411

$P-\rho-T$ Data of Liquids: Summarization and Evaluation. 5. Aromatic Hydrocarbons

Ivan Cibulka*,[†] and Toshiharu Takagi[‡]

Department of Physical Chemistry, Institute of Chemical Technology, 166 28 Prague, Czech Republic, and Kyoto Institute of Technology, Kyoto 606-8585, Japan

The published experimental data for 28 aromatic hydrocarbons are summarized and reviewed, and the parameters of the Tait equation are given. This equation allows the calculation of smoothed values of either the volume ratio, $V(P)/V(P_{ref})$, and related properties (relative density, $\rho(P)/\rho(P_{ref})$, compression, {1 – $V(P)/V(P_{ref})$ }), or, using density data at atmospheric pressure ($P_{ref} = 0.1$ MPa) or at saturation ($P_{ref} = P_{sat}$), the liquid density of the substances over a temperature and pressure range. A comparison of isothermal compressibilities calculated from the Tait equation with available data at P = 0.1 MPa from the literature is also presented.

Introduction

The work is a continuation of a systematic summarization and critical evaluation of published $P-\rho-T$ data of organic substances in a liquid state. The data for C, H, O substances, (1-alkanols C₁ to C₁₀ [94-cib/zik]) and other C, H, O compounds [97-cib/hne, 97-cib/hne-1]) have been reviewed and evaluated. A review of data for a group of hydrocarbons (*n*-alkanes from C₅ to C₁₆) was also published [96-cib/hne]. In this work the published experimental values of relative density, $\rho(T,P)/\rho(T,P=0.1 \text{ MPa or } P_{\text{sat.}})$ and related quantities of liquids containing an aromatic ring in their molecule compiled from the literature are evaluated. The results can be used to calculate the density of compressed liquid using the reference density $\rho(T,P=0.1 \text{ MPa or } P_{\text{sat.}})$ either selected from the literature or measured for a particular sample.

Sources of Data

The original experimental data (5834 data points) processed were extracted from the database which was employed for our previous reviews and is being currently updated. A list of substances is presented in Table 1 along with Chemical Abstracts Service Registry Numbers (CAS-RN) and formulas.

The characteristics of data that were available in the database for density and related quantities (molar and specific volumes, volume or density ratios, compression) of selected compounds are summarized in Table 2. The temperature ranges and numbers of experimental values are restricted up to the critical temperature; i.e., only subcritical liquid density data were taken from the source

Table 1. List of Substances: Names (Alternative Names),Chemical Abstracts Service Registry Numbers, CASRN(Supplied by Authors), and Summary Formulas

name (alternative name)	CASRN	formula
benzene	71-43-2	C ₆ H ₆
benzene- d_6 (hexadeuteriobenzene)	1076-43-3	C_6D_6
methylbenzene (toluene)	108-88-3	C7H8
ethenylbenzene (vinylbenzene, styrene)	100-42-5	C_8H_8
ethylbenzene	100-41-4	C8H10
1,2-dimethylbenzene (<i>o</i> -xylene)	95-47-6	C8H10
1,3-dimethylbenzene (<i>m</i> -xylene)	108-38-3	C8H10
1,4-dimethylbenzene (<i>p</i> -xylene)	106-42-3	C8H10
propylbenzene	103-65-1	$C_{9}H_{12}$
1-(methylethyl)benzene	98-82-8	$C_{9}H_{12}$
(isopropylbenzene, cumene)		
1,2,4-trimethylbenzene (pseudocumene)	95-63-6	$C_{9}H_{12}$
1,3,5-trimethylbenzene (mesitylene)	108-67-8	$C_{9}H_{12}$
naphthalene	91-20-3	$C_{10}H_{8}$
1,2,3,4-tetrahydronaphthalene (tetralin)	119-64-2	$C_{10}H_{12}$
butylbenzene	104-51-8	$C_{10}H_{14}$
1-(methylpropyl)benzene	135-98-8	$C_{10}H_{14}$
(<i>sec</i> -butylbenzene)		
1-methylnaphthalene	90-12-0	$C_{11}H_{10}$
hexylbenzene	1077-16-3	$C_{12}H_{18}$
diphenylmethane	101-81-5	$C_{13}H_{12}$
1,1-diphenylethane	612-00-0	$C_{14}H_{14}$
octylbenzene	2189-60-8	$C_{14}H_{22}$
nonylbenzene	1081-77-2	$C_{15}H_{24}$
1,2,3,4,4a,7,8,9,10,11,12,12a-dodeca-	1610-22-6	$C_{18}H_{24}$
hydrochrysene		
1,1-diphenylheptane	1530-05-8	$C_{19}H_{24}$
1-phenyl-3-(2-phenylethyl)undecane	7225-70-9	$C_{25}H_{36}$
1-pentadecylnaphthalene	55191-63-4	$C_{25}H_{38}$
(3-octylundecyl)benzene	5637-96-7	$C_{25}H_{44}$
1,1-diphenyltetradecane	55268-63-8	$C_{26}H_{38}$

database. Similarly, as in our previous reviews, values (denoted by a letter F in the "data type" column of Table 2) calculated from smoothing functions presented in the papers (mostly the Tait equation), following as much as possible the information concerning the distribution of experimental points given by authors, were included for

10.1021/je980278v CCC: \$18.00 © 1999 American Chemical Society Published on Web 04/28/1999

^{*} Corresponding author. Fax: +420-2-2431-0273. E-mail: ivan.cibulka@vscht.cz.

[†] Institute of Chemical Technology.

[‡] Kyoto Institute of Technology.

Table 2. Chara Liquid State, 2	acteristics T _{min} , T _{max} , F	of Data Set P _{min} , and P _m	s: Overall N _{ax} , Experim	Number of Dat ental Method	a Points, <i>N</i> _p , T Used, Types o	Temperatur f Data, and	re and Pressur l Purities of Me	e Ranges within the easured Samples
ref	$N_{ m p}$	T_{\min}/K	$T_{\rm max}/{ m K}$	P_{\min}/MPa	P _{max} /MPa	meth ^a	data type ^{b}	sample purity ^c /%
Danaana								

ref	$N_{ m p}$	T_{\min}/\mathbf{K}	$T_{\rm max}/{ m K}$	P_{\min}/MPa	P _{max} /MPa	meth ^a	data type ^b	sample purity ^c /%
				Benz	ene			
31-bri	9	323.15	368.15	49.1	343.3	vb	D	
38-gib/kin	25	298.15	338.15	25.0	125.0	va	F	
49-gla/sag	169	310.93	510.93	0.7	68.9	vl	S	
54-bet/hay	5	298.15	313.15	40.6	101.4	va	D^{r}	99.99m ^e
57-wal/ric	2	289.15	305.15	5240.0	12100.0	SW	D	
59-gol/vag	68	293.15	561.95	1.Z	51.5	bu	D	
59-gol/vag	80	293.13	000.10 202.15	0.1	30.7 40.5	bu	5	
62-hol/wha	10	208 15	208 15	1.0	40.3	vl	D F	>00 00
62-hol/wha	10	208 15	208 15	1.0	10.0	vl	F	> 99.9
62-hol/wha	60	298 15	349.03	1.0	10.0	vl	F	>99.9°
65-sch/has	8	298.15	298.15	20.0	90.0	vs	Ē	00.0
70-dic	35	295.00	295.00	1900.0	43200.0	SW	D	>99d
72-lys	3	297.15	297.15	118.0	722.0	SW	D	
73-rog/bur	10	298.15	298.15	1.0	10.0	ce	F	
75-bur/ric	16	293.15	298.15	1.0	8.0	ce	F	$>99m^d$
75-par/jon	33	303.00	433.00	6.0	454.4	vb	D	
77-geh/len	118	298.15	553.15	1.0	300.0	ia	\mathbf{D}^{g}	
77-gup/han	24	285.15	363.15	2.8	22.1	vs	D	00.04
78-fig/fuc	13	298.15	324.15	13.7	147.0	vb	D	99.2^{e}
78-gou 70 line/fuili	90	293.55	393.05	5.1	40.1	VI	D	00 g.d
79-Kas/Iuk	40	298.13	348.13	0.9	105.1	VI 11	D	99.8V ^a
00-tak 81-dym/rob	24	296.15	290.13	16 5	00.0 402.2	nd	s	~99.0V
81_tak	0 0	203 15	303 15	10.0	90.0	nu ul	C	
82-dvm/gle	4	298.09	373 16	0.4	33.2	mo	D	99.5 m^d
82-dym/gle	23	298.09	373.16	42.6	391.4	vb	Ď	$99.5 \mathrm{m}^d$
82-tak/ter	24	293.15	313.15	5.0	90.0	ul	Ċ	
82-tak/ter-1	9	303.15	303.15	10.0	90.0	ul	C	
83-kas/fuk	38	298.15	398.15	0.2	97.8	cl	D	$99.7 \mathrm{m}^d$
84-kra/nie	148	322.45	560.69	1.9	59.7	ia	\mathbf{D}^{g}	
84-mat/van	42	288.15	313.15	2.5	35.0	mo	F	
87-hol/goe	5	293.15	293.15	2.0	10.0	mo	\mathbf{D}^{g}	>99.7m ^e
87-str/bal	91	423.16	558.20	0.9	34.0	ia	D^g	99.999 ^e
87-sun/kor	81	283.14	323.13	10.0	170.0	ul	Cg	$>99.5v^{a}$
88-sia/tej	21	298.20	338.20	0.7	34.3	mo	DE	>99mª
90-bru/wei	47	293.13	338.13	3.2	130.0	VD VI	r D	>00 0 md
91-city/gre	19	296.15	523 15	0.0	300 0	vi	D	~99.9W-
92-lag/hon	23	288 15	323 15	10.0	40.0	mo ⁱ	D	
92-lag/bon	23	288.15	323.15	10.0	40.0	mo ⁱ	D	
93-mal/woo	86	298.15	348.15	2.6	278.6	vb	Ď	
total	1091	000 14	501 05	0.9	42200.0			
totai	1031	283.14	301.95	0.2	43200.0			
				Benzei	$ne-d_6$	_		
81-dym/rob	24	298.33	373.22	21.0	400.8	nd	S	00.0
82-dym/gle	7	323.48	373.53	0.4	31.4	mo	D	99.6m ^e
82-dym/gle	25	323.48	3/3.33	51.Z	403.2	VD	DE	99.6m ^e
o4-IIIat/vall	42	200.15	515.15	2.0	55.0	1110	Г	
total	98	288.15	373.53	0.4	403.2			
				Methylb	enzene			
57-wal/ric	2	277.15	288.15	5210.0	12150.0	SW	D	
63-and	16	295.45	295.45	68.5	785.9	va	D	
68-ski/cus	11	303.15	303.15	76.0	484.3	vl	D	
69-mop	39	223.15	298.15	10.2	202.8	vb	D	99.9^{e}
70-akh/abd	170	298.15	573.15	0.5	50.4	pi	D	$99.98w^e$
77-gup/han	24	273.15	363.15	2.8	22.1	vs	D	
78-gou	90	294.45	392.75	5.1	40.1	vl	D	ood
/9-010	15	295.00	295.00	510.0	40200.0	SW	D	99ª
02-KdS/11dS	00	273.13	373.13	12.5	200.0		3 C	~99.5*
85-alb/gat	19	293.13	303.13	20.0	20.5	mo	D	
85-eas/woo	15	278 15	298 15	25.0	200.0	vb	S	
85-mur/tra	157	179.02	320.30	10.1	263.4	ul	C^g	
85-tak/ter	16	303.15	303.15	10.0	160.0	ul	Ĕ	$>99.6v^{e}$
88-dym/mal	47	298.15	373.15	4.9	459.0	vb	D	>99m ^d
88-dym/mal	10	348.15	348.15	5.7	454.2	vb	D	>99m ^d
88-sid/tej	21	298.20	338.20	0.7	34.5	mo	D	>99m ^d
88-str/bal	111	348.07	593.18	0.2	36.2	ia	\mathbf{D}^{g}	99.999 ^e
91-chy/gre	16	318.15	333.15	0.4	5.0	vl	D	$>99.9w^{d}$
94-tar/cas	48	223.16	303.14	0.1	105.5	rl	D^n	$>99.5^{a}$
95-noc/bur	50 910	244.53	302.04	2.6	62.5	VD		99.96m°
90-mag/bru 96-poo/kiri	51U 60	100.00 393.00	400.00 /92.00	U.J Q /	33.1 61 Q	Id	л. Д.	99.974111° 00 Qd
97-noe/kir/	69	323.00	423.00	3.4 3.4	64.8	vs	D D	99.8 ^d
or potrais	03	020.00	120.00	5.4	04.0	43	D	00.0
total	1442	179.02	593.18	0.1	40200.0			

