Isothermal Vapor-Liquid Equilibrium and Excess Enthalpy Data for the Binary Systems Diethyl Ether + Ethyl *tert*-Butyl Ether, 1-Pentene + Methyl Acetate, and Propene + 2-Propanol

Sven Horstmann, Hergen Gardeler, Rainer Bölts, Jürgen Rarey, and Jürgen Gmehling*

Carl von Ossietzky Universitaet Oldenburg, Technische Chemie, Postfach 2503, D-26111 Oldenburg, Germany

Isothermal vapor-liquid equilibrium (VLE) and excess enthalpy (H^{E}) data for the three binary systems diethyl ether + ethyl *tert*-butyl ether (ETBE), 1-pentene + methyl acetate, and propene + 2-propanol have been measured by means of the static technique and an isothermal flow calorimeter, respectively. The experimental VLE and H^{E} data have been used simultaneously for a correlation of constant or linear temperature-dependent UNIQUAC parameters.

Introduction

The reliable knowledge of the phase equilibrium behavior is a prerequisite for the synthesis and design of separation processes. For the description of the required separation factors of the system to be separated, excess Gibbs energy (G^{E}) models or equations of state can be used, which allow the prediction of the phase equilibrium behavior of multicomponent systems from binary data only. If there are no experimental data available, group contribution methods, such as ASOG, UNIFAC, mod. UNIFAC (Dortmund), or mod. UNIFAC (Lyngby), can be applied successfully. For the revision and extension of these methods the systematic extension of the existing database is desired.

In this paper vapor—liquid equilibrium (VLE) and excess enthalpy data are presented for the binary systems diethyl ether + ethyl *tert*-butyl ether, 1-pentene + methyl acetate, and propene + 2-propanol together with temperaturedependent UNIQUAC parameters to describe the phase equilibrium in a wide temperature range. These systems were studied as part of an ongoing investigation sponsored by Project 805c/96, of the Design Institute for Physical Property Data of the American Institute of Chemical Engineers.

Chemicals

The suppliers of the chemicals are listed in Table 1. For the VLE measurements the chemicals were dried over molecular sieves, degassed, and distilled as described by Fischer and Gmehling (1994). In the case of ethyl *tert*-butyl ether further purification was required in order to remove small amounts of alcohol. Therefore ethyl *tert*-butyl ether was washed several times with water. For the H^{E} measurements the compounds were used without degassing.

Experimental Part

The VLE measurements (isothermal P-x data) were carried out in two different static devices following the principle proposed by Gibbs and Van Ness (1972). For the measurement of the binary system diethyl ether + ethyl *tert*-butyl ether at 333.15 K and the system 1-pentene +

 \ast Corresponding author. E-mail: Gmehling@tech.chem.uni-oldenburg.de.

Table	1.	Suppliers	of	the	Used	Chemical	S
-------	----	-----------	----	-----	------	----------	---

component	supplier	component	supplier
diethyl ether, >99.5%	Riedel de Haën	methyl acetate, >99%	Riedel de Haën
ethyl <i>tert</i> -butyl ether, 92–93%	Veba-Oel AG	propene, 99.5%	Messer Griesheim
1-pentene, >97%	ACROS	2-propanol, >99.7%	Scharlau

