Viscosity and Density of Tri-*n*-butyl Phosphate + Benzene + Toluene from 30 °C to 45 °C

N. Swain

College of Basic Sciences and Humanities, O.U.A.T., Bhubaneswar-751 003, India

D. Panda and S. K. Singh*

Regional Research Laboratory, Bhubaneswar-751 013, India

V. Chakravortty

Department of Chemistry, Utkal University, Vani Vihar, Bhubaneswar-751 004, India

Viscosities and densities of the ternary liquid mixtures of tri-*n*-butyl phosphate + benzene + toluene were measured at (30, 35, 40, and 45) °C. The deviations in the viscosity from a mole fraction average were fitted in a Redlich–Kister type equation, which includes the contribution of each constituent binary system along with a ternary contribution term. The viscosity deviations were negative in most of the cases.

Introduction

Measurement of some of the bulk properties such as viscosity and density of liquids provides insight into the intermolecular arrangement in liquids and helps one to understand the thermodynamic properties of liquid mixtures. Tri-n-butyl phosphate (TBP) is chosen as one of the components in ternary liquid mixtures as it is effective as an extractant for lanthanides and actinides. This extractant dominates the chemical reprocessing of nuclear fuels in the atomic energy industry. The extraction efficiency of the extractant improves with the addition of suitable organic diluents and modifiers (Fort and Moore, 1965; Prasad et al., 1976; De et al., 1970; Rout et al., 1993, 1996; Swain and Chakravortty, 1996). To study the solvent extraction of actinides using binary mixtures as diluents, it is necessary to have the appropriate density and viscosity data. In a continuation of our earlier work (Swain and Chakravortty, 1996; Swain et al., 1997) on viscosities and densities of liquid mixtures, the present paper reports the viscosities and densities for ternary mixtures of tri-n-butyl phosphate + benzene + toluene in the temperature range (30-45) °C.

Experimental Section

Materials. The chemicals used were of analytical grade. Tri-*n*-butyl phosphate (TBP) with purity greater than 98 mol % was obtained from S.D. Fine Chemicals, India. Benzene (BDH) and toluene (BDH) were obtained with maximum purity greater than 98 mol %. Benzene and toluene were purified by the method of fractional distillation (Weissberger, 1959). Tri-*n*-butyl phosphate was purified by the method of Alcock and co-workers (Alcock et al., 1956). The purity of the sample was checked by comparing the viscosity and density with those reported in the literature (Dean, 1979; McCabe and Smith, 1970; Rout et al., 1994). The densities and viscosities of pure components at different temperatures are presented in Table 1.

Table 1. Pure Component Properties

	-	-	
pure component	t/°C	$10^{-3} ho/{\rm kg}~{\rm m}^{-3}$	η/mPa∙s
TBP	25	0.975	3.388
		(0.976) ^a	(3.390) ^a
	30	0.968	2.970
	35	0.963	2.680
	40	0.961	2.430
	45	0.954	2.210
benzene	25	0.876	0.647
		$(0.874)^{a}$	$(0.645)^{b}$
		$(0.874)^{c}$	(0.643) ^c
	30	0.866	0.630
	35	0.862	0.604
	40	0.859	0.598
	45	0.856	0.553
toluene	25	0.863	0.554
		$(0.862)^a$	$(0.552)^{a}$
	30	0.857	0.523
	35	0.854	0.499
	40	0.851	0.478
	45	0.848	0.458

^a Dean, 1979. ^b McCabe and Smith, 1970. ^c Rout et al., 1994.

Experimental Measurements. Ternary mixtures of TBP, benzene, and toluene were prepared by volume. Sixteen mixtures were prepared. Densities and viscosities of the solutions were measured at four different temperatures, (30, 35, 40, and 45) °C. The increment in temperature level was kept regular at 5 °C with a view to ensure measurable effects of temperature change on experimental observations. The highest temperature was (45 \pm 0.1) °C in order to avoid errors due to evaporation losses during the measurements (Swain et al., 1997; Singh et al., 1990). The densities of all the components were measured by a bicapillary pycnometer calibrated with deionized doubledistilled water with 0.996 \times 10³ kg m⁻³ as its density at 30 °C. The accuracy of density measurements was within $\pm 0.7\%$. Viscosities of the solutions were measured by a thoroughly cleaned, dried, and calibrated Ostwald viscometer (Das et al., 1996). The viscometer was kept in a

10.1021/je980143p CCC: \$18.00 © 1999 American Chemical Society Published on Web 12/09/1998

Table 2. Experimental Densities ρ , Viscosities η , and $\Delta \eta$ for the Ternary Mixtures TBP (1) + Benzene (2) + Toluene (3) at Different Temperatures

