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Molar Conductance of the Complexes of 18-Crown-6 with Alkaline
Earth Metal lons in Methanol + Water

Mohammad I. Sway* and Nawaf Samara

Department of Chemistry, Mu'tah University, Mu'tah, AL-Karak, P.O. Box 7, Jordan

The molar conductance of complexes of Mg?*, Ca?*, Sr2*, and Ba?" with 18-crown-6 in 0—90 mass %
methanol—water has been measured at temperatures from 278 K to 313 K. The observed molar
conductances A were found to decrease for mole ratios less than unity. The conductance data have been
analyzed using a model involving 1:1 complexation stoichiometry to give the stability constant K and
limiting molar conductance A. for each 1:1 complex by using a nonlinear least-squares analysis. The
log K values for the resulting 1:1 complexes increased with an increase in methanol concentration and
with a decrease in temperature. The stability constants determined for each metal—ligand system at
each solvent composition were fitted by the equation log K = a/T + b + cT. Values of AG°, AH°, AS°®, and
AC,° have been calculated. The results are discussed in terms of their dependence on temperature and
solvent composition. In 0—90 mass % methanol, the complexation process follows the order Ba2+ > Sr2*

> Ca?2t > MgZ+_

Introduction

There are a number of reports available in the literature
on the complexation of 18-crown-6 with alkaline earth
metal ions in water and methanol solvents. Most of these
reports are concerned with obtaining stability constants
at 298 K using various techniques such as spectroscopy
(Kashanian and Shamsipur, 1989), conductivity (Chen et
al., 1987), and polarography (Blasius et al., 1984), and
others are interested in determining thermodynamic pa-
rameters, AH° and AS°, at 298 K by the method of
calorimetry (lzatt et al., 1976; Buschmann, 1985, 1986;
Lamb et al., 1980). Most of the research in the area of
complexation of metal ions with crown ethers has been
carried out to determine stability constants or/and AH° and
AS° at 298 K in pure or mixed solvents, but relatively few
(Christensen et al., 1974; Izatt et al., 1985, 1991) have dealt
with the combined effects of changes in solvent composition
and temperature. Thus, there is sparse data on the
enthalpy, entropy, Gibbs energy and heat capacity changes
of complexation in water—methanol mixtures or other
solvents.

The aim of the present work is to determine the tem-
perature and solvent composition dependence of the ther-
modynamic parameters AH®, AS°, AG®, and AC,° for the
complexation of Mg?*, Ca2*, Sr2+, and Ba2" with 18-crown-6
in water—methanol solvents in the composition range 0—90
mass % of methanol between 278 K and 313 K using the
method of conductometry.

Experimental Section

18-Crown-6 (99% purity) was obtained from Janssen
Chimica and used without further purification. Methanol
(99.8% A. R, C.B.H Lab Chemicals) was used as the solvent
for the crown ether. The boiled deionized conductivity water
(triply distilled before deionization) was used as an aqueous
medium and for preparation of the MeOH + H,0 mixtures.
The following salts were obtained from the indicated
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suppliers: MgCl,-6H,0 and BaCl,-2H,0 (>99% both from
B.D.H); CaCl,-H,0 (>99%, Fluka AG); SrCl,6H,0 (AnalaRr,
Hopkin and Williams Ltd).

The solvents were prepared from known masses of
methanol and water. Metal salt solutions of approximately
4 x 10~* M were prepared by dissolving a known mass of
each salt in the MeOH + H,O mixtures. Similar solutions
with the same total salt concentrations were also used as
solvents in the preparation of the 18-crown-6 solutions.

Complexation stability constants were determined by
conductance measurements as a function of the concentra-
tion and temperature. Conductance measurements were
carried out using a microprocessor conductivity meter
(WTWI/LF 537) in the same way as described elsewhere
(Sway and Ambushamleh, 1995). The conductivity meter
was equipped with a cell (WTW/Tetracon 96) of cell
constant 0.609 cm~. The temperature of the water bath
(HAAKE D8) was controlled at +£0.01 K. The cell was
calibrated using KCI solutions. Duplicate measurements
of each solution were made. The results varied within
+0.1%.

Results and Discussion

In the present work, the 1:1 complexation of an alkaline
earth cation, M2™ (M2t = Mg?*, Ca?", Sr2*, or Ba?"), with
18-crown-6, L, is assumed. The complexation process is
represented by the equilibrium

MZ" + L =ML 1)
The stability constant K for reaction 1 is given by
K = [ML* Tyy *1IMP (L 7 (2

where [ML2*], [ M2*], [L], and y denote the concentration
of the complex, uncomplexed cation, uncomplexed crown
ether, and the activity coefficient of the species indicated,
respectively. Since this work has been performed in dilute
solutions, it is assumed that the ratio of activity coefficients
is unity.