 Table 2. Experimental P-x Data for the System Diethyl

 Ether (1) + Ethyl tert-Butyl Ether (2) at 333.15 K

<i>X</i> 1	P/kPa	<i>X</i> 1	P/kPa
0.00000	66.747	0.62083	166.626
0.00596	67.664	0.63065	168.359
0.01174	68.565	0.64613	170.866
0.01746	69.465	0.65471	172.399
0.02300	70.344	0.66889	174.706
0.02825	71.182	0.69335	178.852
0.03357	72.015	0.71970	183.305
0.03914	72.882	0.74817	188.158
0.04465	73.727	0.77905	193.424
0.05042	74.629	0.80575	197.997
0.05550	75.427	0.83438	202.943
0.06290	76.607	0.86518	208.250
0.07638	78.714	0.88996	212.543
0.09300	81.305	0.91091	216.182
0.11070	84.093	0.92927	219.369
0.13171	87.355	0.94845	222.702
0.16007	91.818	0.96443	225.501
0.19422	97.187	0.97496	227.341
0.22901	102.73	0.98264	228.675
0.26414	108.32	0.98734	229.514
0.30176	114.37	0.99103	230.154
0.33828	120.24	0.99348	230.514
0.37355	125.95	0.99465	230.728
0.40924	131.77	0.99549	230.901
0.44298	137.27	0.99630	231.048
0.47444	142.43	0.99701	231.168
0.50546	147.54	0.99780	231.328
0.53806	152.92	0.99848	231.474
0.57083	158.37	0.99886	231.528
0.57583	159.12	0.99927	231.594
0.59748	162.71	0.99963	231.634
0.60297	163.72	1.00000	231.674

methyl acetate at 323.15 K, a computer operated static apparatus was used. The apparatus, the measurement procedure, and the accuracy of the equipment have been

Table 3. Experimental $H^{\rm E}$ Data for the System Diethyl Ether (1) + Ethyl *tert*-Butyl Ether (2) at 333.15 K and 1.96 MPa

<i>X</i> 1	$H^{E}/(J \text{ mol}^{-1})$	<i>X</i> 1	$H^{E/(J \text{ mol}^{-1})}$
0.0792	-4.2270	0.6826	-13.160
0.1557	-7.6820	0.7947	-9.9420
0.3008	-12.581	0.9003	-5.5730
0.4364	-14.760	0.9509	-2.9970
0.5634	-14.930		

Table 4. Experimental P-x Data for the System 1-Pentene (1) + Methyl Acetate (2) at 323.15 K

<i>X</i> 1	<i>P</i> /kPa	<i>X</i> 1	<i>P</i> /kPa
0.00000	79.431	0.48315	170.20
0.00352	80.897	0.48427	170.23
0.00697	82.341	0.50463	171.92
0.01042	83.714	0.51118	172.49
0.01401	85.102	0.54273	174.91
0.01758	86.478	0.57849	177.48
0.02125	87.922	0.61937	180.23
0.02458	89.222	0.65667	182.53
0.02813	90.531	0.69882	184.94
0.03153	91.779	0.74678	187.40
0.03616	93.418	0.78759	189.26
0.04108	95.098	0.82386	190.69
0.05228	98.915	0.85696	191.80
0.06510	102.98	0.89306	192.73
0.08027	107.55	0.92443	193.28
0.09736	112.35	0.94579	193.49
0.11585	117.17	0.96204	193.54
0.13840	122.58	0.97234	193.53
0.16273	127.94	0.98069	193.49
0.18848	133.11	0.98688	193.44
0.21533	138.00	0.98933	193.42
0.24415	142.75	0.99057	193.41
0.27311	147.12	0.99173	193.40
0.30304	151.24	0.99295	193.38
0.33063	154.72	0.99416	193.36
0.35780	157.91	0.99535	193.34
0.38546	160.91	0.99652	193.33
0.41287	163.72	0.99884	193.28
0.43790	166.12	1.00000	193.25
0.46213	168.31		

Table 5. Experimental H^E Data for the System 1-Pentene(1) + Methyl Acetate (2) at 323.15 K and 0.86 MPa

<i>X</i> 1	$H^{E}/(J \text{ mol}^{-1})$	<i>X</i> 1	$H^{E}/(J \text{ mol}^{-1})$
0.0183	43.553	0.4705	1089.5
0.0369	119.46	0.5216	1094.3
0.0747	273.86	0.5745	1077.4
0.1137	415.85	0.6291	1026.0
0.1538	545.81	0.6856	958.04
0.1951	661.63	0.7441	860.03
0.2375	767.43	0.8047	719.74
0.2813	854.03	0.8674	535.42
0.3264	947.83	0.9325	293.08
0.3730	1019.8	0.9659	151.44
0.4209	1065.8		

