Vapor-Liquid Equilibrium of Two Aqueous Systems that Exhibit **Liquid–Liquid Phase Separation**

Gonzalo N. Escobedo-Alvarado and Stanley I. Sandler*

Center for Molecular and Engineering Thermodynamics, Department of Chemical Engineering, University of Delaware, Newark, Delaware 19716

Accurate vapor-liquid equilibrium (VLE) data have been measured for the systems 2-butanol + water at 318.19 K, 338.37 K, and 353.45 K and for 2-butoxyethanol + water at 363.18 K and 371.19 K. The VLE measurements were done with a Stage-Muller dynamic still. The binary data reported satisfy thermodynamic consistency tests. In addition, the liquid-liquid equilibria for the system 2-butoxyethanol + water have also been measured at these temperatures.

Introduction

Accurate vapor-liquid equilibrium (VLE) data are important in the chemical industry and for the development and testing of thermodynamic models. The systems 2-butanol + water and 2-butoxyethanol + water are particularly interesting, since they exhibit the so-called type VI critical behavior characterized by a closed-loop liquidliquid solubility gap. Although good liquid-liquid equilibrium data are available in the literature (Moriyoshi et al., 1975; Schneider, 1963) for these systems, there are very few reliable VLE data. All reported measurements in the DECHEMA data series (Gmehling et al., 1977) for the system 2-butanol + water failed to pass the point-to-point consistency test. Using a static apparatus, Fischer and Gmehling (1994) measured the VLE for this mixture at 323 K and Gaube et al. (1987) at 298 K. These authors only provide measured liquid-phase composition data.

Several data sets are available in the literature for the system 2-butoxyethanol + water. Scatchard and Wilson (1963) used the static method to measure VLE from 278.15 to 358.15 K, and the vapor-phase composition was obtained indirectly. Schneider and Wilhem (1959) measured the same system at 383.15, 403.15, and 418.15 K using a dynamic method. These measurements go up to 399.98 kPa and are the highest pressure data set available. Koga (1991) reported saturation pressure data at 298.15 K for this mixture using a static method; so again, no vaporphase composition data were obtained. Chiavone et al. (1993) used a dynamic still to measure the VLE at 358.15 and 368.15 K, and these data passed the thermodynamic consistency data.

In this study we report the results of our isothermal VLE measurements for binary mixtures of 2-butanol + water at 318.19 K, 338.37 K, and 353.45 K and for 2-butoxyethanol + water at 363.18 K and 371.19 K. These are the first reported measurements using a dynamic still for the system 2-butanol + water.

Experimental Procedure

Apparatus. The VLE measurements were made using the dynamic method in an all-glass Stage-Muller still in which both the liquid and condensed vapor phases are **Table 1. Vapor Pressures of Pure Substances**

2-butanol

<i>T</i> (K)	P (kPa)	<i>T</i> (K)	P (kPa)			
328.97	14.584	363.18	5.522			
334.96	19.856	365.07	5.919			
334.97	19.863	371.19	7.953			
339.58	24.925	378.55	10.935			
339.60	24.932	381.53	12.370			
339.61	24.939					
343.60	30.237					
343.61	30.244					
346.94	35.226					
346.95	35.232					
346.96	35.239					
349.72	39.883					
353.45	46.950					

2-butoxyethanol

recirculated and sampled. The still was manufactured by Fischer Labor-und-Verfahrenstechnik of Germany and has been described previously (Eng and Sandler, 1984).

Temperature measurements were made with a highprecision platinum resistance thermometer (Rosemount model 162N) accurate to 0.02 K with a resolution of 0.001 K. The platinum resistance thermometer was calibrated by Rosemount in the temperature range -200 to 380 °C at 1.00 °C intervals, and the calibration is directly traceable to the National Institute of Standards and Technology.

Pressure measurements were done with a precision, absolute mercury manometer (Wallace & Tiernan Division, Pennwalt Corp., model FA-187) to an accuracy of 1.1 kPa. This manometer was calibrated using a standard bar, whose calibration is also directly traceable to the National Institute of Standards and Technology. The resolution of the instrument is 0.345 kPa.

Composition Calibration and Measurement. Approximately 20 mixtures of known composition were prepared gravimetrically for each binary system, with a precision of 0.02% in weight. These mixtures were analyzed using a Hewlett-Packard model 5890 gas chromatograph with a model 3390A integrator. A 6 ft \times 1/8 in. Chromosorb 102 packed column and a thermal conductivity detector were used. The oven temperature conditions and helium flow rate were set to 170 °C and 40 mL/min for 2-butanol + water and to 240 °C and 50 mL/min for 2-butoxyethanol + water, respectively.