© 1999 American Chemical Society

Published on Web 02/24/1999



344 Journal of Chemical and Engineering Data, Vol. 44, No. 2, 1999

Table 1. Data Used for Calculating the Stability Constant, K, and A for Complexation of 18C6 with Alkaline Earth
Metal Cations in Water at 298 K for [SrCl,:6H20]p = 4.08 x 1074 M and [BaCl,2H;0]o = 4.01 x 1074 M2

Sr2+ b Ba2+ c
[L1o/[Sr?*]o 10%L1o/M  A/Scm?mol™t  Acal/Scm?mol™!  [L]o/[Ba?']e  10*[L]o/M  A/Scm?mol~!  Acal/S cm? mol!
0.197 0.806 260.73 260.68 0.199 0.795 264.75 264.38
0.374 1.526 258.28 258.32 0.393 1.574 259.95 260.02
0.581 2.370 257.79 257.73 0.581 2.338 256.12 256.24
0.768 3.130 256.32 256.36 0.721 3.088 252.96 253.05
0.950 3.875 255.34 255.32 0.955 3.823 250.36 250.43
1.128 4.606 255.10 255.13 1.135 4.544 248.25 248.32
1.304 5.324 254.61 254.66 1.312 5.252 246.82 246.63
1.477 6.028 254.61 254.63 1.485 5.947 245.18 245.27
1.646 6.719 254.12 254.10 1.656 6.629 244.10 244.17
1.812 7.398 253.63 253.66 1.823 7.298 243.18 243.29
1.976 8.065 253.63 253.65 1.987 7.956 242.62 242.56
2.136 8.719 253.63 253.61 2.184 8.601 241.98 241.95
2.293 9.362 252.65 252.60 2.307 9.236 241.45 241.44
2.448 9.994 252.65 252.57 2.462 9.859 241.05 241.01
2.600 10.615 252.65 252.50 2.615 10.471 240.63 240.64
2.750 11.225 252.65 252.51 2.766 11.073 240.32 240.32
2.897 11.824 251.42 251.65 2.913 11.665 240.05 240.04
3.041 12.414 251.42 251.61 3.058 12.246 239.86 239.79

a A, observed molar conductivity; Aca, calculated molar conductivity; Ao, molar conductivity of uncomplexed cation; A¢, molar conductivity
of the complexed cation; X? = S(A — Aca)? ? Parameters: Ao = 261.46 S cm? mol~! ; K = 5.012 x 10% A, = 250.38 S cm? mol~1; X2 =
0.325. ¢ Parameters: Ag = 268.65 S cm? mol~1; K = 8.01 x 103; A = 235.58 S cm? mol~1; X?= 0.250.

Table 2. Data Used for Calculating the Stability Constant, K, and A.; for Complexation of 18C6 with Alkaline Earth
Metal Cations in 50 mass % Methanol at 298 K for [SrCl,-6H20]o = 4.09 x 1074 M and [BaCl,-2H20]p = 3.99 x 1074 M2

Sr2t+b Ba2t¢
[LIo/[Sr®* o 10%L]o/M  A/Scm?mol~!  Acal/Scm?mol~!  [L]o/[Ba?™]o  10*[L]o/M  A/Scm?mol-!  Acal/S cm?2 mol!
0.197 0.805 129.47 129.53 0.198 0.790 130.61 130.69
0.389 1.593 127.52 127.48 0.392 1.564 127.60 127.62
0.578 2.367 126.30 126.38 0.583 2.324 124.59 124.65
0.764 3.125 124.58 124.46 0.770 3.069 121.83 121.90
0.946 3.869 123.61 123.53 0.953 3.800 119.82 119.72
1.124 4.599 122.63 122.68 1.133 4516 118.56 118.59
1.299 5.315 121.65 121.53 1.309 5.220 118.25 118.17
1.471 6.019 121.41 121.38 1.483 5.911 118.05 118.02
1.640 6.709 121.32 121.34 1.653 6.588 118.05 117.99
1.805 7.386 121.23 121.27 1.820 7.254 118.05 117.95
1.968 8.052 121.15 121.18 1.983 7.908 118.05 117.90
2.127 8.705 121.15 121.15 2.145 8.550 118.05 117.85
2.284 9.347 121.15 121.11 2.303 9.180 118.05 117.81
2.438 9.978 121.15 121.09 2.459 9.800 118.05 117.78
2.600 10.598 121.15 121.06 2.611 10.408 118.05 117.76

a A, observed molar conductivity; Aca, calculated molar conductivity; Ao, molar conductivity of uncomplexed cation; A¢, molar conductivity
of the complexed cation; X2 = S(A — Aca)? ? Parameters: Ao = 131.92 S cm? mol~! ; K = 1.072 x 10% A, = 120.53 S cm?2 mol~1; X2 =
0.523. ¢ Parameters: Ao = 133.87 S cm? mol~%; K = 9.211 x 10% A = 117.61 S cm? mol~1; X2= 0.102.