Table 6. Experimental P-x Data for the System Propene (1) + 2-Propanol (2) at 298.06 K

<i>X</i> 1	<i>P</i> /kPa	<i>X</i> 1	<i>P</i> /kPa
0.08242	233.53	0.42584	799.77
0.10398	281.96	0.47208	839.53
0.13604	346.37	0.52369	878.98
0.15491	391.41	0.71582	985.19
0.18679	454.07	0.89192	1064.0
0.22800	534.17	0.96115	1098.4
0.28412	626.64	0.98358	1111.6
0.34038	710.45	1.00000	1121.4
0.38203	756.87		

described previously (Rarey and Gmehling, 1993; Rarey et al., 1998). The experimental uncertainties of this apparatus are as follows: $\sigma(T) = 0.03$ K, $\sigma(P) = 0.0001$ (*P*/Pa), and

Figure 1. Experimental and predicted P-x(y) behavior of the system diethyl ether (1) + ethyl *tert*-butyl ether (2) at 333.15 K: experimental (\bullet); UNIQUAC (-).

Figure 2. Experimental and predicted excess enthalpy data for the system diethyl ether (1) + ethyl *tert*-butyl ether (2) at 333.15 K: experimental (•); UNIQUAC (-).

Table 7. Experimental H^{E} Data for the System Propene (1) + 2-Propanol (2) at 333.15 K and 3.1 MPa

<i>X</i> 1	$H^{\mathbb{E}}/(J \text{ mol}^{-1})$	<i>X</i> 1	$H^{\mathbb{E}}/(J \text{ mol}^{-1})$
0.0258	33.260	0.5584	776.34
0.0516	79.322	0.6081	801.83
0.1031	161.21	0.6577	819.93
0.1544	245.07	0.7071	810.61
0.2055	329.16	0.7563	797.05
0.2564	404.83	0.8054	774.78
0.3072	484.76	0.8543	734.69
0.3578	559.64	0.9030	649.33
0.4082	619.06	0.9516	491.12
0.4584	688.26	0.9758	350.38
0.5085	733.37		

 $\sigma(x_i) = 0.0001$. For measurement of the system propene + 2-propanol at 298.06 K the static apparatus of Kolbe and Gmehling (1985) was employed. A detailed description of

Table 8. UNIQUAC Interaction Parameters Fitted Simultaneously to Isothermal P-x and H^{E} Data

diethyl etherethyl tert-butyl ether-180.641-pentenemethyl acetate1681.62pronone2 prononel4725.00	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Table 9. Pure Component Parameters:^a Relative van der Waals Volumes r_i , Surfaces q_i , and Antoine Coefficients A_i , B_i , and C_i

component	r_i	q_i	A_i	B_i/K	C_i/K
diethyl ether	3.3949	3.016	6.35792 ^b	1241.81	-22.158
ethyl <i>tert</i> -butyl ether	4.7422	4.172	5.80161 ^b	1066.84	-64.910
1-pentene	3.5953	3.104	6.47350^{b}	1337.32	-3.782
methyl acetate	2.8042	2.576	6.19186 ^b	1157.63	-53.424
propene	2.2465	2.024	6.19128 ^b	905.70	-9.763
2-propanol	2.7791	2.508	7.12798	1505.52	-61.550

^a DDB (1998). ^b Adjusted to the experimental data.