<i>X</i> 1	X_2	X3	t/°C	$10^{-3} ho/{ m kg}~{ m m}^{-3}$	η/mPa∙s	$\Delta \eta$ /mPa·s
0.037	0.524	0.440	30	0.872	0.590	-0.080
			35	0.868	0.556	-0.079
			40	0.864	0.526	-0.087
			45	0.861	0.500	-0.074
0.084	0.497	0.419	30	0.883	0.675	-0.106
			35	0.879	0.635	-0.099
			40	0.875	0.600	-0.101
			45	0.872	0.571	-0.080
0.105	0.488	0.406	30	0.889	0.713	-0.118
			35	0.885	0.670	-0.109
			40	0.881	0.639	-0.102
0 1 0 0	0 470	0.004	45	0.878	0.560	-0.128
0.133	0.473	0.394	30	0.894	0.746	-0.153
			35	0.890	0.703	-0.130
			40	0.887	0.007	-0.127
0 159	0.456	0.286	40	0.004	0.027	-0.109
0.136	0.430	0.380	30	0.899	0.813	-0.143 -0.128
			40	0.890	0.703	-0.120
			40	0.892	0.721	-0.107
0 191	0 4 4 1	0.368	30	0.903	0.884	-0.153
0.101	0.111	0.000	35	0.901	0.830	-0.132
			40	0.897	0.769	-0.134
			45	0.895	0.722	-0.113
0.228	0.421	0.352	30	0.909	0.956	-0.170
			35	0.905	0.890	-0.151
			40	0.902	0.831	-0.143
			45	0.898	0.780	-0.118
0.259	0.403	0.338	30	0.915	1.023	-0.177
			35	0.912	0.954	-0.152
			40	0.909	0.890	-0.142
			45	0.905	0.832	-0.198
0.303	0.378	0.318	30	0.921	1.135	-0.169
			35	0.918	1.050	-0.149
			40	0.915	0.990	-0.124
0.040	0.057	0.004	45	0.911	0.921	-0.104
0.349	0.357	0.294	30	0.926	1.241	-0.175
			35	0.922	1.142	-0.156
			40	0.919	1.093	-0.109
0.400	0.225	0 975	40	0.917	1.010	-0.080
0.400	0.325	0.275	30	0.930	1.475	-0.004 -0.059
			40	0.952	1.340	-0.033
			40	0.925	1 1 80	-0.032
0 455	0 295	0 250	30	0.944	1 701	-0.033
0.100	0.200	0.200	35	0.941	1.556	0.034
			40	0.938	1.443	0.042
			45	0.934	1.336	0.437
0.519	0.264	0.219	30	0.949	1.859	0.038
			35	0.945	1.694	0.035
			40	0.941	1.553	0.029
			45	0.938	1.465	0.072
0.586	0.222	0.192	30	0.953	2.012	-0.032
			35	0.949	1.828	0.028
			40	0.946	1.667	0.018
			45	0.942	1.585	0.079
0.667	0.183	0.150	30	0.956	2.221	0.047
			35	0.952	2.030	0.056
			40	0.948	1.825	0.024
0	0.15-	0.05	45	0.945	1.700	0.056
0.776	0.129	0.094	30	0.960	2.427	-0.008
			35	0.957	2.238	0.033
			40	0.954	1.978	-0.030
			45	0.951	1.822	-0.007

thermostatic water bath, and the temperature variation was maintained within ± 0.1 °C. The time of flow was determined after equilibrating the viscometer with the bath temperature. The accuracy of the viscosity measurements was within $\pm 0.1\%$. The same procedure was followed for the measurement of viscosities of constituent binary mixtures TBP (1) + benzene (2), TBP (1) + toluene (3), and benzene (2) + toluene (3). The binary results of TBP (1) + Table 3. Experimental Viscosities η for the Constituent Binary Mixtures TBP (1) + Benzene (2), TBP (1) + Toluene (3), and Benzene (2) + Toluene (3) at Different Temperatures