^{*} To whom correspondence should be addressed.

 Table 2. Experimental Vapor-Liquid Equilibria Data for

 the System 2-Butanol (1) + Water (2)

<i>T</i> = 318.19 K			T=	= 338.37	K	<i>T</i> = 353.45 K		
P (kPa)	<i>X</i> 1	y_1	P (kPa)	<i>X</i> 1	<i>y</i> ₁	P (kPa)	<i>X</i> ₁	y_1
9.660	0.0000	0.0000	25.252	0.0000	0.0000	48.026	0.0000	0.0000
10.408	0.0026	0.0866	26.278	0.0015	0.0395	53.634	0.0019	0.1061
11.192	0.0056	0.1506	26.426	0.0018	0.0471	55.906	0.0028	0.1431
13.081	0.0119	0.2625	27.283	0.0029	0.0693	60.244	0.0040	0.1889
13.891	0.0146	0.3090	28.944	0.0053	0.1313	64.948	0.0060	0.2417
14.533	0.0209	0.3420	29.668	0.0058	0.1516	71.054	0.0138	0.3304
14.701	0.0293	0.3429	31.725	0.0117	0.2070	75.998	0.0269	0.3718
14.782	0.3439	0.3533	33.615	0.0129	0.2598	75.047	0.0292	0.3631
14.715	0.4627	0.3713	33.548	0.0169	0.2586	76.538	0.0387	0.3730
14.708	0.5036	0.3763	35.606	0.0204	0.2977	76.936	0.4031	0.3917
14.681	0.5245	0.3806	37.510	0.0280	0.3303	76.714	0.4732	0.4220
14.620	0.5419	0.3844	38.522	0.0300	0.3552	76.126	0.5360	0.4197
14.414	0.6000	0.4099	40.095	0.0406	0.3730	74.027	0.6361	0.4635
14.350	0.6164	0.4100	40.048	0.2930	0.3742	71.834	0.7009	0.5042
14.155	0.6462	0.4217	40.055	0.3704	0.3788	69.207	0.7555	0.5450
13.784	0.6897	0.4498	40.014	0.4503	0.3911	66.320	0.8023	0.6149
13.271	0.7450	0.4866	39.825	0.5242	0.4085	64.259	0.8391	0.6542
12.906	0.7825	0.5207	39.440	0.5693	0.4273	63.215	0.8597	0.6740
12.440	0.8163	0.5485	38.097	0.6685	0.4809	60.130	0.9167	0.7296
12.177	0.8392	0.5847	36.830	0.7126	0.5016	58.505	0.9355	0.7581
11.678	0.8711	0.6170	35.424	0.7629	0.5592	56.099	0.9545	0.8016
10.975	0.9135	0.6721	33.899	0.8116	0.5951	51.975	0.9769	0.8830
10.476	0.9400	0.7269	32.650	0.8448	0.6221	46.950	1.0000	1.0000
10.118	0.9534	0.7571	30.233	0.9120	0.6953			
9.518	0.9670	0.8378	23.450	1.0000	1.0000			
8.795	0.9841	0.9139						
8.190	1.0000	1.0000						

 Table 3. Experimental Vapor-Liquid Equilibria Data for

 the System 2-Butoxyethanol (1) + Water (2)

Т	'= 363.18 H	ζ.	<i>T</i> = 371.19 K					
P (kPa)	<i>X</i> 1	<i>Y</i> 1	P (kPa)	<i>X</i> 1	<i>y</i> 1			
70.231	0.0000	0.0000	94.527	0.0000	0.0000			
70.848	0.0024	0.0107	95.546	0.0024	0.0128			
71.752	0.0058	0.0197	96.727	0.0054	0.0247			
72.468	0.0113	0.0303	97.092	0.0072	0.0281			
72.583	0.1874	0.0339	97.740	0.0112	0.0330			
72.374	0.2202	0.0344	98.003	0.0161	0.0335			
71.901	0.2585	0.0372	97.997	0.1623	0.0331			
70.875	0.3358	0.0446	97.794	0.1653	0.0334			
69.782	0.3708	0.0455	97.052	0.2446	0.0336			
66.852	0.4586	0.0508	96.228	0.2749	0.0347			
64.678	0.5042	0.0528	95.404	0.3048	0.0374			
62.167	0.5429	0.0565	92.178	0.4009	0.0410			
58.198	0.5960	0.0609	82.949	0.5454	0.0573			
54.594	0.6349	0.0645	77.389	0.6015	0.0645			
49.532	0.6846	0.0712	70.308	0.6571	0.0748			
44.699	0.7217	0.0809	62.370	0.7103	0.0899			
39.974	0.7556	0.0903	55.485	0.7518	0.1072			
30.787	0.8274	0.1312	48.100	0.7939	0.1326			
25.961	0.8642	0.1636	39.852	0.8348	0.1688			
21.789	0.8916	0.2058	33.406	0.8670	0.2093			
16.187	0.9323	0.3139	26.190	0.9030	0.2754			
13.905	0.9501	0.3847	20.594	0.9328	0.3599			
9.464	0.9757	0.5564	17.469	0.9523	0.4336			
5.522	1.0000	1.0000	13.574	0.9716	0.5698			
а	0.1669	0.0123	11.947	0.9777	0.6396			
			7.953	1.0000	1.0000			
			а	0 1 1 0 7	0.0138			