this apparatus was given by Fischer and Gmehling (1994). The experimental uncertainties are as follows: $\sigma(T) = 0.03$ K, $\sigma(P) = 20 \text{ Pa} + 0.0001 (P/Pa)$, and $\sigma(x_i) = 0.0001$. The principle of measurement is the same for both devices. The thermostated, purified, and degassed compounds are filled into the thermostated equilibrium cell by means of precise piston injectors. In the case of the computer operated equipment, the injectors are driven by stepping motors. In the other case manual piston pumps (Model 2200-801, RUSKA) are used for injecting the compounds. When phase equilibrium is reached, the pressure in the equilibrium cell is measured with a pressure sensor (Model 245A, Paroscientific) and a dead weight pressure gage (Desgranges & Huot), respectively. For the temperature measurement a Pt100 resistance thermometer (Model 1506, Hart Scientific, Provo, UT) is used in both cases. The liquid phase compositions can be obtained from exactly known amounts of liquids injected into the cell by solving the mass and volume balance, taking into account the vapor-liquid equilibrium. In the case of all three systems ideal vapor phase behavior was assumed.

For the determination of the excess enthalpy data a commercial isothermal flow calorimeter (Model 7501, Hart) was used. The experimental setup has been described previously (Gmehling, 1993). With this type of calorimeter, the heat effects which occur during mixing are compensated for by means of a pulsed heater. A Peltier cooler allows one to control the required frequency of the pulsed heater so that also exothermic mixing effects can be measured. A back-pressure regulator serves to keep the pressure at a level at which evaporation effects can be prevented. The experimental uncertainties are as follows: $\sigma(T) = 0.03$ K, $\sigma(H^{E}) = 0.01$ (H^{E}/J mol⁻¹), $\sigma(x_{j}) = 0.0001$.

Results

The experimental P-x and H^{E} data for the three binary systems are given in Table 2–7. For all three systems constant or linear temperature dependent parameters for the UNIQUAC model (Abrams and Prausnitz, 1975) were fitted simultaneously to the experimental VLE and H^{E} data. The obtained parameters are listed in Table 8. The following expression was used to describe the temperature dependence of the interaction parameters:

$$\Delta u_{ii} / (\mathrm{J} \,\mathrm{mol}^{-1}) = a_{ii} + b_{ii} (T/\mathrm{K}) \tag{1}$$

The required van der Waals properties r_i and q_i , and the Antoine coefficients A_i , B_i , and C_i used in the calcula-

Figure 3. Experimental and predicted P-x(y) behavior of the system 1-pentene (1) + methyl acetate (2) at 323.15 K: experimental (\bullet); UNIQUAC (-).

Figure 4. Experimental and predicted excess enthalpy data for the system 1-pentene (1) + methyl acetate (2) at 323.15 K: experimental (\bullet); UNIQUAC (-).

tions and expressed by the following equation are given in Table 9:

$$\log(P_i^{\rm s}/{\rm kPa}) = A_i - \frac{B_i}{C_i + (T/{\rm K})}$$
(2)

The Antoine coefficients A_i were adjusted to the experimental pure component vapor pressures P_i^s in order to obtain a correct description of the experimental values. The deviations between experimental data and values calculated with the Antoine coefficients taken from the Dort-

Figure 5. Experimental and predicted P-x(y) behavior of the system propene (1) + 2-propanol (2) at 298.06 K: experimental (\bullet); UNIQUAC (-).

Figure 6. Experimental and predicted excess enthalpy data for the system propene (1) + 2-propanol (2) at 333.15 K: experimental (•); UNIQUAC (-).

mund Data Bank (DDB 1998) are smaller than 0.5% except for the system propene + 2-propanol. For 2-propanol, no experimental pure component vapor pressure was determined and the experimental value for propene is about 1.5% smaller than the calculated one.

A graphical representation of the experimental VLE and H^E data is given in Figures 1–6 together with the results of the UNIQUAC model using the parameters given in Table 8. As can be seen from the different diagrams, good agreement is obtained between experimental and calculated results. The results from this work were compared with data from other authors. Figure 7 shows two isothermal P-x data sets from Zabaloy et al. (1993) for the system propene + 2-propanol which were not included in the data regression and results predicted with the listed UNIQUAC parameters.