ref	Np	$T_{\rm min}/{ m K}$	$T_{\rm max}/{ m K}$	P _{min} /MPa	P _{max} /MPa	meth ^a	data type ^b	sample purity ^c /%
				Ethenylbe	nzene			
49-bri	6	298.15	298.15	49.0	294.2	vs	D	
				Ethylben	zene			
90-zho/lag	32	293.10	353.10	5.0	40.0	mo	D	>99d
91-chy/gre	18	318.15	333.15	0.4	5.0	vl	D D ^g	$>99.9W^d$
93-gar/ban	60	318.15	373.15	1.0	10.0	mo	D^{s}	99.5m°
total	110	293.10	373.15	0.4	40.0			
_				1,2-Dimethy	lbenzene			
49-bri	4	298.15	298.15	49.0	196.1	VS	D	
69-akh/ima	о 165	303.15 298.15	303.15 623.15	35.7 0.1	213.0 50.8	vi ni	D	99 7we
69-akh/ima	36	473.15	573.15	1.3	50.0	pi	D	99.7w ^e
85-tak/ter	18	303.15	303.15	10.0	180.0	ul	F	>99.6v ^e
93-gar/ban	60	318.15	373.15	1.0	10.0	mo	\mathbf{D}^{g}	99.6m ^e
94-tar/cas-1	59	298.15	298.15	1.4	107.9	rl	D	98.8 ^e
94-tar/cas-1	79	257.30	298.46	0.4	78.1	ri	D	98.8
total	426	257.30	623.15	0.1	213.6			
				1,3-Dimethy	lbenzene			
49-bri	9	298.15	298.15	49.0	441.3	vs	D	
63-and	2	298.15	298.15	175.0	303.8	va	S	00 4
67-mam/akh-1	/0	290.10 198.15	473.17	0.4	19.9	pi ni	D	99.4W ^e 99.4W ^e
67-mam/akh-1	10	523.22	573.21	1.0	19.7	pi	D	99.4w ^e
81-tak	20	303.15	303.15	10.0	200.0	ul	С	
90-yok/mor	4	298.15	298.15	10.0	40.0	pi	D	99.95m
93-gar/ban	60	318.15	373.15	1.0	10.0	mo	\mathbf{D}^{g}	99.3m ^e
94-tar/cas	30	226.15	299.23	0.4	0.4	rl	D^n D^h	$>99^{d}$
94-tar/cas 95-cha/lee	39	298 15	348 15	0.1	20.0	mo	D	>99 ⁻
96-cha/lee-1	18	333.15	413.15	5.0	30.0	mo	D	99.7 ^e
total	462	226 15	598 15	0.1	441 3			
totai	102	220.10	000.10	1.4 Dimethal	111.0			
68 ski/cus	3	303 15	303 15	1,4-Dimethyl	ibenzene 71.9	vl	D	
69-akh/ima-1	128	323.15	548.15	0.4	50.5	ni	D	99.78w ^e
69-akh/ima-1	29	548.15	598.15	2.6	50.7	pi	D	$99.78w^e$
81-tak	5	303.15	303.15	10.0	50.0	ul	С	
90-yok/mor	40	283.15	298.15	10.0	200.0	pi	D	99.90m ^e
93-gar/ban	60 10	318.15	373.15	1.0	10.0	mo rl	D^{g}	99.7m ^e 99.6e
94-cas/tar	37	288.21	303.14	0.2	42.9	rl	D^h	99.6 ^e
total	219	292 15	509 15	0.2	200.0		_	
totai	312	203.15	556.15	0.2	200.0			
01 abr/m	10	210 15	222 15	Propylber	nzene 5 0	•-1	D	>00 0d
91-cny/gre	18	318.15	333.15	0.4	5.0	VI	D	~99.9W ⁴
40.1.1	17	000 15	000 15	1-(Methylethy	l)benzene		D	
49-bri 68 ski/sus	1/	298.15	298.15	49.0	3922.7	VS Vl	D	
91-chy/gre	18	318.15	333.15	0.4	438.5	vl	D	$>99.9w^{d}$
total	15	208 15	222 15	0.4	2022 7		2	001011
totai	45	290.15	555.15	0.4	3922.1			
70 000	00	204 65	202 55	1,2,4-Trimeth	ylbenzene	•-1	D	
ro-gou	90	234.00	392.33	J.I	40.1	VI	D	
40 h:	e	200.15	909 15	1,3,5-Trimeth	ylbenzene		D	
49-011 87-eas/woo	0 22	298.15 298.15	298.15 313 15	49.0	294.2 280 0	vs vh	D F	
90-pol/wei	72	262.00	362.20	5.0	200.0	vb	F	99.0^{d}
94-bao/cac	32	238.19	298.16	44.8	44.8	rl	\mathbf{D}^h	
94-bao/cac	219	238.15	298.15	0.4	108.2	rl	\mathbf{D}^h	
total	351	238.15	362.20	0.4	294.2			
				Nanhtha	lene			
38-rus/hot	16	378.71	746.48	20.9	40.0	cl	D	
			1	2.3.4-Tetrahydr	onaphthalene			
49-bri	6	298.15	298.15	49.0	294.2	VS	D	
88-sid/tej	21	298.20	338.20	0.7	34.5	mo	D	$>99m^d$
95-cha/lee	45	298.15	348.15	1.0	30.0	mo	D	$99 m^d$
96-cha/lee-1	18	333.15	413.15	5.0	30.0	mo	D	99.2^{e}
total	90	298.15	413.15	0.7	294.2			
				Butvlben	zene			
90-zho/lag	32	293.10	353.10	5.0	40.0	mo	D	$> 99^{d}$
91-chy/gre	18	318.15	333.15	0.4	5.0	vl	D	$>99.9w^{d}$
total	50	293.10	353.10	0.4	40.0			

Table 2. (Continued)

_

Та	ble	2.	(Continu	ed)
----	-----	----	----------	-----

ref	$N_{\rm p}$	T_{\min}/K	$T_{\rm max}/{ m K}$	P _{min} /MPa	P _{max} /MPa	meth ^a	data type ^b	sample purity%
				1-(Methylpro	pyl)benzene			
85-mak/kis	18	313.00	453.00	9.8	245.3	nd	D	
				1-Methylna	phthalene			
88-sid/tej	21	298.20	338.20	0.7	34.5	mo	D	$>99m^d$
95-yok/ebi	30	333.15	333.15	10.0	300.0	pi	D	99.9m ^e
96-cha/lee	45	298.15	348.15	1.0	30.0	mo	D	98m ^d
97-bay/bon	15	303.15	343.15	20.0	100.0	mo	D	>98a
total	111	298.15	348.15	0.7	300.0			
				Hexylbe	enzene			
90-zho/lag	32	293.10	353.10	5.0	40.0	mo	D	97^d
				Diphenylı	methane			
97-cha/lee	18	333.15	413.15	5.0	30.0	mo	D	99.6 ^e
				1.1-Dipher	vlethane			
59-low/spe	30	310.93	372.04	20.0	340.0	vb	S	
1				Octvlbe	nzene			
90-zho/lag	32	293.10	353.10	5.0	40.0	mo	D	>99d
8				Nonvibo	007000			
90-zho/lag	32	293 10	353 10	5.0	40.0	mo	D	97 d
91-kan/lag	12	313.15	353.15	10.0	40.0	mo	D	$> 97^{d}$
total	44	203 10	353 15	5.0	40.0		_	
totai	44	233.10	555.15	J.U	40.0	,		
EQ large/ama	95	210.02	1,2,3,4,4a,	7,8,9,10,11,12,12	2a-Dodecahydro	chrysene	c	
59-10w/spe	30	310.93	408.15	20.0	340.0	VD	3	
				1,1-Diphen	ylheptane		-	
59-low/spe	38	310.93	408.15	20.0	340.0	vb	S	
			1-I	Phenyl-3-(2-phen	ylethyl)undecan	ie		
58-cut/mcm	128	310.95	408.15	34.5	1033.7	vb	S	
				1-Pentadecylı	naphthalene			
58-cut/mcm	43	333.15	408.15	34.5	551.3	vb	S	
				(3-Octylunde	cvl)benzene			
58-cut/mcm	126	310.95	408.15	34.5	964.7	vb	S	
	-			1.1. Dinhenvl	totradocano		-	
59-low/spe	32	310 93	408 15	20 0		vh	S	
00-10w/spc	02	510.00	100.13	20.0	010.0	VD	5	

^{*a*} Method used for measurements: bu, buoyancy method; ce, densities evaluated by integration from isothermal compressibilities obtained by ultracentrifuge method; cl, constant-volume cell with liquid piston; ia, isochoric apparatus; mo, mechanical oscillator method; nd, not described or stated in the reference; pi, piezometer of unspecified type; rl, expansion principle; sw, shock wave method; ul, densities evaluated from speed of ultrasound; va, Aime method; vb, variable-volume cell with bellows; vl, variable-volume cell with liquid piston; vs, variable-volume cell with solid piston. For the classification and description of the methods, see ref [85-tek/cb]. ^{*b*} D, direct experimental data; S, smoothed data presented in the reference; C, calculated from other properties; F, values calculated from smoothing equation reported by the researchers. ^{*c*} No letter, unspecified percent; m, mole percent; v, volume percent; w, mass percent. ^{*d*} Purity of source material is given only. ^{*e*} Final purity of the sample. ^{*f*} ITS-48 declared by the researchers. ^{*s*} ITS-68 declared by the researchers. ^{*i*} Two methods of calibration of DMA 512 vibrating-tube densimeter reported; the method that corresponds to the data set listed first is declared by the researchers to be superior. ^{*j*} These two sources present identical data.

some substances if no direct experimental (D) or smoothed values (S) were available in the papers. The $\rho(T,P)$ values calculated from other properties (C) were also included in the evaluation.

Treatment of Data and Method of Data Evaluation

The procedures of treatment of the data and the critical evaluation were essentially the same as those employed for 1-alkanols, and the details may be found in our previous paper [94-cib/zik]. A brief summarization only is given below.

Available data on the compressed liquid density and related quantities were fitted by a Tait equation with temperature-dependent parameters C(T) and B(T) written in the form

$$\rho(T, P, \vec{c}, b) = \rho(T, P_{\text{ref}}(T)) / \left[1 - C(T, \vec{c}) \ln \left[\frac{B(T, \vec{b}) + P}{B(T, \vec{b}) + P_{\text{ref}}(T)} \right] \right]$$
(1)

where

$$C(T, \vec{c}) = \sum_{i=0}^{N_{\rm C}} c_i [(T - T_0)/100]^i \qquad \vec{c} = \{c_i\} = \{c_0, ..., c_{N_{\rm C}}\}$$
(2)

$$B(T,\vec{b}) = \sum_{i=0}^{N_{\rm B}} b_i [(T - T_0)/100]^i \qquad \vec{b} = \{b_i\} = \{b_0, ..., b_{N_{\rm B}}\}$$
(3)

and T_0 is a parameter with a preselected fixed value for which $C(T_0) = c_0$ and $B(T_0) = b_0$ are valid. The reference values, $\rho(T, P_{ref}(T))$ and $P_{ref}(T)$, were selected in the same way as that used previously; i.e., at temperatures below the normal boiling temperature the densities at atmospheric pressure ($P_{ref} = 0.101$ 325 MPa) were used, while for higher temperatures the values along the saturation curve, i.e., saturated liquid densities and saturated vapor pressures, were employed. Experimental values of densities Table 3. Parameters c_i , b_i , and T_0 of Equation 1, Temperature and Pressure Ranges,^a T_{min} , T_{max} , P_{min} , and P_{max} , Absolute, RMSD, and Relative, RMSD_r, Root Mean Square Deviations, Biases, bias, Number of Data Points, N_p , \pm , Weighted Standard Deviations, s_w , and References to Saturated Vapor Pressure, ref(P_{sat}), for the Fits Where T_{max} Is Higher Than Normal Boiling Temperature