^a Liquid-liquid equilibrium measured at atmospheric pressure.

The following expansion was used for the gas chromatograph (GC) calibration:

$$m_1 = A_1 + A_1(1 - A_1) \sum_{j=0}^n p_j (2A_1 - 1)^j$$
(1)

where m_1 is the mass fraction of component 1, A_1 is its area fraction from GC analysis, and p_j are the adjustable parameters. In the case of the system 2-butanol + water

Figure 1. VLE of the system 2-butanol + water. The points are the experimental data, and the lines are the results obtained using the PRSV EOS with the WS mixing rule and the UNIQUAC model.

Table 4. Thermodynamic Consistency Tests

				poi	int test	
	area test			%	AAD	AAD
system	<i>T</i> (K)	A1	A2	diff	Δy	ΔP (kPa)
2-butanol/water	318.19	0.512	0.504	0.761	0.0080	0.07
	338.37	0.494	0.49	0.396	0.0100	0.17
	353.45	0.381	0.432	6.27	0.0060	0.32
2-butoxyethanol/	363.18	0.397	0.379	2.345	0.0060	0.21
water	371.19	0.36	0.367	0.91	0.0030	0.26

we developed two calibration curves: one for the waterrich region and another for the 2-butanol-rich region. In both cases we used n = 2 in the equation above. For the system 2-butoxyethanol + water, which covered the whole concentration range, a value of n = 4 proved to give a better fit of the experimental data. The compositions determined in this manner are accurate to better than 0.0007 in mole fraction.

Materials. The chemicals used in this study were supplied by Aldrich Chemicals. The guaranteed purity of 2-butanol (anhydrous) was 99.5% and that of 2-butoxy-ethanol (spectrophotometric grade) was 99.0%+. Doubly

Tab	le 5.	Binary	Interacti	on I	Parameters	Using	Metho	d A	$(\gamma - q)$	🕸 Metł	10d)
-----	-------	--------	-----------	------	------------	-------	-------	-----	----------------	--------	------

system	<i>T</i> (K)	UNIQUAC ΔU_{12} (kJ mol ⁻¹)	ΔU_{21} (kJ mol ⁻¹)	$\begin{array}{c} \text{AAD } \Delta P \\ \text{(kPa)} \end{array}$	AAD Δy	NRTL α_{12}	Δg_{12} (kJ mol ⁻¹)	Δg_{21} (kJ mol ⁻¹)	$\begin{array}{c} \text{AAD } \Delta P \\ \text{(kPa)} \end{array}$	AAD Δy
2-butanol (1)/	318.19	0.7717	1.4627	0.300	0.0220	0.2	-1.6504	11.6447	0. 380	0.0276
water (2)	338.37	1.1323	1.0564	0.330	0.0170	0.2	-1.6900	11.4788	0.400	0.022
	353.45	0.7368	1.6384	2.300	0.0320	0.2	-1.9347	12.7717	2.690	0.0370
2-butoxyethanol (1)/	363.18	2.1515	0.0936	0.510	0.0090	0.15	-4.8743	14.9245	0.660	0.0141
water (2)	371.19	2.1163	0.1225	0.980	0.0070	0.15	-5.0983	15.5581	1.000	0.0088

Table 6. Binary Interaction Parameters Using Method B ($\phi-\phi$ Method)

