private communication, 2001.
		01-oht/mor	Ohta, H.; Morimoto, Y.; Widiatmo, J. V.; Watanabe, K. Liguid-phase Thermodynamic
98-mat/tan	Matsuo, S.; Tanaka, Y.; Takada, N.; Yamamoto, H.; Sekiya, A. Gaseous Thermal Conductivities of Fluorinated Methyl Ethyl Ethers. <i>J. Chem.</i> <i>Eng. Data</i> 1998 , <i>43</i> , 473–476.		Properties of New Refrigerants: Pentafluoroethyl Methyl Ether and Heptafluoropropyl Methyl Ether. J. Chem. Eng. Data 2001 , 46, 1020–1024.
98-meh/sha	ieh/sha Mehta, S. K.; Sharma, A. K.; Parkash, R.; Chadha, S. L. Partial Molar Volumes and Isentropic Compressibilities in Mixtures of γ -Butyrolactam ($n = 5$) with 2,2,2-Trichloroethanol or 2,2,2-Trifluoroethanol		Sekhar, G. C.; Venkatesu, P.; Rao, M. V. P. Exces Molar Volumes and Speeds of Sound of <i>N</i> , <i>N</i> -Dimethylacetamide with Chloroethanes and Chloroethenes at 303.15 K. <i>J. Chem. Eng.</i> <i>Data</i> 2001 , <i>46</i> , 377–380.
	or 1,1,1,3,3,3-Hexafluoropropan-2-ol. <i>J. Chem.</i> Soc., Faraday Trans. 1998 , <i>94</i> , 2565–2569.	01-tak/fuj	Takagi, T.; Fujita, Y.; Furuta, D.; Wilhelm, E. Speeds of Sound and Thermodynamic
99-cib/tak	Cibulka, I.; Takagi, T. $P-\rho-T$ data of Liquids: Summarization and Evaluation. 5. Aromatic Hydrocarbons. <i>J. Chem. Eng. Data</i> 1999 , <i>44</i> , 411–429.		Properties for Benzene + Benzonitrile at 283.15 K, 298.15 K and 313.15 K and Pressures up to 30 MPa. <i>J. Chem. Thermodyn.</i> (to be submitted).
99-cib/tak-1	Cibulka, I.; Takagi, T. <i>P</i> - ρ - <i>T</i> Data of Liquids: Summarization and Evaluation. 6. Non-Aromatic Hydrocarbons (C_n , $n \ge 5$) except <i>n</i> -Alkanes C_5 to C_{16} . <i>J. Chem. Eng. Data</i> 1999 , <i>44</i> , 1105–1128.	01-tro/tov	Troncoso, J.; Tovar, C. A.; Cerdeirina, C. A.; Carballo, E.; Romani, L. Temperature Dependence of Densities and Speeds of Sound of Nitromethane + Butanol Isomers in the Range (288.15–308.15) K. <i>J. Chem. Eng. Data</i> 2001 , <i>46</i> , 312–316
99-her/oli	Herraiz, J.; Olive, F.; Zhu, S.; Shen, S.; Coronas. A. Thermophysical Properties of 2,2,2- Trifluoroethanol + Tetraethylene Glycol Dimethyl Ether. <i>J. Chem. Eng. Data</i> 1999 , <i>44</i> , 750–756.	01-wid/tsu	Widiatmo, J. V.; Tsuge, T.; Watanabe, K. Measurements of Vapor Pressures and PVT Properties of Pentafluoroethyl Methyl Ether and 1,1,1-Trifluoroethane. <i>J. Chem. Eng. Data</i>
99-nai/ali	Nain, A. K.; Ali, A. Ultrasonic Velocity and Excess Functions of the System Dimethylsulphoxide + Ethanol at Various Temperatures. <i>Z. Phys. Chem. (Muenchen)</i> 1999 , <i>210</i> , 185–198.	01-wid/uch	Widiatmo, J. V.; Uchimura, A.; Tsuge, T.; Watanabe, K. Measurements of Vapor Pressures and PVT Properties of Heptafluoropropyl Methyl Ether. <i>J. Chem. Eng.</i>
99-ven/rao	Venkatesu, P.; Rao, M. V. P. Ultrasonic Velocities and Isentropic Compressibilities of <i>N</i> , <i>N</i> -Dimethylformamide + Cyclopentane + 1-Alkanols at 303.15 K. <i>Indian J. Pure Appl.</i> <i>Phys.</i> 1999 , <i>37</i> , 591–594.	01-wid/wat	<i>Data</i> 2001 , <i>46</i> , 1448–1451. Widiatmo, J. V.; Watanabe, K. Equations of State for Fluorinated Ether Refrigerants, Pentafluoroethyl Methyl Ether and Heptafluoropropyl Methyl Ether. <i>Fluid Phase</i> Excuilty 2001 , <i>122</i> , <i>184</i> , 21–20.
00-abr/abd	Abraham, R.; Abdulkhadar, M.; Asokan, C. V. Ultrasonic Investigation of Molecular Interaction in Binary Mixtures of Nitriles with Methanol/Toluene. <i>J. Chem. Thermodyn.</i> 2000 , <i>32</i> , 1–16.	01-yos/miz	Yoshii, Y.; Mizukawa, M.; Widiatmo, J. V.; Watanabe, K. Measurements of Saturation Densities in the Critical Region of Pentafluoroethyl Methyl Ether ($245cbE\beta\gamma$). J. Cham. 2001 , 46 , 1050.
00-cer/tov	Cerdeirina, C. A.; Tovar, C. A.; Carballo, E.; Troncoso, J.; Romani, L. Effect of Molecular Structure on the Thermodynamics of Nitromethane + Butanol Isomers Near the Upper Critical Point. <i>Int. J. Thermophys.</i> 2000 ,	01-zab/ruz	Zábranský, M.; Růžička, V.; Domalski, E. S. Heat Capacities of Liquids. Critical Review and Recommended Values. Supplement 1. <i>J. Phys.</i> <i>Chem. Ref. Data</i> 2001 , <i>30</i> , 1199–1689.
00-osw/pat	21, 1419–1437. Oswal S. L.: Patel N. B. Speeds of Sound	02-zab	Zábranský, M. Personal communication, 2002.
oo oswipat	Isentropic Compressibilities, and Excess Volumes of Binary Mixtures of Acrylonitrile with Organic Solvents. <i>J. Chem. Eng. Data</i> 2000 , <i>45</i> , 225–230.	Received for review from a grant of the from the fund MSM JE0200463	v March 7, 2002. Accepted June 6, 2002. Support e Czech Ministry of Education (No. ME 329) and A 223400008 is acknowledged.