	benzene	benzene- d_6	methyl- benzene	ethenyl- benzene	ethyl- benzene	1,2-dimethyl- benzene	1,3-dimethyl benzene	- 1,4-dimethyl- benzene
c_0	0.093 656	0.093 026	0.093 736	0.092 841	0.088 376	0.080 272	0.081 355	0.084 542
b_0/MPa	96.9907	51.3187	-0.00500	4 122.6265	88.9198	99.4733	94.8115	54.0346
$b_1/(MPa\cdot K^{-1})$	-76.0229	-51.3136	-80.9545		-58.1256	-65.7138	-68.5213	-44.7021
$b_{3}/(MPa\cdot K^{-3})$	1.7738	14.9213	-3.3995		10.8100	-1.1535	-3.5527	-1.1372
$b_4/(MPa\cdot K^{-4})$	-1.2453	070 50	0.2800	000.45	010.15	000 45	0.3473	070.45
T_0/\mathbf{K} T /K	298.15 283.14	373.53 288.15	298.15 179.02	298.15 298.15	318.15 293.10	298.15 257 30	298.15 229 95	373.15 288.18
$T_{\rm min}/{\rm K}$ $T_{\rm max}/{\rm K}$	499.09	373.22	583.18	298.15	373.15	598.15	598.15	598.15
$P_{\rm min}/{\rm MPa}$	0.40	2.50	0.13	49.03	0.40	0.14	0.14	0.17
P _{max} /MPa RMSD/(kg·m ⁻³)	0.603	0.807	379.20 0.423	294.20	40.00 0.189	0.643	0.425	200.00
RMSD _r /%	0.079	0.080	0.052	0.027	0.022	0.082	0.054	0.076
bias/(kg·m ⁻³)	0.039 718	0.249 76	0.061 873	0.021	0.012	0.187	-0.087 386	0.021 279
±	-26	36	39	Ő	32	57	-40	-17
S_{W}	1.123	0.911	0.927	1.302	0.945	1.033	0.893	0.992 07 shi/kni
Ter(<i>F</i> sat.)	90-allib/ewi					83-mcg	63-111cg	97-CIII/KIII
	propyl- benzene	1-(methyle benze	ethyl)- ne	1,2,4-trimethyl- benzene	1,3,5-trii benz	methyl- ene nap	hthalene 1	,2,3,4-tetrahydro- naphthalene
c_0 h/MDa	0.015 272	0.093 6	326 00	0.082 853	0.088	436 0.0	91 123	0.090 041
b_0/MPa $b_1/(MPa\cdot K^{-1})$	-5.5084	-79.50	00)67	-57.5101	-74.5	5566 -2	4900 9.0310	-87.0700
$b_2/(MPa\cdot K^{-2})$				6.7946	7.388	9 2.9	949	17.3195
T_0/K T_{min}/K	318.15 318 15	298.15 298.15		294.65 294.65	298.1 238 1	5 378 5 378	3.71 3.71	298.15 298.15
$T_{\rm max}/{\rm K}$	333.15	333.15		392.55	362.2	0 680	0.93	413.15
P _{min} /MPa	0.37	0.36	3	5.10	0.37	20. 0 39	89 99	0.69
$\frac{1}{\text{max}/\text{NH}}a$ RMSD/(kg·m ⁻³)	0.103	0.240	5	0.397	0.517	3.2	47	0.196
RMSD _r /%	0.012	0.024		0.046	0.056	0.4	09	0.020
$\frac{Das}{(kg \cdot m^{-3})}$	-0.008 18	0.016		0.001 90	0.185	0.1	44	0.059 90
\pm^{p}	-4	-1		-4	91	2		40
$s_{\rm w}$ ref($P_{\rm sat.}$)	1.042	0.890		0.913	1.132	1.6 90-	24 amb/ewi	0.939
	butyl-	1-(methyl	propyl)-	1-methyl-	hevyl-	dinhenvl-	1 1-dinheny	d- octyl-
	benzene	benze	ene	naphthalene	benzene	methane	ethane	benzene
c_0 b_0/MPa	0.079 196	0.092	161 03	0.091 986 152 0557	0.083 452	0.063 097 94 8195	0.089 115 154 1532	0.079 597 110 2776
$b_0/(\text{MPa}\cdot\text{K}^{-1})$	-53.8613	-62.5	075	-90.8224	-52.8623	-56.3975	-75.1358	-74.0081
$b_2/(MPa\cdot K^{-2})$	19.7739	11.60	43	-49.9987	902 10	11.6999	8.0478	31.5832
$T_{\rm min}/{\rm K}$	293.10	313.0	0	298.15	293.10	333.15	310.93	293.10
$T_{\rm max}/{\rm K}$	353.10	453.0	0	348.15	353.10	413.15	372.04	353.10
P _{min} /MPa P _{may} /MPa	0.38	9.80	0	0.69	5.00	5.00	40.00	5.00
RMSD/(kg·m ⁻³)	0.133	0.567	-	0.234	0.279	0.064	0.182	0.141
RMSD _r /% bias/(kg·m ⁻³)	$0.016 \\ -0.014$	0.068		0.023	$0.032 \\ -0.002$	0.007	0.018	0.017
$N_{\rm p}$	49	17		102	32	18	27	32
±	9	1		16	-6	-6	3	0 873
S _W	0.730	1.015		0.855	0.554	0.909	(2	0.875
	nonyl- benzene	DHCH ^b	l,1-diphenyl- heptane	1-phenyl-3-(ethyl)und	2-phenyl- lecane	1-pentadecyl- naphthalene	(3-octylundecyl) benzene	- 1,1-diphenyl- tetradecane
c_0 b_0/MP_2	0.084 407	0.085 194	0.086 804	0.093	579 349	0.088 826	0.090 790	0.086 304
b_0 /(MPa·K ⁻¹)	-73.6978	-49.1905	-57.0055	-62.02	294	-40.9605	-49.0859	-50.8690
<i>b</i> ₂ /(MPa•K ^{−2}) <i>b</i> ₃ /(MPa•K ^{−3})	20.9384	28.0661	5.7969	47.458 45.606	6 6	20.8847	8.7882	-23.4097
T_0/\mathbf{K} T_{min}/\mathbf{K}	293.10 293.10	408.15	372.04 310.93	388.15		408.15 333.15	408.15 310.95	372.04 310 93
$T_{\rm max}/{\rm K}$	353.15	408.15	408.15	408.15		408.15	408.15	408.15
$P_{\rm min}/{\rm MPa}$	5.00	20.00	20.00	34.46	E	34.46	34.46	20.00
P _{max} /MPa RMSD/(kg·m ⁻³)	40.00 0.127	340.00 0.270	340.00 0.260	1033.6	0	551.28 0.292	964.74 0.479	340.00 0.652
RMSD _r /%	0.015	0.026	0.027	0.052		0.031	0.051	0.068
bias/(kg·m ⁻³)	0.036	0.008	0.032	0.015		0.025	0.013	0.076
± 1 vp	⁴⁴ 8	-5	-1	120 5		40 1	-9	32 4
$S_{ m W}$	0.909	0.185	0.195	0.373		0.223	0.366	0.487

^{*a*} The low limit of pressure ranges is 0.1 MPa or a saturation pressure (whichever is higher) for all fits; P_{\min} is the lowest pressure in a particular set of compressed-liquid density data retained for the correlation. ^{*b*} DHCH = 1,2,3,4,4a,7,8,9,10,11,12,12a-dodecahydrochrysene.

Figure 1. Temperature and pressure coordinates of data points retained in the correlations for the fits in Table 3, where P-T areas of retained data points are not rectangular. The lines represent solid–liquid equilibrium curves: benzene [88-goo], methylbenzene [89-goo], 1,3,5-trimethylbenzene [87-eas/woo], 1-methylnaphthalene [95-yok/ebi].

at atmospheric pressure or at saturation for the same sample reported along with compressed liquid density data were preferably used for the reference density, $\rho(T, P_{ref})$, and thus the values of relative density, $\rho(T,P)/\rho(T,P_{ref} =$ 0.1 MPa or $P_{\text{sat.}}$), reported by the authors were correlated by eq 1. In some cases of isothermal data the reference density, $\rho(T, P_{ref})$, was obtained for each isotherm by an extrapolation of experimental compressed liquid density data to reference pressure, P_{ref} (0.101 325 MPa below or $P_{\rm sat.}$ above normal boiling temperature), using the Tait equation. If the reference values were not available in the original source and the extrapolation was not feasible (e.g., for isobaric or isochoric data), then densities obtained from the equations summarized in the Appendix (Table 6) were employed in the correlations. Saturated vapor pressures were calculated from the smoothing functions taken from the literature (for references see Table 3) and used in the correlations. Selected reference densities, $\rho(T, P_{ref})$ reported in the papers are presented in the form of smoothing functions of temperature in Table 7 in the Appendix.

Adjustable parameters \vec{c} and \vec{b} of function 1 were obtained by minimizing the objective function

$$\phi(\vec{c},\vec{b}) = \sum_{j=1}^{N_{\rm p}} w_j [\rho_j - \rho(T_{j}, P_{j}, \vec{c}, \vec{b})]^2$$
(4)

where ρ_{j} , T_{j} , P_{j} is the *j*th experimental data point, $\rho(T_{j}, P_{j}, \vec{c}, b)$ is the value calculated from function 1 with parameters \vec{c} and \vec{b} for the values T_{j} and P_{j} , and N_{p} is the number of experimental values of density used in the correlation.

Adjustable parameters were calculated by the Marquardt algorithm in double precision to minimize the influence of rounding errors. Statistical weights, w_{j} , in eq 4, defined as

$$W_j = \mu / (\delta \rho_j)^2 \tag{5}$$

where $\delta \rho_i$ is the experimental uncertainty taken from the source database and either given by the authors (preferably) or estimated by a compiler for the *i*th density value in a correlated data set, were adjusted by varying the parameter μ_i ($\mu_i = 0$ for rejected values). The calculations of the parameters \vec{c} and \vec{b} were repeated until the final fit was obtained where the deviations between retained experimental and smoothed values were roughly equal to the modified experimental uncertainties, $\delta \rho / \mu_I^{1/2}$, i.e., where the weighted standard deviation of the fit was close to unity. In those cases where only one set of smoothed values (S-type data, Table 2) was available for a particular substance, the statistical weights were not modified ($\mu_i =$ 1 for retained and $\mu_i = 0$ for rejected data points), and therefore the weighted standard deviation, s_w (see below), may differ from unity.

Results

Table 3 records the values of the parameters of eq 1 for each substance along with some statistical information of the fits defined as follows:

$$\mathbf{RMSD} = \{\sum_{j=1}^{N_{\rm p}} [\rho_j - \rho(T_j, P_j, \vec{c}, \vec{b})]^2 / N_{\rm p} \}^{1/2}$$
(6)

$$\text{RMSD}_{\rm r} / \% = 100 \{ \sum_{j=1}^{N_{\rm p}} [1 - \rho(T_{j}, P_{j}, \vec{c}, \vec{b}) / \rho_{j}]^{2} / N_{\rm p} \}^{1/2}$$
(7)

bias =
$$\sum_{j=1}^{N_{\rm p}} [\rho_j - \rho(T_{j}, P_j, \vec{c}, \vec{b})] / N_{\rm p}$$
 (8)

$$\pm = \sum_{i=1}^{N_{\rm p}} {\rm sign}[\rho_j - \rho(T_j, P_j, \vec{c}, \vec{b})] \cdot 1$$
(9)

$$s_{\rm w} = [\phi/(N_{\rm p} - N_{\rm C} - N_{\rm B} - 2)]^{1/2}$$
 (10)

where $N_{\rm p}$ is the overall number of experimental data points retained for the correlation. The characteristics are given on an absolute density scale (kg·m⁻³), which is more illustrative than on a relative density scale.

Temperature and pressure ranges of the validity of the fits given in the table allow one to avoid extrapolation using eq 1 with the parameters from Table 3 beyond P-T areas of retained data. The P-T areas that are not rectangular are shown in Figure 1, which provides crude information on the distribution of the retained data points. Nonrectangular P-T areas appeared mostly for measurements where the P-T range approached the vicinity of a solid–liquid equilibrium line.

Table 4 summarizes some statistical information derived from the fits. Only those data subsets for which the temperature and pressure ranges are displayed in the table were retained in the correlations. The statistical characteristics of these subsets refer only to the data points retained in the correlation. On the other hand, the characteristics of the rejected subsets, i.e., those for which no T and P ranges are given in the table, illustrate the deviations of the rejected points from eq 1, but only for those values within P-T areas of the retained data (see Table 3 and Figure 1). If only one set of smoothed $P-\rho-T$ values available in original sources for a particular substance (S-type data, see Table 2) was fitted by eq 1, then average deviations of the fit (RMSD, RMSD_r) do not reflect a real accuracy of the experiment and consequently the weighted standard deviation, s_{w} , is lower than unity (the deviations of smoothed input data from eq 1 are lower than the experimental uncertainty declared by authors).

Values at high temperatures of some retained data sets were rejected in those cases where large deviations from the Tait equation were observed and it was not possible to improve the fit by additional parameters b_i and c_i . Thus, the P-T ranges of some fits do not cover the entire original range of retained data sets. The temperature and/or pressure ranges were sometimes enlarged by retaining less accurate and less reliable values in the ranges beyond those of more accurate data sets but only in those cases where the representation of accurate data was not affected by the enlargement and the enlargement did not result in a distortion of the B(T) function. The absence of extremes and inflection points on the function B(T) (eq 3) of all final fits was checked.