Table 3. Data Used for Calculating the Stability Constant, K, and A for Complexation of 18C6 with Alkaline Earth
Metal Cations in 70 mass % Methanol at 298 K for [CaCl;:2H,0]o = 4.06 x 10~* M, [SrCl,:6H,0]o = 4.07 x 1074 M,
[BaCl,-2H,0]p = 3.97 x 1074 M2

Ca2tb Sr2tec Ba2td
[L1o/ 10%[Lle/ AIScm?  AcalS cm? [L]o/ 10%[Lle/  AIScm?  AcalS cm? [L1of 10%[Lle/  AIScm?  AcalS cm?
[Ca?M]o M mol~1 mol—1 [Sr#t]o M mol~t mol~1 [Ba?t]o M mol~1 mol~t

0.171 0.696 126.21 126.19 0.200 0.815 129.19 129.05 0.200 0.795 131.95 132.03
0.504 2.047 126.08 126.09 0.397 1.614 127.47 127.46 0.397 1.575 129.93 129.64
0.824 3.347 125.99 125.99 0.589 2.397 125.75 125.87 0.589 2.340 127.42 127.31
1.133 4.598 125.89 125.92 0.779 3.169 124.27 124.45 0.778 3.090 125.15 125.06
1.429 5.803 125.80 125.84 0.964 3.919 123.54 123.37 0.963 3.826 123.34 123.11
1.716 6.965 125.80 125.77 1.146 4.659 122.80 122.74 1.145 4.548 122.63 122.43
1.991 8.085 125.80 125.74 1.324 5.384 122.55 122.43 1.324 5.257 122.38 122.33
2.258 9.167 125.80 125.70 1.499 6.096 122.06 122.28 1.498 5.952 122.13 122.29
2.515 10.212 125.80 125.68 1.672 6.797 122.06 122.18 1.670 6.635 122.13 122.28
2.764 11.221 125.80 125.65 1.840 7.482 122.06 122.13 1.839 7.305 122.13 122.27
3.004 12.197 125.80 125.62 2.006 8.156 122.06 122.09 2.005 7.963 122.13 122.26
3.237 13.142 125.80 125.60 2.169 8.818 122.06 122.06 2.168 8.610 122.13 122.26
3.479 14.124 125.80 125.57 2.329 9.468 122.06 122.04 2.327 9.244 122.13 122.25

2.486 10.107 122.06 122.02 2.484 9.868 122.13 122.25

2.640 10.735 122.06 122.00 2.639 10.481 122.13 122.25

a A, observed molar conductivity; Aca, calculated molar conductivity; Ao, molar conductivity of uncomplexed cation; A¢, molar conductivity
of the complexed cation; X2 = (A — Aca)? ? Parameters: Ao = 126.28 S cm?2 mol~! ; K = 2,513 x 10% A, = 121.68 S cm?2 mol~1; X2 =
0.0199. ¢ Parameters: Ao = 130.91 Scm2mol1; K=1.132 x 105 A. = 121.86 S cm2 mol~%; X2= 0.177. 9 Parameters: Ao = 134.47 S cm?
mol~1; K = 9.550 x 10% A. = 122.23 S cm? mol~1; X2= 0.683.
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Table 6. Stability Constants and Thermodynamic Parameters at 298 K for the Complexation of 18-Crown-6 with Mg?*,
Ca?t, Sr2t, and Ba?" Cations in Methanol + Water Solvents!

cation solvent log K 10~3%a b 10%c —AH° —AS° —AG° ACy° method ref
Mg?*  (90% MeOH)-H,O 2.70 + 0.04 0.2929 1.548 0.552 4.67£0.10 —35.94+0.15 1541 +0.12 6.3+£01 cond TW
MeOH 3.61 £ 0.06 spec a
Ca?" (70% MeOH)-H,O 2.41+0.05 1.1869 —2.581 3.380 16.98+0.16 10.85+0.10 13.75+0.15 38.6+0.4 cond TW
(70% MeOH)-H,O 2.51 17.86 11.70 cal b
(90% MeOH)-H,O 2.97 +£ 0.04 0.5917 0.545 1.470 8.83+0.10 —27.21+0.20 16.94+0.10 16.8+03 cond TW
MeOH 3.86 11.50 —35.40 cal c
MeOH 3.87 11.20 —36.00 cal d
MeOH 3.96 cond e
MeOH 4.25 spec a
Srt Hy0 2.68 £0.03 14086 —4.233 7.335 1450+0.14 —2.65+0.05 15.29+0.12 83.7+0.6 cond TW
H>O 2.72 15.10 —1.25 cal f