While for the system diethyl ether + ethyl *tert*-butyl ether nearly ideal VLE behavior and small excess enthalpy

Figure 7. Experimental and predicted VLE behavior of the system propene (1) + 2-propanol (2); experimental data from Zabaloy et al. (1993): (**III**) 333.1 K, (**OII**) 353.1 K; UNIQUAC (-).

Table 10. Azeotropic Condition of the System 1-Pentene(1) + Methyl Acetate (2)

<i>T</i> /K	Yaz,1	P _{az} /kPa	source
303.15	0.968	101.32	Koch and van Raay (1954)
323.15	0.965	193.55	this work

data are observed, the other systems (1-pentene + methyl acetate, propene + 2-propanol) show positive deviation from Raoults law. For the system 1-pentene + methyl acetate the azeotropic composition was derived graphically from the experimental P-x data. It is given in Table 10 together with one value from literature.

Conclusions

P-x and H^{E} data for the three binary systems diethyl ether + ethyl *tert*-butyl ether, 1-pentene + methyl acetate, and propene + 2-propanol have been measured using the static technique and isothermal flow calorimetry, respectively. Constant or temperature-dependent UNIQUAC parameters have been fitted to the experimental data. With the help of these parameters good agreement is obtained with the experimental P-x and H^{E} data from this work and other authors.

Literature Cited

- Abrams, D. S.; Prausnitz, J. M. Statistical Thermodynamics of Liquid Mixtures: A New Expression for the Excess Gibbs Energy of Partly or Completely Miscible Systems. *AIChE J.* **1975**, *21*, 116–128.
- or Completely Miscible Systems. AIChE J. **1975**, 21, 116–128. Fischer, K.; Gmehling, J. P-x and γ^{∞} Data for the Different Binary Butanol–Water Systems at 50 °C. J. Chem. Eng. Data **1994**, 39, 309–315.
- Gibbs, R. E.; Van Ness, H. C. Vapor-Liquid Equilibria from Total-Pressure Measurements. A New Apparatus. Ind. Eng. Chem. Fundam. 1972, 11, 410-413.
- Gmehling, J. Excess Enthalpies for 1,1,1-Trichloroethane with Alkanes, Ketones, and Esters. J. Chem. Eng. Data 1993, 38, 143–146.
- Koch, H.; van Raay, H. G. Binary Azeotropic Mixtures of Methyl Acetate with 28 Hydrocarbons of the C_{5} -, C_{6} -, and C_{7} -Range. Brennst. Chem. **1954**, 35, 105–112.
- Kolbe, B.; Gmehling, J. Thermodynamic Properties of Ethanol + Water. I. Vapour-Liquid Equilibria Measurements from 90 to 150 °C by the Static Method. *Fluid Phase Equilib.* **1985**, *23*, 213–226.
- Rarey, J.; Gmehling, J. Computer-Operated Differential Static Apparatus for the Measurement of Vapor-Liquid Equilibrium Data. *Fluid Phase Equilib.* **1993**, *83*, 279–287.

- Rarey, J.; Horstmann, S.; Gmehling J. Vapor-Liquid Equilibria and Vapor Pressure Data for the Systems Ethyl *tert*-Butyl Ether + Ethanol and Ethyl *tert*-Butyl Ether + Water. *J. Chem. Eng. Data* **1998**, accepted for publication.
- **1998**, accepted for publication. Zabaloy, M. S.; Mabe, G. D. B.; Bottini, S. B.; Brignole, E. A. Isothermal Vapor-Liquid Equilibrium Data for the Binaries Propane-2-Propanol and Propylene-2-Propanol. *J. Chem. Eng. Data* **1993**, *38*, 40-43.

Received for review August 24, 1998. Accepted November 25, 1998. The authors thank the Design Institute for Physical Property Data (DIPPR) (Project 805c/96) of the American Institute of Chemical Engineers for the financial support of the experimental work presented in this paper.

JE980205B