Wong-Sandler Mixing Rule + the UNIQUAC Model

		•	•			
system	<i>T</i> (K)	k_{12}	ΔU_{12} (kJ mol ⁻¹)	ΔU_{21} (kJ mol ⁻¹)	AAD ΔP (kPa)	AAD Δy
2-butanol (1)/water (2)	318.19	-0.116	2.6319	3.5476	0.180	0.014
	338.37	-0.110	3.1779	3.1969	0.310	0.011
	353.45	-0.168	3.2434	4.1145	1.530	0.022
2-butoxyethanol (1)/water (2)	363.18	0.415	3.7416	0.4860	0.560	0.007
3	371.19	0.380	3.1155	0.9092	1.050	0.007

Wong-Sandler Mixing Rule + the NRTL Model										
system	<i>T</i> (K)	k_{12}	α12	Δg_{12} (kJ mol ⁻¹)	Δg_{21} (kJ mol ⁻¹)	AAD ΔP (kPa)	AAD Δy			
2-butanol (1)/water (2)	318.19	-0.150	0.2	2.9358	17.3063	0.140	0.013			
	338.37	-0.148	0.2	3.2635	17.1316	0.300	0.009			
	353.45	-0.153	0.2	3.4918	18.9895	1.530	0.020			
2-butoxyethanol (1)/water (2)	363.18	0.020	0.15	-0.0909	27.0768	0.000	0.009			
0 1 1 1	371 19	0.001	0.15	-0.1786	27 2231	0.000	0.006			

distilled water with a conductivity of 18.2 M Ω cm was used. We checked the purity of each organic component first by GC analysis and then by comparing the vapor pressure measured in the Stage–Muller still with data in the literature. Since the area fraction of each chemical was greater than 0.995 and the vapor pressures were within 0.1 kPa of the literature values, the chemicals were used without further purification. The vapor pressures of the pure substances are reported in Table 1.

Results and Discussion

The results of the VLE measurements are presented in Tables 2 and 3. Both systems are very nonideal, showing azeotropic behavior with liquid-liquid phase separation. In the case of the system 2-butoxyethanol + water it was not possible to go to higher temperatures because of the pressure limitation of the glass still used. Liquid-liquid equilibrium was also measured for this system using previously described equipment (Peschke and Sandler, 1995), and these data are included in Table 3.

Thermodynamic Consistency Tests. The experimental data were tested for thermodynamic consistency using two conventional methods: the integral area consistency test and the point-to-point consistency test proposed by Fredenslund et al. (1977). The integral area compares the areas above and below the *x*-axis in a plot of $\ln(\gamma_1/\gamma_2)$ versus mole fraction. These two areas should be equal for a thermodynamically consistent data set. The integral area test was used by comparing the area differences as a percentage of the total area. These percent differences are shown in Table 4. These areas were obtained by integration of a polynomial fitted to the experimental data. The data satisfy the criterion for a consistent data set [2% error suggested by Prausnitz (1969) and 10% as proposed by Herington (1947)].

The point-to-point consistency test compares the experimental data with the values obtained from the Gibbs-Duhem equation. In this study we followed the procedure proposed by Fredenslund (1977), fitting the excess Gibbs free energy with Legendre polynomials. In general, as shown in Table 4, the consistency of each data set is within

Mol fraction of 2-butoxyethanol

Figure 2. VLE of the system 2-butoxyethanol + water. The diamonds are the experimental data at T = 363.18 K, and the circles are the experimental data at T = 371.19 K. The solid and the broken lines are the results obtained using the PRSV EOS with the WS mixing rule and the NRTL model at 363.18 K and 371.19 K, respectively.

the generally accepted criterion of AAD (Δy) < 0.01 for consistent data.

Data Reduction. The simplex method has been used to reduce the VLE data. The objective function was

$$F = \frac{1}{N} \sum_{i=1}^{N} (P_i^{\text{exp}} - P_i^{\text{calc}})^2$$
 (2)

where N is the number of data points.

Two methods were used.

In method A (the $\gamma - \phi$ method), the vapor phase is described by the Lewis-Randall rule and an activity coefficient model is used for the liquid. The pure component fugacities of the liquid and the vapor states were computed using the Peng-Robinson equation of state as modified by Stryjek and Vera (1986). The phase equilibrium equation in this case is

$$f_i^{\mathcal{N}}(T,P)y_i = x_i \gamma_i f_i^{\mathcal{L}}(T,P)$$
(3)

where f_i^N and f_i^L are the fugacities of pure component *i* in the vapor and liquid states, respectively.