		η/mPa.s						
		30 °C	35 °C	40 °C	45 °C			
		TBP (1) +	Benzene (2))				
<i>X</i> 1	X2							
0.000	1.000	0.630	0.604	0.598	0.553			
0.106	0.893	0.794	0.748	0.720	0.681			
0.200	0.800	0.984	0.910	0.865	0.816			
0.403	0.596	1.385	1.263	1.172	1.118			
0.609	0.390	1.883	1.712	1.575	1.472			
0.805	0.195	2.341	2.108	1.927	1.792			
0.904	0.096	2.582	2.324	2.095	1.963			
1.000	0.000	2.970	2.680	2.430	2.210			
TBP (1) + Toluene (3)								
X_1	X3							
0.000	1.000	0.523	0.499	0.478	0.458			
0.103	0.897	0.690	0.655	0.620	0.590			
0.200	0.800	0.854	0.805	0.750	0.709			
0.400	0.600	1.366	1.250	1.160	1.075			
0.600	0.400	1.870	1.670	1.563	1.440			
0.800	0.200	2.323	2.095	1.915	1.740			
0.900	0.100	2.575	2.322	2.110	1.918			
1.000	0.000	2.970	2.680	2.430	2.210			
Benzene (2) + Toluene (3)								
X_2	X3							
0.000	1.000	0.523	0.499	0.478	0.458			
0.101	0.899	0.530	0.507	0.483	0.464			
0.200	0.800	0.539	0.518	0.491	0.471			
0.400	0.600	0.551	0.532	0.505	0.484			
0.601	0.402	0.563	0.541	0.517	0.500			
0.800	0.200	0.576	0.556	0.529	0.517			
0.900	0.100	0.587	0.564	0.550	0.531			
1.000	0.000	0.630	0.604	0.598	0.553			

benzene (2) are in good agreement with the available experimental work (Rout et al., 1994).

Results and Discussion

The viscosity and density data for the ternary mixtures TBP (1) + benzene (2) + toluene (3) at (30, 35, 40, and 45) °C are presented in Table 2. Table 3 shows the viscosity data for the constituent binary mixtures TBP (1) + benzene (2), TBP (1) + toluene (3), and benzene (2) + toluene (3).

The molecules of TBP, one of the components forming the ternaries, are polar and show nonideal behaviors in mixtures. The excess viscosities have been calculated using eq 1 (Singh et al., 1989, 1990) from the viscosity data for the ternary mixtures of TBP (1) + benzene (2) + toluene (3).

$$\Delta \eta = \eta - \sum x_i \eta_i \tag{1}$$

where η is the mixture viscosity, x_i is the mole fraction of component *i*, and η_i is the viscosity of pure *i*. Negative values of $\Delta \eta$ in most of the cases are a consequence of the lower viscosity contribution of nonspecific interactions in nonideal mixtures. In the present system $\Delta \eta$ values are mostly negative and positive in a few cases depending on the contribution of component mole fraction. The ternary results were fitted in eq 2, which includes the contribution of each constituent binary as calculated by a threeparameter Redlich–Kister type equation (Redlich and Kister, 1948) along with a ternary contribution term.

$$\eta = \sum_{i}^{3} x_{i} \eta_{i} + \sum_{i \neq j}^{3} x_{i} x_{j} [A_{ij} + B_{ij}(x_{j} - x_{i}) + C_{ij}(x_{j} - x_{j})^{2}] + x_{i} x_{i} x_{k} A_{iik}^{*}$$
(2)

Table 4. Values of Binary Polynomial Constants^a A_{ij}, B_{Ij}, and Cij and Additional Ternary Constant Aijk* Used in Eq 2 and Root-Mean-Square (rms) Deviations at Different Temperatures

system	parameter	30 °C	35 °C	40 °C	45 °C
TBP (1) +	A_{12}	-0.3481	-0.3227	-0.2868	-0.1860
benzene (2)	B_{12}	0.1644	0.1604	0.1471	0.0782
	C_{12}	-0.4011	-0.4012	-0.4099	-0.2461
rms deviation ^b		0.0107	0.0122	0.0149	0.0075
TBP (1) +	A_{13}	-0.2435	-0.2495	-0.1727	-0.1408
toluene (3)	B_{13}	0.0613	0.1172	0.0727	0.0939
	C_{13}	-0.6627	-0.5126	-0.5473	-0.5244
rms deviation ^b		0.0167	0.0129	0.0173	0.0177
benzene (2) +	A_{23}	-0.0376	-0.0281	-0.0534	-0.0285
toluene (3)	B_{23}	0.0777	0.0746	0.0896	0.0286
	C_{23}	-0.0796	-0.0722	-0.0993	-0.0231
rms deviation ^b		0.0043	0.0046	0.0025	0.0008
TBP (1) + benzene (2) + toluene (3)	A_{123}^{*}	1.4040	1.5882	1.3630	0.9180
rms deviation ^b		0.0951	0.0998	0.0925	0.1036

^a If the constituents of the binary systems are interchanged [e.g., the binary TBP (1) + benzene (2) is changed to benzene (1) + TBP (2)], then the values of A_{ij} and C_{ij} will remain the same. The value of B_{ij} will also remain the same, but its sign will change. ^brms deviation = $[\sum d_i^2/n]^{1/2}$, where *n* is the number of observations and $d = [(\eta_{\text{exptl}} - \eta_{\text{calcd}})/\eta_{\text{exptl}}].$

The constants A_{ij} , B_{ij} , and C_{ij} were determined by the least-squares method for the constituent binary using the binary results.