A comparison of isothermal compressibilities, $\beta_T = -(1/V)(\partial V/\partial P)_T = (1/\rho)(\partial \rho/\partial P)_T$, calculated from the fits for P = 0.1 MPa with available values published in the literature, is presented in Table 5 which provides a rough check of consistency of the fits with independent data. The literature values of isothermal compressibility used for the

comparison in Table 5 are the values obtained mostly from speed-of-sound measurements and were either taken directly from the papers or calculated from the equation

$$\beta_T = \frac{1}{\rho} \left[\frac{1}{u^2} + \frac{TM\alpha_p^2}{c_p} \right] \tag{11}$$

where M, u, α_p , and c_p are the molar mass, speed of sound, isobaric thermal expansivity ($\alpha_p = (1/V)(\partial V/\partial T)_p = -(1/\rho)(\partial \rho/\partial T)_p$), and molar isobaric heat capacity, respectively. Values of input quantities in eq 11 were taken from different sources cited in Table 5.

The fit for benzene covers a wide temperature range from 283 to 499 K. Enlargement of the temperature range led to a distortion of the B(T) dependence, and thus the range was limited up to about 60 K below the critical temperature. The final fit, however, exhibits an inflection point of the B(T) function at T = 498 K. Several retained data points at low temperatures reported in references 38-gib/kin, 54-bet/hay, and 65-sch/has correspond to undercooled liquid (see Figure 1). Agreement of isothermal compressibilities calculated from the fit (Table 3) with selected independent values (Table 5) is excellent; most deviations are below 1%, and the average deviation in the entire temperature range examined (288–343 K) is 1.4%.

Average deviations among data published for hexadeuteriobenzene are about 0.1%. The fit cannot be improved by adding the b_3 -term into B(T) since the inflection point appears at T = 304 K. No data on isothermal compressibility were found for a comparison.

The final fit for methylbenzene covers the temperature range 400 K wide. Some data points reported by Muringer et al. [85-mur/tra] at low temperatures correspond to undercooled liquid (see Figure 1). Large negative deviations (over 1 kg·m⁻³) were observed for isochoric data [88-str/bal] along isochores 717 and 495 kg·m⁻³; these data points were rejected. The low-temperature limit of the retained data set by Magee and Bruno [96-mag/bru] was set to 213 K since two inflection points appeared on the B(T) function when all data points from this set were retained. The deviations of isothermal compressibilities calculated from the fit from selected experimental values (Table 5) are mostly negative; the agreement is, however, very satisfactory. The average deviation in the entire temperature range examined (180–363 K) is 2.1%.

Compressed-liquid data for ethylbenzene are in good mutual agreement; the average deviations are below 0.03% (Table 4). The deviations between calculated and experimental isothermal compressibilities are positive at lower temperatures and negative at higher temperatures. The average deviation (except for the value extrapolated to 283.15 K, see Table 5) is 1.3%.

Isobaric data (P = 0.4 MPa) for 1,3-dimethylbenzene by Taravillo et al. [94-tar/cas] were found to be inconsistent with the reference line $\rho[T,P_{ref}(T)]$ [96-trc] (see Table 6 in Appendix) and were rejected, contrary to data for 1,4dimethylbenzene from the same source. Calculated isothermal compressibilities of all three dimethylbenzenes (xylenes) are in good agreement with experimental values (Table 5) except for compressibility data reported by Kartsev et al. 79-kar/sam where large positive deviations are observed at higher temperatures, particularly for 1,2and 1,3-dimethylbenzene. Average deviations in the temperature interval from 293.15 to 313.15 K are (not taking into account values from [79-kar/sam]) 0.8%, 0.9%, and 1.5% for 1,2-, 1,3-, and 1,4-dimethylbenzene, respectively.

Table 4. Statistical Characteristics of Individual Data Sets for the Fits in Table 3: Temperature and Pressure Ranges Taken into the Correlations, T_{min} , T_{max} , P_{min} , and P_{max} , Absolute, RMSD, and Relative, RMSD_r, Root Mean Square Deviations, Biases, bias, Number of Data Points, N_{p} , \pm , and Origin of the Reference Density Values Used in the Correlations, RD^a

ref	T_{\min}/K	T_{max}/K	P _{min} /MPa	P _{max} /MPa	$RMSD/(kg \cdot m^{-3})$	RMSD _r /%	bias/(kg·m ⁻³)	$N_{ m p}$	\pm	$\mathbf{R}\mathbf{D}^{a}$
					Benzene					
31-bri					2.319	0.251	-2.036	7	-7	0
38-gib/kin	298.15	338.15	25.0	125.0	0.158	0.017	-0.049	25	-3	0
49-gla/sag					1.215	0.148	0.616	147	65	0
54-bet/hay	298.15	313.15	40.6	101.4	0.344	0.037	-0.330	5	-5	0
57-wal/ric					4.010	0 5 5 0	0.000	0	0	
59-gol/vag					4.216	0.550	-3.089	41	-27	e
59-gol/vag					4.530	0.577	-3.892	48	-48	op
62 hol/who	208 15	208 15	1.0	10.0	1.302	0.155	1.184	0 10	ა დ	0
62-hol/wha	298.15 298.15	298.15	1.0	10.0	0.040	0.003	0.030	10	10	0
62-hol/wha	298 15	349.03	1.0	10.0	0.021	0.007	0.045	60	48	0
65-sch/has	298.15	298.15	20.0	90.0	0.331	0.036	-0.328	8	-8	0
70-dic								Õ	Ō	-
72-lys					11.756	1.253	-11.756	1	-1	0
73-rog/bur	298.15	298.15	1.0	10.0	0.108	0.012	-0.091	10	-10	0
75-bur/ric	293.15	298.15	1.0	8.0	0.107	0.012	-0.091	16	-16	0
75-par/jon					7.257	0.833	-6.309	25	-25	op
77-geh/len					2.768	0.334	2.004	81	55	e
77-gup/han					1.239	0.139	-0.397	24	-8	р
78-fig/fuc	010 55	000.05	F 1	10.1	1.910	0.209	0.970	13	3	ope
78-gou	313.55	393.65	5.1	40.1	0.609	0.073	0.551	/5	69 10	pe
79-Kas/Iuk	202 15	200 15	55 9	55.9	1.000	0.120	-0.085	40	-18	0
81-dym/rob	296.15	296.15	55.5	55.5	3 292	0.007	-2 359	20	-18	0
81-tak	303 15	303 15	10.0	90.0	0.232	0.026	-0.216	20 9	_9	0
82-dvm/gle	298.09	373.16	0.4	33.2	0.518	0.060	-0.366	4	-2^{3}	0e
82-dym/gle	200100	0.0110	011	0012	2.880	0.315	-2.382	19	-19^{-1}	oe
82-tak/ter	293.15	313.15	5.0	90.0	0.159	0.017	0.090	24	14	0
82-tak/ter-1	303.15	303.15	10.0	90.0	0.234	0.026	-0.216	9	-9	0
83-kas/fuk					1.119	0.129	-0.875	38	-30	0
84-kra/nie	322.45	499.09	1.9	59.7	0.674	0.090	-0.440	100	-68	e
84-mat/van	288.15	313.15	2.5	35.0	0.118	0.013	-0.071	42	-20	0
87-hol/goe	293.15	293.15	2.0	10.0	0.059	0.007	0.049	5	5	0
87-str/bal	423.16	498.19	0.9	31.8	1.955	0.284	1.774	30	30	e
87-sun/kor	283.14	323.13	10.0	170.0	0.468	0.051	-0.397	81	-79	0
88-sid/tej	298.20	338.20	0.7	34.5	0.454	0.053	-0.319	21	-13	0
90-bru/wei	293.13	338.13	3.2	130.0	0.370	0.042	-0.194	40	-21	0
91-city/gre	296.15	516.15	0.0	5.2	0.093	0.011	-0.025 -2.365	19	-45	0
92-lag/hon	288 15	323 15	10.0	40.0	0.219	0.025	-0.133	23	-15	0
92-lag/bon	200.10	020.10	10.0	10.0	0.522	0.059	0.472	23	23	0
93-mal/woo	298.15	348.15	2.6	278.6	0.668	0.072	0.472	86	68	0
					Banzona d					
81_dvm/rob	323 36	373 99	27.0	351.0	1 208	0 1 2 0	0 203	20	4	0
82-dvm/gle	323.30	348 58	15.0	20.3	1.000	0.120	0.200	20	0	0
82-dym/gle	323.48	348.58	51.2	261.7	1.218	0.120	1.023	12	10	0
84-mat/van	288.15	313.15	2.5	35.0	0.053	0.006	0.013	42	22	0
					fathailt ann an a					
57 wal/ric				10	ietnyibenzene			0	0	
63-and					0 793	0.082	-0.665	9	_9	0
68-ski/cus					14,400	1.499	-13.335	8	-8	0
69-mop	223.15	298.15	10.2	202.8	0.529	0.057	0.331	39	21	0
70-akh/abd	298.15	573.15	0.5	50.4	0.407	0.061	0.160	169	57	р
77-gup/han					0.473	0.056	-0.180	24	-10	p
78-gou					0.896	0.103	0.562	90	54	р
79-dic								0	0	
82-kas/has					1.430	0.152	0.767	88	64	0
84-tak/ter	293.15	303.15	20.0	160.0	0.358	0.039	0.149	23	9	0
85-alb/gat	298.14	399.81	0.2	20.5	0.180	0.023	-0.093	19	-9	р
85-eas/woo	170.00	000.00	10.1	000 4	5.460	0.575	0.865	15	5	0
85 tok/tor	179.02	320.30	10.1	203.4	0.093	0.010	0.001	100	-2 -6	0
88-dvm/mal	208 15	373 15	10	370 9	0.043 1 N/9	0.009	-0.432 0 /5/	10	-0 16	0
88-dvm/mal	348 15	348 15	57	362.1	1.042	0.111	0.434	9	-3	0
88-sid/tei	298.20	338.20	0.7	34.5	0,156	0.018	-0.062	21	-7	0
88-str/bal	348.07	583.18	0.2	36.2	0.484	0.078	0.074	65	13	ē
91-chy/gre	318.15	333.15	0.4	5.0	0.039	0.005	0.033	16	14	0
94-tar/cas	223.16	303.14	0.1	105.5	0.298	0.032	0.181	48	26	р
95-hoc/bur					2.978	0.332	2.397	56	52	p
96-mag/bru	213.00	400.00	0.5	35.0	0.361	0.042	-0.087	264	-96	е
96-poe/kir					1.770	0.216	-0.014	69	-7	р
97-poe/kir					1.770	0.216	-0.014	69	-7	р

Table	4.	(Continued)
rabic	т.	(Commucu)