In method B (the $\phi - \phi$ method), the Wong–Sandler (WS) (1992) mixing rule with the Peng-Robinson equation of state as modified by Stryjek and Vera (PRSV) and the UNIQUAC (Abrams and Prausnitz, 1975) and NRTL (Renon and Prausnitz, 1965) models were used for both the vapor and liquid phases. The optimized binary parameters are shown in Tables 5 and 6. The results of the correlations using the WS mixing rule are shown in Figures 1 and 2. The results in the tables show that for these systems, the $\phi - \phi$ method with the WS mixing rule describes these systems better than the $\gamma - \phi$ method.

Conclusions

We have shown with our results that the Stage-Muller still can be used to measure VLE of the systems 2-butanol + water and 2-butoxyethanol + water. Both these systems show liquid-liquid phase separation and have a large difference between the vapor pressures of the pure components. We have also shown that the PRSV equation of state in combination with the Wong–Sandler mixing rule is a useful model for describing the phase behavior of these systems.

Literature Cited

Abrams, D. S.; Prausnitz, J. M. Statistical Thermodynamics of Liquid Mixtures: A New Expression for the Excess Gibbs Energy of Partly or Completely Miscible Systems. AIChE J. 1975, 21, 116-128.

- Chiavone, O.; Proust, P.; Rasmussen, P. Vapor-Liquid Equilibria for Glycol Ether + Water Systems. J. Chem. Eng. Data 1993, 38, 128-131
- Eng, R.; Sandler, S. I. Vapor-Liquid Equilibria for Three Aldehyde/
- Hydrocarbon Mixtures. J. Chem. Eng. Data 1984, 29, 156–161.
 Fischer, K.; Gmehling, J. P-x data and y[∞] Data for the Different Binary Butanol–Water Systems at 50 °C. J. Chem. Eng. Data 1994, 39, 309 - 315.
- Fredenslund, A.; Gmehling, J.; Rasmussen P. Vapor-Liquid Equilibria using UNIFAC; Elsevier: Amsterdam, 1977. Gaube, J.; Krenzer, L.; Wendel, R. Vapor–Liquid Equilibria for Some
- Binary Mixtures Showing Partial Miscibility. Fluid Phase Equilib. **1987**, 35, 279-289.
- Gmehling, J.; Onken, U.; Arlt, W. Vapor-Liquid Equilibrium Data Collection; DECHEMA Chemistry Data Series; DECHEMA: Frankfurt, 1978; Vols. 1, 1a, 1b.
- Herington, E. F. G. A Thermodynamic Test for the Internal Consistency of Experimental Data on Volatility Ratios. Nature 1947, 160, 610-611.
- Koga, Y. Vapor Pressures of Aqueous 2-Butoxyethanol Solutions at 25 °C: Transitions in Mixing Scheme. J. Phys. Chem. 1991, 95, 4119 - 4126
- Moriyoshi, T.; Kaneshina, S.; Aihara, K.; Yabumoto, K. Mutual Solubility of 2-Butanol + Water Under High Pressure. J. Chem. Thermodyn. 1975, 7, 537-545.
- Peschke, N.; Sandler, S. I. Liquid-Liquid Equilibria of Fuel Oxygenate + Water + Hydrocarbon Mixtures. I. J. Chem. Eng. Data 1995, 40, 315-320.
- Prausnitz, J. M. Molecular Thermodynamics of Fluid Phase Equilibria; Prentice Hall: Englewood Cliffs, NJ, 1969.
- Renon, H.; Prausnitz, J. M. Local Compositions in Thermodynamic Excess Functions for Liquid Mixtures. AIChE J. 1965, 14, 135-144.
- Scatchard, G.; Wilson, G. M. Vapor-Liquid Equilibrium. XIII. The System Water-Butyl Glycol from 5° to 85°. J. Am. Chem. Soc. 1963, *86*, 133–137.
- Schneider, G. Druckeinfluss auf die Entmischung Flüssiger Systeme, I Geschlossene Mischungslücken bis 5000 bar. Zeitschrift für Physikalische Chemie Neue Folge 1963, 37, 333-352.
- Schneider, G.; Wilhem G., Verdampfungsgleichgewitche im System Wasser-Butylglykol. Z. Phys. Chem. Neue Folge 1959, 20, 219-232.
- Stryjek, R.; Vera, J. H. PRSV: An Improved Peng-Robinson Equation of State of Pure Compounds and Mixtures Can. J. Chem. Eng. 1986, 64, 323-333.
- Wong, D. S. H.; Sandler, S. I. A Theoretically Correct Mixing Rule for Cubic Equations of State. AIChE J. 1992, 38, 671-680.

Received for review September 16, 1998. Accepted December 24, 1998. We are very grateful for the funding of a project of which this research was a part by the United States National Science Foundation (CTS-9521406).

JE980228Q