The constants A_{ij} , B_{ij} , C_{ij} , and A_{ijk}^* of eq 2 were determined by the least-squares method for each temperature, and the values are listed in Table 4. The parameters were used as input in eq 2 for calculating root-mean-square deviations as listed in Table 4.

Acknowledgment

We are grateful to the authorities of Regional Research Laboratory, Bhubaneswar-751013, India, and Orissa University of Agriculture and Technology, Bhubabaneswar-751 003, India. Thanks are also due to Mr. Sunil Mohanty of Regional Research Laboratory, Bhubaneswar, India, for his cooperation during the experimental work.

Literature Cited

- Alkock, K.; Grimely, S. S.; Healy, T. V.; Kennedy, J.; McKay, H. A. C. Extraction of Nitrates by Tributyl Phosphate (TBP) I. System TBP
- + diluent + H_2O + HNO_3 . Trans. Faraday Soc. **1956**, 52, 39–47. Das, K. C.; Panda, D.; Singh, S. K. Densities and Viscosities of $NiSO_4$ -
- H₂SO₄-H₂O System. *Phys. Chem. Liq.* **1996**, *32*, 123–126. De, A. K.; Khopkar, S. M.; Chalmers, R. A. Solvent extraction of metals, Van Nostrand-Reinhold: London, 1970.
- Dean, J. A., Ed. Lange's Handbook of Chemistry, 12th ed.; McGraw-Hill: New York, 1979.
- Fort, R. J.; Moore, W. R. Adiabatic Compressibilities of Binary Liquid Mixtures. Trans. Faraday Soc. 1965, 61, 2102-2111.
- McCabe, W. L., Smith, J. C., Eds. Unit Operations of Chemical Engineering, 2nd ed.; McGraw-Hill: New York, 1970.
- Prasad, N.; Singh, R.; Prakash, O.; Prakash, S. Ultrasonic Study of Binary Liquid Mixtures. Indian J. Pure Appl. Phys. 1976, 14, 676-677
- Redlich, O.; Kister, A. T. Thermodynamics of Nonelectrolytic Solutions. Algebric Representation of Thermodynamic Properties and the Classification of Solutions. Ind. Eng. Chem. 1948, 40, 345-348.
- Rout, B. K.; Mishra, N. C.; Chakravortty, V. Viscosity and Density of Binary Liquid Mixtures of Tri-n-butyl Phosphate + Benzene, + Carbon Tetrachloride, + Isobutyl Methyl Ketone and + Acetylacetone at 25, 30, 35, 40 and 45 °C. Ind. J. Chem. Technol. 1994, 1, 347 - 350.
- Rout, B. K.; Chakravortty, V.; Behera, D. Excess Properties in Binary Liquid Mixtures: Tri-*n*-buly Phosphate (TBP) and 1-Alkanols. *Ind.* J. Technol. **1993**, 31, 745–750.
- Rout, B. K.; Dash, S. K.; Chakravortty, V.; Swain, B. B. Ultrasonic Studies on the Extracted Organic Phase of Uranium(VI) using Trin-butyl Phosphate (TBP). J. Pure Appl. Ultrasonic 1996, 18, 125-130.
- Singh, R. P.; Sinha, C. P.; Das, J. C.; Ghosh, P. Viscosity and Density of Ternary Mixtures for Toluene, Ethylbenzene, Bromobenzene, and 1-Hexanol. J. Chem. Eng. Data **1989**, 34, 335–338. Singh, R. P.; Sinha, C. P.; Das, J. C.; Ghosh, P. Viscosity and Density
- Shigh, R. P., Shina, C. P., Das, J. C., Ghosh, P. Viscosity and Density of Ternary Mixtures of Toluene, Bromobenzene, 1-Hexanol, and 1-Octanol. J. Chem Eng. Data 1990, 35, 93–97.
 Swain, N.; Chakravortty, V. Viscosity and Density of Ternary Mixtures of TBP-C₆H₆-CCl₄ Indian J. Chem. 1996, 35A, 395–400.
 Swain, N.; Panda, D.; Singh, S. K.; Chakravortty, V. Viscosity and Density of Tri-n-butyl Phosphate + Benzene + o-Xylene from 30 °C to 45 °C. J. Chem. For Dota 1007, 42, 1225–1237.
- °C to 45 °C. J. Chem Eng. Data 1997, 42, 1235-1237.
- Weissberger, A. Techniques of organic chemistry, organic solvents; Wiley-Interscience: New York, 1959; Vol. VII.

Received for review June 26, 1998. Accepted September 18, 1998.

JE980143P