ref	$T_{\rm min}/{ m K}$	T _{max} /K	P _{min} /MPa	P _{max} /MPa	RMSD/(kg·m ⁻³)	RMSD _r /%	bias/(kg·m ⁻³)	$N_{\rm p}$	±	RD ^a
				Ethe	enylbenzene					
49-bri	298.15	298.15	49.0	294.2	0.263	0.027	0.021	6	0	0
				Eth	vlbenzene					
90-zho/lag	293.10	353.10	5.0	40.0	0.237	0.027	0.034	32	4	0
91-chy/gre	318.15	333.15	0.4	5.0	0.028	0.003	0.023	18	18	0
93-gar/ban	318.15	373.15	1.0	10.0	0.187	0.023	-0.003	60	10	0
				1,2-Din	nethylbenzene					
49-bri				,	0.773	0.083	0.555	2	2	0
68-ski/cus					3.321	0.363	-2.541	3	-1	0
69-akh/ima	298.15	598.15	0.1	50.8	0.611	0.092	0.140	151	27	р
69-akh/ima					2.042	0.273	1.085	36	6	р
85-tak/ter				10.0	1.400	0.153	1.181	10	10	0
93-gar/ban	318.15	373.15	1.0	10.0	0.232	0.028	-0.122	60 50	-26	0
94-tar/cas-1	298.15	298.15	1.4	107.9	0.288	0.032	-0.163	59 70	-17	0
34-tal/tas-1	201.30	230.40	0.4	70.1	1.000	0.110	0.775	19	73	е
40.1.4				1,3-Din	nethylbenzene					
49-bri					1.945	0.214	1.854	2	2	0
63-and	909 10	470 17	0.5	10.0	0.901	0.100	0.000	0	0	0
67 mam/akh	298.10	4/3.1/	0.5	19.9	0.801	0.100	-0.368	69	-35	p
67 mam/akh-1	496.15	596.15	0.7	19.0	0.312	0.030	-2 146	40	14 _6	op n
81-tak					1 655	0.183	1 458	10	10	P
90-vok/mor					1.009	0.115	0.932	4	4	0
93-gar/ban	318.15	373.15	1.0	10.0	0.287	0.035	-0.158	60	-22	0
94-tar/cas	010110	010110	110	1010	3.034	0.335	2.708	30	28	e
94-tar/cas	229.95	298.15	0.1	109.6	0.299	0.033	-0.052	152	-26	p
95-cha/lee	298.15	348.15	1.0	20.0	0.214	0.025	0.124	39	15	0
96-cha/lee-1	333.15	413.15	5.0	30.0	0.175	0.021	0.124	18	14	0
				1 4-Dir	nethylbenzene					
68-ski/cus				1,1 Di	9.044	1.028	-8.784	3	-3	0
69-akh/ima-1	323.15	548.15	0.4	50.5	0.475	0.061	0.133	121	41	pe
69-akh/ima-1	548.15	598.15	5.1	50.7	1.172	0.193	0.040	27	5	e
81-tak	303.15	303.15	10.0	50.0	0.172	0.020	0.132	4	4	0
90-yok/mor	298.15	298.15	10.0	200.0	0.318	0.034	-0.020	20	-6	0
93-gar/ban	318.15	373.15	1.0	10.0	0.233	0.029	-0.153	60	-36	0
94-cas/tar	288.18	303.11	0.4	0.4	0.618	0.072	0.472	10	6	e
94-cas/tar	288.21	303.14	0.2	42.9	0.276	0.032	-0.192	37	-31	р
				Pro	pylbenzene					
91-chy/gre	318.15	333.15	0.4	5.0	0.103	0.012	-0.008	18	-4	0
0.0				1 (Moth	vlothvl)bonzono					
49-bri	298 15	298 15	49.0	1961.3	0.368	0.037	0.019	13	-3	0
68-ski/cus	200.10	200.10	10.0	1001.0	9.979	1.054	-9.811	10	-10°	0
91-chy/gre	318.15	333.15	0.4	5.0	0.034	0.004	0.013	18	2	0
5.8				194	and the lb and an a					
78-001	294 65	392 55	5 1	1,2,4-11	n 397	0.046	0.001	90	-1	n
78-gou	234.03	332.33	5.1	40.1	0.337	0.040	0.001	30	4	Р
_				1,3,5-Tri	imethylbenzene					
49-bri					1.778	0.192	1.741	4	4	0
87-eas/woo	000.00	000.00	5.0	000.0	1.429	0.155	1.226	16	16	0
90-p01/wei	202.00	302.20	5.U 44.8	200.0	0.978	0.100	0.590	22	40	0
94-bao/cac	238.15	298.10	44.0	108.2	0.047	0.072	-0.011	217	32 13	e 0
J4-Dao/cac	200.10	200.10	0.4	100.2	0.151	0.010	0.011	~17	15	0
00 // /	070 71	000.00	00.0	Na	phthalene	0.400	0.144	10	0	
38-rus/hot	378.71	680.93	20.9	40.0	3.247	0.409	0.144	12	2	е
				1,2,3,4-Tetra	ahydronaphthalene					
49-bri	298.15	298.15	49.0	294.2	0.232	0.022	-0.067	6	-2	0
88-sid/tej	298.20	338.20	0.7	34.5	0.222	0.023	-0.115	21	-7	0
95-cha/lee	298.15	348.15	1.0	30.0	0.189	0.020	0.152	45	39	0
96-cha/lee-1	333.15	413.15	5.0	30.0	0.163	0.018	0.072	18	10	0
				But	tylbenzene					
90-zho/lag	293.10	353.10	5.0	40.0	0.166	0.020	-0.030	31	-9	0
91-chy/gre	318.15	333.15	0.4	5.0	0.019	0.002	0.015	18	18	0
				1_(Mathe	(lnronyl)honzono					
85-mak/kis	313.00	453 00	9.8	245 3	0 567	0.068	0.040	17	1	0
55-111aK/KIS	515.00	-JJ.00	3.0	240.0	0.307	0.000	0.040	1/	1	U
				1-Meth	ylnaphthalene	_				
88-sid/tej	298.20	338.20	0.7	34.5	0.228	0.023	-0.106	21	-11	0
95-yok/ebi	333.15	333.15	10.0	300.0	0.165	0.016	-0.051	30	-10	0
96-cha/lee	298.15	348.15	1.0	30.0	0.187	0.018	0.117	45	31	0
ər-bay/bon	303.13	343.13	20.0	40.0	0.590	0.058	0.527	0	0	0

Table 4. (Con	ntinued)									
ref	T_{\min}/K	$T_{\rm max}/{ m K}$	P _{min} /MPa	P _{max} /MPa	RMSD/(kg·m ⁻³)	RMSD _r /%	bias/(kg•m ⁻³)	$N_{ m p}$	±	RD ^a
				Н	exvlbenzene					
90-zho/lag	293.10	353.10	5.0	40.0	0.279	0.032	-0.002	32	-6	0
				Dipl	henvlmethane					
97-cha/lee	333.15	413.15	5.0	30.0	0.064	0.007	-0.003	18	-6	0
				1,1-D	Piphenylethane					
59-low/spe	310.93	372.04	40.0	340.0	0.182	0.018	0.021	27	3	0
				0	ctylbenzene					
90-zho/lag	293.10	353.10	5.0	40.0	0.141	0.017	0.001	32	0	0
				No	onylbenzene					
90-zho/lag	293.10	353.10	5.0	40.0	0.149	0.018	0.050	32	6	0
91-kan/lag	313.15	353.15	10.0	40.0	0.018	0.002	-0.003	12	2	0
			1,2,3,4	,4a,7,8,9,10,11	,12,12a-Dodecahyd	rochrysene				
59-low/spe	310.93	408.15	20.0	340.0	0.270	Ŏ.026	0.008	35	-5	0
				1,1-D	iphenylheptane					
59-low/spe	310.93	408.15	20.0	340.0	0.260	0.027	0.032	37	-1	0
				1-Phenyl-3-(2	-phenylethyl)undec	ane				
58-cut/mcm	310.95	408.15	34.5	1033.7	0.516	0.052	0.015	125	5	0
				1-Penta	decylnaphthalene					
58-cut/mcm	333.15	408.15	34.5	551.3	0.292	0.031	0.025	43	1	0
				(3-Octy	lundecyl)benzene					
58-cut/mcm	310.95	408.15	34.5	964.7	0.479	0.051	0.013	115	-9	0
				1,1-Dip	henyltetradecane					
59-low/spe	310.93	408.15	20.0	340.0	0.652	0.068	0.076	32	4	0

 a o, from the same source as the compressed-liquid density data; p, extrapolated to P_{ref} along isotherms using the Tait equation; e, from the smoothing equation (see Appendix, Table 6).

The parameter B(T) of the fit for propylbenzene is a linear function of temperature in the range of experimental $P - \rho - T$ data from 318.15 to 333.15 K (Table 3). The function B(T) has usually a convex shape with negative derivative dB(T)/dT, and therefore the extrapolated value B(T=298.15K) is likely to be lower than the correct one. This might be a reason the extrapolated value of isothermal compressibility at T = 298.15 K is 16% higher than the experimental value (Table 5). On the other hand, the extrapolated isothermal compressibility calculated from the fit for 1-(methylethyl)benzene (the linear B(T) function) at T = 293.15 K is in much better agreement with experimental values than those calculated for temperatures inside the temperature range of the fit (Table 5). The extrapolation is, however, 5 K only below T_{\min} of the fit, compared to 20 K in the case of propylbenzene.

The only $P-\rho-T$ data available in the database for 1,2,4trimethylbenzene were those reported by Gouel [78-gou] without the values for the reference line. The reference density values $\rho[T,P_{\rm ref}(T)]$ obtained by extrapolation along each isotherm to pressure $P_{\rm ref} = 0.101$ 325 MPa and used in the fit are, on average, lower by 5.4 kg·m⁻³ than smoothed values from 96-trc (see Table 7 in Appendix). The isothermal compressibility calculated from the fit is 3.4% higher than that calculated from speed-of-sound data [44sch, 52-jac]. The deviation is not caused by an extrapolation since the temperature of the comparison is only 1.5 K lower than $T_{\rm min}$ of the fit.

The $P-\rho-T$ data available for 1,3,5-trimethylbenzene are not in satisfactory agreement; the deviations are as high as 0.2%. The F-type data [90-pol/wei] agree better with the experimental data by Baonza et al. [94-bao/cac] than the values generated from smoothing functions reported by Easteal and Woolf [87-eas/woo]. The final fit given in Table 3 therefore represents experimental data [94-bao/ cac] and the smoothed values [90-pol/wei]. The deviations in isothermal compressibilities are, however, rather high (-5.1%, excluding a less accurate value by Shinoda and Hildebrand [61-shi/hil]). The fit of values generated from the smoothing equation reported by Easteal and Woolf [87-eas/woo], which resulted in $c_0 = 0.088$ 773, $b_0 = 107.8796$ MPa, $b_1 = -61.7581$ MPa·K⁻¹, $T_0 = 298.15$ K, $T_{min} = 298.15$ K, $T_{max} = 313.15$ K, $P_{min} = 2.50$ MPa, $P_{max} = 280.00$ MPa, RMSD = 0.161 kg·m⁻³, RMSD_r = 0.017%, bias = -0.010 kg·m⁻³, $\pm = 0$, gives much better agreement in isothermal compressibilities (see Table 5).

The $P-\rho-T$ data set for naphthalene [38-rus/hot] presents compressed-liquid densities for two isobars and therefore the extrapolation along isotherms to obtain reference values $\rho[T, P_{ref}(T)]$ was impossible. The values generated from the smoothing function available in the database [93-cda] were employed instead. The consistency is not good which resulted in rather large average deviation of the fit (RMSD_r = 0.4%).

Data available for 1,2,3,4-tetrahydronaphthalene are in good mutual agreement (see Table 4). The isothermal compressibility calculated from the fit differs from the directly measured value [86-tar/dia] by -0.014 GPa⁻¹, which, due to low compressibility of 1,2,3,4-tetrahydronaphthalene, results in rather large relative deviation (-2.3%).

The fit of data for 1-(methylpropyl)benzene reported by Makhno et al. [85-mak/kis] resulted in satisfactory average deviation (0.07%) after the obviously incorrect density value at T = 373.00 K and P = 245.3 MPa was rejected. The isothermal compressibility calculated from the fit differs significantly (8.1%) from the value calculated using the speed of sound reported in the same source [85-mak/kis].

Data available for 1-methylnaphthalene are in good mutual agreement (see Table 4). The values reported in 97-bay/bon for pressures above 40 MPa were rejected since they were obtained by the authors by an extrapolation of data measured in the range up to 40 MPa. No independent experimental values of isothermal compressibility were found for a comparison.

Data for other substances investigated originated mostly from one source per substance and no isothermal com-

Table 5. Comparison of Values of Isothermal C	Compressibility, $\beta_T = (1/\rho)(\partial \rho/\partial P)_T$, at Δ	P = 0.1 MPa Calculated from the Fits
in Table 3 (Equation 1) with Literature Data		