(50% MeOH)-H,O 4.02 +£0.05 2.0389 —5.390 8.610 24.40 +0.16
(70% MeOH)-H,O 5.05 2.5667 —6.511 9.890 32.33 £0.15

495+0.08 2294+0.18 989+08 cond TW
11.81 +£0.15 28.81 +£0.20 1129+09 cond TW

(70% MeOH)-H,O 5.00 + 0.06 31.30 10.50 cal b
(90% MeOH)-H,O 5.26 + 0.05 2.7518 —7.244 10.98 34.02+£0.12 13.40+0.20 30.01 +£0.15 125.3+1.1 cond TW
MeOH 6.50 polg g
MeOH 5.64 spec a
Ba?"™ H,0 3.91+£0.04 3.1417 —-11.549 16.50 32.10+0.20 32.85+0.25 22.31+0.10 1883+1.8 cond TW

H>O 3.87 31.70 33.00 cal f
(50% MeOH)-H,O 4.96 +£ 0.05 3.7069 —13.183 19.13 38.45+0.16 34.12+0.21 28.30+0.20 2183 +23 cond TW
(70% MeOH)-H,O 5.98 + 0.06 4.2861 —14.932 21.90 44.83+0.18 3598+0.23 34.12+0.25 249.9+21 cond TW

(70% MeOH)-H,O 6.00 44.58 35.50 cal b
(90% MeOH)-H,O 6.55 + 0.05 4.3749 —15.287 24.00 42.96+ 020 18.82+0.18 37.37+0.30 273.8+24 cond TW
MeOH 7.04 4355 11.30 cal ¢
MeOH 7.31 48.50 23.50 cal h
MeOH 7.15 spec  a

3 Kashanian and Shamsipur, 1989. ® Izatt et al., 1976. ¢ Lamb et al., 1980. ¢ Buschmann 1985. ¢ Chen et al., 1987. f Izatt et al., 1976.
9 Blasius et al., 1987. " Buschmann 1986. | The constants of eq 3 and literature values are also tabulated. AG° and AH®, units kJ/mol;
AS° and ACp°, units J/JKmol; TW, this work; cond, conductivity; spec, spectroscopy; cal, calorimetry; polg, polarography.

The method used to calculate the stability constant
values from the conductivity data using a nonlinear least-
squares technique has been described previously (Sway and
Ambushamleh, 1995). The thermodynamic functions AH®,
AS°, AG®°, and AC,° for the complexation of 18-crown-6 with
alkaline earth cations, namely, Mg2*+, Ca2*, Sr2*, and Ba?",
were calculated using the determined stability constants
in the temperature range 278—313 K on solutions contain-
ing 0, 50, 70, and 90 mass % of methanol. Tables 1—4 are
typical data for the complexation of 18-crown-6 with Mg2*,
Ca?*, Srzt, and Ba?* at 298 K and in 0—90 mass % of
methanol. At all temperatures and solvent compositions,
A decreases with the mole ratio [L]o/[M?*]o and starts to
level at mole ratio > 1. The decrease in A is considered as
evidence for the formation of 1:1 complexes. Tables 1—4
show that the experimental and calculated values of A are
in good agreement. All data obtained in this work, like
those in Tables 1—4, were used to calculate the thermo-
dynamic stability constants at various temperatures and
solvent compositions. It was impossible to determine the
stability constants for the interaction of Mg?™ with 18-
crown-6 in 0—70 mass % and for Ca?" in 0—50 mass % of
methanol because of the constancy of solutions conductiv-

298 K are presented in Table 6 together with the reported
values in aqueous solutions, 70 mass % of methanol and
methanol for comparison. The agreement of the log K
values in Table 6 with those determined in aqueous
solutions and 70 mass % of methanol at 298 K by Izatt et
al. (1976) using calorimetry is good, considering the dif-
ferent techniques used in the two studies. The difference
in log K values between the present values and those of
Izatt et al., (1976) in aqueous solution is 1—4% and 0.3—
1% in 70 mass % of methanol.