	β_T/GPa^{-1}					$\beta_T/{ m GPa^{-1}}$					
<i>T</i> /K	eq 1 ^a	lit.	$\delta \beta_T b/\%$	ref(s)	<i>T</i> /K	eq 1 ^a	lit.	$\delta \beta_T b/\%$	ref(s)		
				Benz	zene						
288.15	0.893 ± 0.002	0.907	-1.5	79-kar/sam ^c	303.15	1.004 ± 0.002	1.010	-0.6	85-tam/mur, ^d 87-tak/ter, ^d		
293.15	0.928 ± 0.002	0.933	-0.5	52-jac ^c			1 0 1 1	_0.7	96-trc, e 96-zab/ruz ^t		
		0.955	-2.8 -5.1	55-Sta/tup ^c 68-dav ^c	308 15	1.045 ± 0.002	1.011	-0.7 -2.0	90-Sek/ven ^c 71-des/bha ^c		
		0.917	1.2	71-ric/rog ^c	000.10	1.010 ± 0.002	1.042	0.3	83-dia/lai ^c		
		0.929	-0.1	79-kar/sam ^c	313.15	1.088 ± 0.002	1.105	-1.5	55-sta/tup ^c		
		0.931	-0.3	85-mar/bha, ^d 96-trc, ^e 96-zab/ruz ^f			1.100	-1.1	79-kar/sam ^c		
		0.933	-0.5	85-tam/mur, ^d 87-tak/ter, ^d			1.092	-0.4	83-gop/rao, ^d 96-trc, ^e 96-zab/ruz ^t		
298 15	0.965 ± 0.002	0 974	-0.9	90-trc,° 90-zab/ruz 71-des/bba¢	318 15	$1 134 \pm 0.002$	1.096	-0.7	87-tak/ter,° 96-trc,° 96-zab/ruz 71-des/bha¢		
200.10	0.000 ± 0.002	0.969	-0.4	78-gro/wil ^c	510.15	1.134 ± 0.002	1.131	0.4	83-dia/lai ^c		
		0.963	0.2	83-dia/lai ^c	323.15	1.183 ± 0.002	1.190	-0.6	55-sta/tup ^c		
		0.971	-0.6	72-ewi/mar ^c			1.152	2.7	79-kar/sam ^c		
		0.970	-0.5	78-kiy/hal, ^c 83-tam/oho, ^c 96-nat ^c	000 15	1 000 1 0 000	1.191	-0.7	87-tak/ter, ^{<i>d</i>} 96-trc, ^{<i>e</i>} 96-zab/ruz ^{<i>f</i>}		
		0.968	-0.3	85-mar/bha, a 96-trc, e 96-zab/ruz ^r	333.15	1.290 ± 0.003	1.278	0.9	55-sta/tup ^c		
		0.971	-0.0	96-zab/ruz ^f			1.281	0.4	83-dia/lai ^c		
303.15	1.004 ± 0.002	1.028	-2.3	55-sta/tup ^c	343.15	1.410 ± 0.003	1.374	2.6	55-sta/tup ^c		
		1.016	-1.2	79-kar/sam ^c			1.433	-1.6	79-kar/sam ^c		
		1.009	-0.5	86-kar, ^c 83-nat/tri, ^d 96-trc, ^e							
				96-zab/ruz ^r							
				Methylb	enzene						
180.00	0.420 ± 0.001	0.422	-0.5	91-sun/bom ^c	300.00	0.912 ± 0.002	0.929	-1.8	91-sun/bom ^c		
213.86	0.514 ± 0.001 0.472 ± 0.001	0.527	-2.5 -1.3	56-mar/sta ^c	303.15	0.933 ± 0.002	0.942	-1.0 -3.4	74-jai/nor," 96-trc," 96-zab/ruz 79-kar/sam ^c		
220.00	0.472 ± 0.001 0.534 ± 0.001	0.542	-1.5	91-sun/bom ^c			0.952	-2.0	83-nat/tri. ^d 85-tam/mur. ^d		
232.10	0.576 ± 0.001	0.593	-2.9	56-mar/sta ^c					96-trc, ^e 96-zab/ruz ^f		
240.00	0.606 ± 0.001	0.616	-1.6	91-sun/bom ^c			0.956	-2.4	86-kar ^c		
253.91	0.663 ± 0.001	0.687	-3.5	56-mar/sta ^c	308.15	0.968 ± 0.002	0.979	-1.1	71-des/bha ^c		
260.00	0.690 ± 0.001	0.703	-1.8	91-sun/bom ^c			0.984	-1.6	71-des/bha, ^a 96-trc, ^e 96-zab/ruz ^r		
273.15	0.754 ± 0.001 0.791 ± 0.001	0.784	-3.8 -1.9	91-sun/bom ^c			0.975	-0.7	86-gam/tar ^c		
283.15	0.809 ± 0.001	0.843	-4.0	79-kar/sam ^c	313.15	1.005 ± 0.002	1.014	-0.9	79-kar/sam ^c		
293.15	$\textbf{0.868} \pm \textbf{0.001}$	0.884	-1.8	44-sch, ^d 96-trc, ^e 96-zab/ruz ^f			1.025	-1.9	83-gop/rao, ^d 96-trc, ^e 96-zab/ruz ^f		
		0.899	-3.4	52-jac ^c	318.15	1.043 ± 0.002	1.053	-0.9	83-dia/lai-1, ^c 71-des/bha, ^d		
		0.894	-2.9	71-ric/rog ^c			1 0 5 0		96-trc, ^e 96-zab/ruz ^f		
		0.912	-4.8	79-Kar/sam ^c 85 tom/mur d 06 tre e 06 zob/ruzt	320.00	1.058 ± 0.002	1.052	-0.9	86-gam/tar ^c		
298.15	0.900 ± 0.002	0.885	-1.9 -2.2	61-shi/hil ^c	323.15	1.038 ± 0.002 1.084 ± 0.002	1.075	-1.0 -0.7	79-kar/sam ^c		
200110		0.917	-1.9	71-des/bha ^c	333.15	1.172 ± 0.002	1.195	-1.9	79-kar/sam ^c		
		0.920	-2.2	71-des/bha, ^d 96-trc, ^e 96-zab/ruz ^f			1.178	-0.5	83-dia/lai-1 ^c		
		0.906	-0.7	83-dia/lai-1 ^c			1.186	-1.2	86-gam/tar ^c		
		0.908	-0.9	74-jai/nor, a 96-trc, e 96-zab/ruz ^r	343.15	1.270 ± 0.002 1.270 \pm 0.002	1.286	-1.2	79-kar/sam ^c		
		0.918	-2.0 -1.5	86-gam/tar ^c	363 15	1.379 ± 0.003 1.502 ± 0.003	1.301	-0.1	79-Kar/sam ^c		
		0.913	-1.4	97-oho/tam ^c	505.15	1.002 ± 0.000	1.400	0.2	10 Kursun		
				Fthylbe	enzene						
283.15	0.798 ^g	0.744	7.3	71-hoe/flo ^c	303.15	0.902 ± 0.009	0.892	1.1	74-jai/nor, ^d 96-trc, ^e 96-zab/ruz ^f		
293.15	$\textbf{0.848} \pm \textbf{0.010}$	0.825	2.8	52-jac ^{c}	308.15	0.931 ± 0.009	0.927	0.4	71-hoe/flo ^c		
		0.840	1.0	44-sch, ^d 96-trc, ^e 96-zab/ruz ^f	313.15	0.961 ± 0.009	0.968	-0.7	83-gop/rao, ^d 96-trc, ^e 96-zab/ruz ^f		
298.15	0.874 ± 0.010	0.863	1.3	71-hoe/flo ^c	318.15	0.993 ± 0.010	0.997	-0.4	89-mat/aic, c 89-mat/tar c		
		0.859	1.7	74-jai/nor, a 96-trc, e 96-zab/ruz ⁴	333.15	1.097 ± 0.010	1.108	-1.0	71-hoe/flo ^c		
		0.868	0.7	95-fui/tam. ^d 96-trc. ^e 96-zab/ruz ^f							
				1.2 Dimoth	vlhonzor						
283 15	0.731 ± 0.004	0 738	-0.9	79-kar/sam ^c	313 15	0.892 ± 0.004	0 900	-0.9	79-kar/sam ^c		
293.15	0.780 ± 0.004	0.781	-0.1	52-jac, ^d 96-trc, ^e 96-zab/ruz ^f	010.10	0.000 ± 0.001	0.889	0.3	83-gop/rao, ^d 96-trc, ^e 96-zab/ruz ^f		
		0.787	-0.9	79-kar/sam ^c	323.15	0.955 ± 0.004	0.947	0.8	79-kar/sam ^c		
		0.770	1.3	58-par/pan, ^d 96-trc, ^e 96-zab/ruz ^f	333.15	1.026 ± 0.005	1.003	2.3	79-kar/sam ^c		
298.15	0.806 ± 0.003	0.799	0.9	86-tar/dia-1, ^{<i>d</i>} 96-trc, ^{<i>e</i>} 96-zab/ruz ^{<i>t</i>}	343.15	1.103 ± 0.005	1.053	4.7	79-kar/sam ^{c}		
303.15	0.833 ± 0.004	0.839	-0.7	/9-kar/sam ^e	303.10	1.189 ± 0.006 1.284 ± 0.007	1.121	0.1 7.0	79-Kar/sam ^c 79-kar/sam ^c		
				1.0 Di		1.204 ± 0.007	1.200	7.0	10 Kursun		
283 15	0 770 + 0 009	0 701	-26	1,3-Dimeth	yidenzer 313 15	0.956 ± 0.004	0 091	२ ହ	79-kar/sam ^c		
293.15	0.827 ± 0.002	0.835	-1.0	44-sch, ^d 52-jac. ^d 96-trc. ^e	515.15	5.000 ± 0.004	0.962	-0.6	83-gop/rao, ^d 96-trc. ^e 96-zab/ruz ^f		
				96-zab/ruz ^f	323.15	1.030 ± 0.004	1.011	1.9	79-kar/sam ^c		
		0.816	1.3	58-par/pan, ^d 96-trc, ^e 96-zab/ruz ^f	333.15	1.112 ± 0.004	1.092	1.8	79-kar/sam ^c		
000 17	0.057 - 0.000	0.839	-1.4	79-kar/sam ^c	343.15	1.201 ± 0.005	1.158	3.7	79-kar/sam ^c		
298.15	0.837 ± 0.003	U.864	-0.8 -0.2	$oo-tar/aa-1,^{a}$ 96-trc, ^e 96-zab/ruz ^r 74-jaj/por ^d 96-trc ^e 96-zab/ruz ^f	303.15 362.15	1.300 ± 0.005 1.400 ± 0.006	1.244	4.5	rə-kar/sam ^c 79-kar/sam ^c		
500.15	0.000 ± 0.003	0.877	1.4	79-kar/sam ^c	505.15	1.400 ± 0.000	1.000	1.5	i v Aul/Sulli		

Table 5. (Continued)

	β_T/GPa^-	1				β_T/GPa^-	1		
<i>T</i> /K	eq 1 ^a	lit.	$\delta\beta_T^{\rm b}/\%$	ref(s)	<i>T</i> /K	eq 1 ^a	lit.	$\delta \beta_T b/\%$	ref(s)
				1,4-Dimetl					
288.15	0.836 ^g	0.833	0.4	79-kar/sam ^c	303.15	0.925 ± 0.003	0.920	0.5	79-kar/sam ^c
293.15	0.865 ± 0.003	0.855	1.2	44-sch, ^d 96-trc, ^e 96-zab/ruz ^f			0.918	0.8	82-nat/nar, ^d 96-trc, ^e 96-zab/ruz ^f
		0.856	1.1	52-jac, ^d 96-trc, ^e 96-zab/ruz ^f			0.922	0.3	86-kar ^c
		0.842	2.8	58-par/pan, ^d 96-trc, ^e 96-zab/ruz ^f			0.914	1.2	93-sre/nai, ^d 96-trc, ^e 96-zab/ruz ^f
		0.859	0.7	79-kar/sam ^c	308.15	0.957 ± 0.003	0.946	1.3	83-nat/tri, ^d 96-trc, ^e 96-zab/ruz ^f
		0.858	0.8	82-nat/nar, ^d 96-trc, ^e 96-zab/ruz ^f	313.15	0.991 ± 0.003	0.949	4.4	79-kar/sam ^c
		0.848	2.0	85-mar/bha, ^d 96-trc, ^e 96-zab/ruz ^f			0.981	1.0	83-gop/rao, ^d 96-trc, ^e 96-zab/ruz ^f
296.15	0.882 ± 0.003	0.849	4.9	78-pra/pra ^c	323.15	1.064 ± 0.004	1.039	2.4	79-kar/sam ^c
298.15	0.894 ± 0.003	0.91	-1.7	61-shi/ĥil ^c	333.15	1.144 ± 0.004	1.122	2.0	79-kar/sam ^c
		0.885	1.0	83-nat/tri, ^d 86-tar/dia-1, ^d 96-trc, ^e	343.15	1.232 ± 0.005	1.208	2.0	79-kar/sam ^c
				96-zab/ruz ^f	353.15	1.331 ± 0.005	1.309	1.7	79-kar/sam ^c
		0.876	2.1	85-mar/bha, ^d 96-trc, ^e 96-zab/ruz ^f	363.15	1.440 ± 0.006	1.410	2.1	79-kar/sam ^c
				Propyll	penzene				
298.15	0.996 ^g	0.857	16.2	95-fuj/tam, ^d 96-trc, ^e 96-zab/ruz ^f	, en llente				
				1-(Methylet	hvl)benze	ene			
293.15	0.813 ^g	0.827	-1.7	44-sch. ^d 96-trc. ^e 96-zab/ruz ^f	298.15	0.842 ± 0.003	0.874	-3.7	87-rat/sin. ^d 96-trc. ^e 96-zab/ruz ^f
		0.816	-0.4	52-jac. ^d 96-trc. ^e 96-zab/ruz ^f			0.870	-3.2	95-fui/tam. ^d 96-trc. ^e 96-zab/ruz ^f
					303.15	$\textbf{0.873} \pm \textbf{0.009}$	0.928	-5.9	87-rat/sin, ^d 96-trc, ^e 96-zab/ruz ^f
				1.2.4-Trime	thylbenz	ene			
293.15	0.797 ^g	0.771	3.4	44-sch, ^d 52-jac, ^d 96-trc, ^e 96-zab/ruz	f				
				1 3 5-Trime	thylbonz	ana			
203 15	0.761 ± 0.003	0 803	-52	52-jac d 96-trc e 96-zab/ruz f	202 15	0 700g,h	0.803	-0.5	52-jac d 96-trc e 96-zab/ruzf
298 15	0.701 ± 0.003 0.786 ± 0.003	0.000	-9.7	61-shi/hil	298 15	0.822 ± 0.004^{h}	0.828	-0.7	$86_{tar/dia-1} d 96_{trc} e 96_{zab/ruz}^{f}$
200.10	0.700 ± 0.000	0.828	-5.0	86-tar/dia-1 d 96-trc e 96-zab/ruz ^f	303 15	0.846 ± 0.004	0.858	-14	86-kar ^c
303.15	0.813 ± 0.004	0.858	-5.2	86-kar ^c	000.10	0.010 ± 0.000	0.000	1.1	oo hui
				1.2.3.4-Tetrahy	dronapht	halene			
298.15	0.593 ± 0.005	0.607	-2.3	86-tar/dia ^{<i>c</i>}					
				1-(Methylpr	nvl)henz	zene			
313.00	0.93 ± 0.02	0.860	8.1	85-mak/kis, ^d 96-trc-1, ^e 96-zab/ruz ^f	PADOUN	Ant			

^{*a*} Uncertainty is estimated as $\pm 2s$, where *s* is a standard deviation derived from a covariance matrix of each fit. ^{*b*} [β_T (eq 1) – β_T (lit.)] × 100/ β_T (lit.). ^{*c*} Isothermal compressibility, $\beta_T = -(1/V)(\partial V/\partial P)_T$. ^{*d*} Sound speed. ^{*e*} Density and thermal expansivity, $\alpha_p = (1/V)(\partial V/\partial T)_p$. ^{*f*} Isobaric heat capacity. ^{*g*} Extrapolated beyond the temperature range of the fit. ^{*h*} From the fit of *F*-type values by Easteal and Woolf [87-eas/woo]; see text.

Table 6. Parameters, a_i , of Functions A1 and A3 Used for the Fits in Table 3, Critical Densities, ${}^a \rho_c$, Critical Temperatures, ${}^a T_c$, Temperature Ranges of Validity, T_{min} and T_{max} , Absolute, RMSD, and Relative, RMSD_r, Root Mean Square Deviations, Biases, bias, Number of Data Points, N_p , \pm , and References to the Density Data, ref(ρ)

	benzene	methylbenzene	1,2-dimethyl- benzene	1,3-dimethyl- benzene	1,4-dimethyl- benzene	1,3,5-trimethyl- benzene	naphthalene
eq	A1	A1	A1	A1	A1	A1	A3
a_0	1.816 788	2.330 572	1.939 028	1.966 526	2.016 801	12.300 142	1282.372
a_1	$-0.144\ 828$	-3.107839	0.693 214	0.770 424	0.660 504	$-32.317\ 11$	0.706 75
a_2	3.651 676	10.483 949	-0.552518	$-0.814\ 622$	-0.770676	33.770 024	26 417.32
a_3	$-5.852\ 311$	$-12.816\ 81$	0.742 481	0.944 937	0.997 453	-10.699~35	843.135
a_4	3.501 254	6.294 575					
a_5		-0.2645					
$\rho_{\rm c}a/({\rm kg}\cdot{\rm m}^{-3})$	301.598	291.585	287.718	282.361	280.126	277.586	
$T_{\rm c}/{\rm K}$	562.16	591.79	630.30	617.05	616.20	637.25	
T_{\min}/\mathbf{K}	278.70	178.15	247.98	225.31	286.41	238.15	333.00
$T_{\rm max}/{ m K}$	561.15	588.15	628.15	613.15	603.15	353.15	702.00
RMSD/(kg·m ⁻³)	0.124	0.227	0.036	0.036	0.031	0.108	0.85
RMSD _r /%	0.024	0.041	0.006	0.007	0.005	0.012	0.1
bias/(kg∙m ⁻³)	-0.005	0.003	-0.001	-0.002	0.000	0.046	
Np	32	44	41	41	34	53	
±	2	-2	7	3	4	17	
$ref(\rho)$	96-trc	96-trc	96-trc	96-trc	96-trc	94-bao/cac, 96-trc	93-cda ^b

^{*a*} From database 93-cda. Critical densities are given with three decimal points since they were calculated from rounded values of critical molar volumes recorded in the database 93-cda. ^{*b*} Parameters from database 93-cda.

pressibility data (or speed-of-sound and heat capacity data) data were available. Therefore any conclusions concerning their reliability is not possible. The isobar P = 20 MPa was rejected for 1,1-diphenylethane due to large negative deviations (3.6–4.6 kg·m⁻³). The density value for 1,1-diphenylheptane at T = 310.93 K and P = 300 MPa exhibited the deviation 4.5 kg·m⁻³ and was rejected. The fit for 1-phenyl-3-(2-phenylethyl)undecane required the statistically significant fourth term in the B(T) function (see Table 3), but the inflection point appeared at T = 354 K. The data reported for this substance at T = 388.15 K and

P < 104 MPa were rejected due to deviations larger than 1.4 kg·m⁻³. The isobar P = 397 MPa for (3-octylundecyl)benzene was rejected (deviations from -3.5 to -4.0 kg·m⁻³) as well as the values at T = 408.15 K and for P < 104 MPa.

Acknowledgment

Thanks are expressed to Dr. M. Frenkel and Dr. R. C. Wilhoit (Thermodynamics Research Center, A&M University, College Station, TX) for extracting some speed-of-sound data from the TRC Source Database.

Table 7. Parameters a_i of Smoothing Functions A1 or A2 Fitted to Reference Density Values ($\rho(T, P_{ref})$), Critical Densities,^{*a*} ρ_c , Critical Temperatures,^{*a*} T_c , Temperature Ranges of Density Data, T_{min} and T_{max} , and RMSD of the Fits

eq	a_0	a_1	a_2	a_3	a_4	$ ho_{\rm c}/({\rm kg}\cdot{\rm m}^{-3})$	$T_{\rm c}/{ m K}$	T_{\min}/K	T_{max}/K	$RMSD/(kg \cdot m^{-3})$	ref
A2	1240.1704	-83.895 85	-5.244 859		Benzene	$e - d_6$		298.33	373.22	0.032	81-dym/rob 82-dym/gle
A2	1068.5906	-52.468 34	-5.640 593		Ethylbenz	zene ^c		293.10	373.15	0.235	90-zho/lag 91-chy/gre
A1	1.873 962	1.207 999	-1.946 025	2.201 250	-0.452 801	283.871	617.24	178.15	616.15	0.164	93-gar/ban 96-trc
A1	2.120 703	1.520 552	-3.475 291	3.174 756	Propylber -0.285 965	zene 273.170	638.32	173.15	637.15	0.274	96-trc
A1	1.958 921	0.693 414	-0.839 651	1 1.080 515	-(Methylethy	l)benzene 280.829	631.10	177.15	629.15	0.124	96-trc
A2	1181.8435	-127.9835	8.045 603	1,	,2,4-Trimethy	ylbenzene		273.15	353.15	0.013	96-trc
A2	1181.3576	$-65.549\ 69$	-2.187 500	1,2,3,	4-Tetrahydro	onaphthaler	ne	333.15	413.15	0.000 ^b	96-cha/lee-1
A2 A2	1095.1088 1082.4276	-79.816 09 -70.585 68	$-0.059 \ 395 \\ -1.784 \ 600$		Butylbenz	zene ^d		293.10 193.15	353.10 423.15	0.089 0.111	90-zho/lag 94-trc
				1-((Methylpropy	l)benzene ^e					
A2 A2	$\begin{array}{c} 1062.3953 \\ 1416.6236 \end{array}$	$-59.208\ 33$ -294.6668	-3.273 810 35.983 957					313.00 273.15	453.00 323.15	0.000^b 0.024	85-mak/kis 96-trc-1
A2	1195.7268	-49.511 47	-3.526 464		1-Methylnapl	hthalene		273.15	423.15	0.133	67-trc
A2 A2	1099.4870 1096.1139	$-84.393\ 59\ -86.585\ 19$	1.190 605 2.087 607		Hexylben	zene ^r		293.10 253.15	353.10 383.15	0.089 0.030	90-zho/lag 94-trc
A2	1213.4399	-63.092 50	-2.500 000		Diphenylm	ethane		333.15	413.15	0.000^{b}	97-cha/lee
A2	1226.8121	-77.435 70			1,1-Dipheny	lethane		310.93	372.04	0.046	59-low/spe
					Octylbenz	zene ^g					
A2 A2	1081.2117 1054.8852	$-80.298\ 28\ -63.040\ 51$	$1.237\ 650 \\ -1.557\ 089$					293.10 253.15	353.10 383.15	0.022 0.021	90-zho/lag 94-trc
A2	1076.9383	-77.720 01	0.957 577		Nonylben	zene ^h		293.10	353.15	0.069	90-zho/lag
A2	1069.6868	-73.260 14	0.102 162					253.15	323.15	0.026	91-Kall/lag
A2	1213.7306	-50.091 54	1,2 -2.085 894	,3,4,4a,7,8,9	,10,11,12,12a	1-Dodecahyo	drochrys	ene 310.93	408.15	0.087	59-low/spe
A2	1171.8673	-78.610 67	1.042 799		1,1-Diphenyl	heptane		310.93	408.15	0.034	59-low/spe
A2	1103.7802	$-59.675\ 30$	-0.905 630	1-Pheny	/l-3-(2-pheny	lethyl)unde	cane	310.95	408.15	0.104	58-cut/mcm
A2	1073.1082	$-46.053\ 64$	-2.808 396	1-]	Pentadecylna	phthalene		333.15	408.15	0.154	58-cut/mcm
A2	991.463 65	-31.743 35	-5.041 211	(3	-Octylundecy	l)benzene		310.95	408.15	0.220	58-cut/mcm
A2	1097.8040	-56.953 18	-1.428 472	1,	1-Diphenylte	tradecane		310.93	408.15	0.133	59-low/spe

^{*a*} From database 93-cda. Critical densities are given with three decimal points since they were calculated from rounded values of critical molar volumes recorded in the database of 93-cda. ^{*b*} Polynomial interpolation. ^{*c*-*h*}Average deviations (RMSD) of density data used for the first fit from smoothed TRC values (second fit) in the overlapping temperature ranges are (kg·m⁻³): 0.44 (*c*), 1.05 (*d*), 1.85 (*e*), 1.32 (*f*), 0.24 (*g*), and 1.87 (*h*).

Appendix

Representation of Reference Density Data $\rho[T, P_{ref}(T)] = \rho(T)$. The functions of temperature selected to represent reference density data $\rho[T, P_{ref} = 0.101\ 325\ MPa \text{ or } P_{ref} = P_{sat.}(T)] = \rho(T)$ are as follows

$$\rho(T/K)/(kg \cdot m^{-3}) = \rho_{c} \{1 + a_{0}(1 - T_{r})^{1/3} + a_{1}(1 - T_{r})^{2/3} + a_{2}(1 - T_{r}) + a_{3}(1 - T_{r})^{4/3} + a_{4}(1 - T_{r})^{5/3}\},$$

$$T_{r} = T/T_{c} \text{ (A1)}$$

$$\rho(T/K)/(kg \cdot m^{-3}) = a_0 + a_1(T/100) + a_2(T/100)^2$$
 (A2)

$$\rho(T/K)/(kg \cdot m^{-3}) = a_0 - a_1 T - a_2/(a_3 - T)$$
 (A3)

The values of adjustable parameters a_i obtained by fitting to available data using a weighted least-squares method are recorded in Tables 6 and 7 along with some characteristics of the fits. Equation A1 was preferably used in those cases where respective critical parameters (ρ_c , T_c) were available and the data covered a wide temperature range (close to critical temperature). The absence of extremes and inflection points on the function $\rho(T)$ was checked for all fits.

In those cases where the reference density values $\rho(T, P_{\rm ref}(T))$ (see eq 1) were not available (nor original values, nor extrapolated ones), the fits summarized in Table 6 were used for the data sets denoted by letter "e" in the last column of Table 4 to calculate reference density values. The density data retained for the fits in Table 6 were taken from TRC Thermodynamic Tables, except for naphthalene, where the parameters of eq A3 were taken directly from the database [93-cda]. The statistical weights were related to the number of significant digits of density values given in the TRC Tables. The values from TRC Tables were combined with data by Baonza et al. [94-bao/cac] for 1,3,5-trimethylbenzene to enlarge the temperature range of the fit.