Table 6 shows that the solvent composition has an
important effect on the stability of the resulting complexes.
In all cases, the stability of the complexes increases with
a decrease in the solvating power of the solvent, as
expressed by the Gutmann donor number (Gutmann and
Wychera, 1966), where the donor number of methanol is
19.7 and that of water is 33.0. Thus, the solvent mixture
with the highest proportion of methanol has the lowest
donicity and therefore shows the least competition with the
crown molecules for cations, which in turn results in the
most stable complex. This explains the low stability of

ity. The stability constant K decreases with increasing
temperature. This indicates that the complexation process
is exothermic. Plots of log K versus 1/T in 0—90 mass % of
methanol for the crown ether with all cations studied were
nonlinear. The experimental log K values were fitted to the
following empirical expression (Feats and Ives 1956)

logK=a/T+b+cT )

using a nonlinear regression analysis program. The de-
pendence of the best-fit log K values on temperature and
solvent composition is given in Table 5. The log K values
of all resulting complexes between Mg?*, CaZ*, Sr2*, and
Ba?* ions and 18-crown-6 in 0—90 mass % of methanol at

complexes in aqueous solutions based on the log K values
obtained in this study. In all solvent compositions, the
stability of alkaline earth complexes with 18-crown-6
follows the order Ba?" > Sr2* > Ca?" > Mg?".

This stability sequence may be explained in terms of the
cationic radii of the alkaline earth metals and the cavity
radius of 18-crown-6. Ba?* ion with an ionic radius of 1.35
A (Shannon, 1976) is positioned inside the cavity of 18-
crown-6 with a radius of 1.3—1.6 A (Frensdorff, 1971), while
other cations with smaller ionic sizes such as Mg?*(r = 0.72
A), ca2t(r=1.0 A), and Sr2* (r = 1.18 A) are too small for
the cavity of the 18-crown-6, resulting in weaker complexes.
To calculate the thermodynamic functions for the complex-
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ation process at different temperatures, the following
expressions were derived from eq 3

AH° = —2.303R(a — cT?) (4)
AS° = 2.303R(b + 2cT) (5)
AG°® = —2.303R(a + bT + cT?) (6)
AC,° = 4.606RcT )

where a, b, and ¢ are empirical coefficients resulting from
the best fit of log K with temperature in eq 3. The
calculated values at 298 K of AH®, AS°, AG®, and AC,° are
given in Table 6 together with the information available
in the literature. Those functions calculated at other
temperatures for each solvent composition are summarized
in Table 7.

The values of AH°® and AS° for the complexation of 18-
crown-6 with Ca?*, Sr2*, and BaZ"in aqueous solution and
70 mass % of methanol are in good agreement with those
reported by lzatt et al. (1976) at 298 K (Table 6). The
difference in AH® values between the present values and
those of Izatt et al. (1976) in aqueous solution is 1—4% and
0.6—3% in 70 mass % of methanol, while for those of AS®
the difference ranges between 0.5 and 7% in aqueuoes
solution and 1.4 and 7% in 70 mass % of methanol. The
AH° and AS° values for the BaZ" complex in water at 298
K are more negative than those of the Sr2* complex. This
indicates that the formation of the Ba?* complex is exo-
thermic and stable compared to the Sr?* complex. Table 7
shows that AH° and AS° of the Ba?" complex become more
negative than those of the Sr2* complex in water as the
temperature decreases. This suggests that the Ba2" com-
plex becomes more stable and more solvated in water with
decreasing temperature. This is in accord with the forma-
tion of the complex ML2*, shown by eq 1, which results in
a more ordered state of the system as the solvent molecules
are replaced by a cation in the crown ether cavity.
Therefore, the stability sequence in water based on log K,
AH°, and AS° values are Ba?" > Sr2. The AC,° value for
the Ba?" complex in water is larger and more positive than
that of the Sr2* complex at 298 K, as shown in Table 6,
indicating that the enhancement of the structure of water
by hydrogen bonds is more than that of Sr2t complex.

The dependence of AH® values for Sr2tand Ba?*complexes
on solvent composition in the range 0—90 mass % methanol
at 298 K and other temperatures is shown in Tables 6 and
7. It is obvious that the addition of methanol up to 90 mass
% is accompanied by more negative AH° values for the
Ba?"complex than those of the Sr2+ complex. This behavior
is in agreement with the chemical contribution (nonelec-
trostatic), which suggests stronger Ba?" complex solvation
than Sr2* complex solution.

Inspection of Table 6 in 90 mass % of methanol shows
that in going toward smaller cations such as Mgt and
Ca?*, the —AH decreases and the AS becomes positive. This
behavior is different from that of other cations for which

the AS values are negative and indicates that these cations
are not interacting strongly with all the available com-
plexing sites in the crown ether.
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