Table 7 summarizes the values of adjustable parameters a_i of functions A1 and A2 fitted mostly to the values of experimental densities at atmospheric pressure reported for the same samples as compressed-liquid density data retained in correlations by the Tait equation (see Tables 2-4). The functions were not, unlike the equations summarized in Table 6, employed in smoothing the compressedliquid density data and are presented as an auxiliary information here, which may be useful particularly for less common substances. The functions can be used to calculate smoothed reference density values for evaluation of compressed liquid densities from eq 1. The fits in Table 7 are not the fits of critically selected experimental data. In several cases the parameters a_i obtained using density values taken from the TRC Thermodynamic Tables are, however, presented. Two fits are given where sufficient data sets were available. No fit for ethenylbenzene (styrene) is presented since the compressed-liquid data are presented as volume ratios at one temperature in the original source [49-bri].

Values by Matsuo and Van Hook [84-mat/van] for hexadeuteriobenzene are not consistent with data reported by Dymond et al. [81-dym/rob, 82-dym/gle] retained for the fit. When all available data were fitted together, the fourth term $a_3(T/100)^3$ in eq A2 became significant, but the inflection point on the $\rho(T)$ function appeared at T = 317K. Average deviations of density values by Chylinski and Gregorowicz [91-chy/gre] for propylbenzene and 1-(methylethyl)benzene (two values per set) from the fits in Table 7 are 0.422 kg·m⁻³ (positive for both data points) and 0.050 kg·m⁻³, respectively. No original reference density data were available for 1,2,4-trimethylbenzene; the compressedliquid data are, however, inconsistent with the values from TRC Tables; and densities obtained by extrapolation to $P_{\rm ref}$ of compressed-liquid density data by Gouel [78-gou] are, on average, lower by 5.4 kg·m⁻³ than those from the fit in Table 7. Original reference density values for 1,2,3,4tetrahydronaphthalene are not in good mutual agreement. The data retained for the fit in Table 7 were those reported for a purified sample with higher purity and of better accuracy declared by authors [96-cha/lee-1]. Similarly, original reference densities for 1-methylnaphthalene fitted together resulted in the fit with $RMSD = 2.95 \text{ kg} \cdot \text{m}^{-3}$. Data by Chang and Lee [96-cha/lee] for this substance are close

to the fit from Table 7 [67-trc] (deviation 0.72 kg·m⁻³ on average); values from other sources (see Table 2) exhibit much larger negative deviations ranging from 1 to 8 kg·m⁻³.

Literature Cited

31-bri	Bridgman, P. W. The Volume of Eighteen Liquids as a Function of Pressure and Temperature. <i>Proc.</i> <i>Am. Acad. Arts Sci.</i> 1931 , <i>66</i> , 185–233.
38-gib/kin	Gibson, R. E.; Kincaid, J. F. The Influence of Temperature and Pressure on the Volume and Refractive Index of Benzene. <i>J. Am. Chem. Soc.</i> 1938 , <i>60</i> , 511–518.
38-rus/hot	Russel, F. R.; Hottel, H. C. Compressibility of Liquid Naphthalene. <i>Ind. Eng. Chem.</i> 1938 , <i>30</i> , 343–345.
44-sch	Schaaffs, W. Z. Phys. Chem. (Leipzig) 1944, 194, 28.
49-bri	Bridgman, P. W. Further Rough Compressions to 40,000 kg/cm ² , Especially Certain Liquids. <i>Proc. Am. Acad. Arts Sci.</i> 1949 , <i>77</i> , 129–146.
49-gla/sag	Glanville, J. W.; Sage, B. H. Volumetric Behavior of Benzene. <i>Ind. Eng. Chem.</i> 1949 , <i>41</i> , 1272–1273.
52-jac	Jacobson, B. Intermolecular Free Lengths in the Liquid State. I. Adiabatic and Isothermal Com- pressibilities. <i>Acta Chem. Scand.</i> 1952 , <i>6</i> , 1485– 1498.
54-bet/hay	Bett, K. E.; Hayes, P. F.; Newit, D. M. The Con- struction, Operation and Performance of a Primary Standard Mercury Column for the Measurements of High Pressures. <i>Philos. Trans. R. Soc. London A</i> 1954 , <i>247</i> , 59–100.
55-sta/tup	Staveley, L. A. K.; Tupman, W. I.; Hart, K. R. Some Thermodynamic Properties of the Systems Benzene + Ethylene Dichloride, Benzene + Carbon Tetra- chloride, Acetone + Chloroform, and Acetone + Carbon Disulphide. <i>Trans. Faraday Soc.</i> 1955 , <i>51</i> , 323–343.
56-mar/sta	Marshall, J. G.; Staveley, L. A. K.; Hart, K. R. A Thermodynamic Investigation of the Transitions in Carbon Tetrabromide and Amonium Chloride. <i>Trans.</i> <i>Faraday Soc.</i> 1956 , <i>52</i> , 19–31.
57-wal/ric	Walsh, J. M.; Rice, H. M. Dynamic Compression of Liquids from Measurements on Strong Shock Waves. <i>J. Chem. Phys.</i> 1957 , <i>26</i> , 815–823.
58-cut/mcm	Cutler, W. G.; McMickle, R. H.; Webb, W.; Schiessler, R. W. Study of the Compressions of Several High Molecular Weight Hydrocarbons. <i>J. Chem. Phys.</i> 1958 , <i>29</i> , 727–740.
58-par/pan	Parthasarathy, S.; Pancholy, M.; Chhapgar, A. F. Ultrasonic Absorption in Some Homologous Series of Organic Liquids. Part II. Hydrocarbons. <i>Nuovo Cimento</i> 1958 , <i>10</i> , 118–131.
59-gol/vag	Golubev, I. F.; Vagina, E. N. Specific Mass of Benzene, Cyclohexane, and Their Mixtures at High Pressures and Various Temperatures. <i>Tr. GIAP</i> 1959 , <i>9</i> , 95–107 (in Russian).
59-low/spe	Lowitz, D. A.; Spencer, J. W.; Webb, W.; Schiessler, R. W. Temperature-Pressure-Structure Effects on the Viscosity of Several Higher Hydrocarbons. <i>J.</i> <i>Chem. Phys.</i> 1959 , <i>30</i> , 73–83.
60-hil/goc	Hilczer, T.; Goc, R. Density of Liquids under High Pressure. <i>Bull. Soc. Amis Sci. Lett. Poznan, Ser. B</i> 1960 , <i>16</i> , 201–206.
61-shi/hil	Shinoda, K.; Hildebrand, J. H. Compressibilities and Isochores of $(C_3H_7COOCH_2)_4C$, c-Si ₄ O ₄ (CH ₃) ₈ , n - C_5H_{12} , n - C_8H_{18} , 2,2,4- $C_5H_9(CH_3)_3$, c- C_5H_{10} , c- C_6H_{12} , c- $C_6H_{11}CH_3$, C ₆ H ₅ CH ₃ , p- $C_6H_4(CH_3)_2$, s- C_6H_3 - (CH ₃) ₃ , CH ₂ Cl ₂ . J. Chem. Phys. 1961 , 65, 183.
62-hol/wha	Holder, G. A.; Whalley, E. Compressibility of Liq- uids. Part 1Experimental Methods, and Compress- ibility of Carbon Tetrachloride, Benzene and Cy- clohexane. <i>Trans. Faraday Soc.</i> 1962 , <i>58</i> , 2095– 2107.
63-and	Andersson, G. R. A Study of the Pressure Depen- dence of the Partial Specific Volume of Macromol- ecules in Solution by Compression Measurements in the Range 1–8000 atm. <i>Ark. Kemi</i> 1963 , <i>20</i> , 513–571

65-sch/has	Schamp, H. W.; Hastings, J. R.; Weissman, S. New Method for Measuring Liquid Compressibilities. <i>Phys. Fluids</i> 1965 , <i>8</i> , 8–11.	77-geh/le
67-mam/akh	Mamedov, A. M.; Akhundov, T. S.; Asadullaeva, N. N. Experimental Observation of Density and Satu- rated Vapour Pressure of <i>m</i> -Xylene. <i>Teploenergetika</i> (<i>Moscow</i>) 1967 , <i>14</i> (5), 81–82 (in Russian).	77-gup/h
67-mam/akh-1	Mamedov, A. M.; Akhundov, T. S.; Asadullaeva, N. N. Experimental Observation of Density of <i>m</i> -Xylene at Temperatures 225–400 °C and Pressures up to 200 bar. <i>Teploenergetika (Moscow)</i> 1967 , <i>14</i> (4), 82–84 (in Russian).	78-fig/fuo
67-trc	TRC Tables 23-2-(33.5210)-d. C–H. Naphthalenes, C ₁₀ to C ₁₂ . TRC Thermodynamic Tables–Hydrocar- bons; Thermodynamics Research Center, The Texas A&M University System: College Station, TX, 1967: p 3570.	78-gou
68-day	Dayantis, J. Measurements of the Isothermal Com- pressibility of Liquids and Partial Compressibility of Macromolecules in Solutions by an Analytical Ultracentrifuge. C. R. Seances Acad. Sci., Ser. C 1968, 267, 223–226.	78-gro/w
68-ski/cus	Skinner, J. F.; Cussler, E. L.; Fuoss, R. M. Pressure Dependence of Dielectric Constant and Density of Liquids. <i>J. Phys. Chem.</i> 1968 , <i>72</i> , 1057–1064.	78-kiy/ha
69-akh/ima	Akhundov, T. S.; Imanov, Sh. Yu. The Specific Volumes of <i>o</i> -Xylene at 25–400 °C and Pressures up to 500 bar. <i>Russ. J. Phys. Chem. (Engl. Transl. of Zh. Fiz. Khim.)</i> 1969 , <i>43</i> , 872–873.	78-pra/pi
69-akh/ima-1	Akhundov, T. S.; Imanov, Sh. Yu. Experimental Observation of Specific Volumes of <i>p</i> -Xylene at Temperatures 50–400 °C and Pressures up to 500 bar. <i>Izv. Vyssh. Uchebn. Zaved., Neft Gaz</i> 1969 , <i>12</i> (2), 66–68 (in Russian).	79-dic
69-mop	Mopsik, F. I. Dielectric Properties of Slightly Polar Organic Liquids as a Function of Pressure, Volume, and Temperature. <i>J. Chem. Phys.</i> 1969 , <i>50</i> , 2559– 2569.	79-kar/sa
70-akh/abd	Akhundov, T. S.; Abdullaev, F. G. Experimental Observation of Specific Volumes of Toluene. <i>Izv.</i> <i>Vyssh. Uchebn. Zaved., Neft Gaz</i> 1970 , <i>13</i> (5), 67– 69 (in Russian).	79-kas/fu
70-dic	Dick, R. D. Shock Wave Compression of Benzene, Carbon Disulfide, Carbon Tetrachloride, and Liquid Nitrogen. <i>J. Chem. Phys.</i> 1970 , <i>52</i> , 6021–6032.	80-tak
71-des/bha	Deshpande, D. D.; Bhatgadde, L. G. Heat Capacities at Constant Volume, Free Volumes, and Rotational Freedom in Some Liquids. <i>Aust. J. Chem.</i> 1971 , <i>24</i> , 1817–1822.	81-dym/r
71-hoe/flo	Hoecker, H.; Flory, P. J. Thermodynamics of Poly- styrene Solutions. Part 2.–Polystyrene and Ethyl- benzene. <i>Trans. Faraday Soc.</i> 1971 , <i>67</i> , 2270–2274.	
71-ric/rog	Richard, A. J.; Rogers, K. S. The Isothermal Com- pressibility of Organic Liquids by Ultracentrifuga- tion. Correlation with Surface Tension. <i>Can. J.</i> <i>Chem.</i> 1971 , <i>49</i> , 3956–3959.	81-tak
72-ewi/mar	Ewing, M. B.; Marsh, K. N.; Stokes, R. H. A Dilution Piezometer for Isothermal Compressibilities of Mix- tures. Excess Compressibilities of Benzene + Cy- clohexane at 298.15 K. <i>J. Chem. Thermodyn.</i> 1972 , <i>4</i> , 637–646.	82-dym/g
72-lys	Lysne, P. C. Nonlinear U(u) Hugoniots of Liquids at Low Pressures. <i>J. Chem. Phys.</i> 1972 , <i>57</i> , 492– 494.	82-kas/ha
73-rog/bur	Rogers, K. S.; Burkat, R.; Richard, A. J. The Ultracentrifuge as a Pressure-Densitometer. <i>Can. J. Chem.</i> 1973 , <i>51</i> , 1183–1186.	82-nat/na
74-jai/nor	Jain, D. V. S.; North, A. M.; Pethrick, R. A. Adiabatic Compressibility of Binary Liquid Mix- tures. <i>J. Chem. Soc., Faraday Trans.</i> 1 1974 , <i>70</i> , 1292–1298.	
75-bur/ric	Burkat, R. K.; Richard, A. J. Low-Pressure Studies of the Isothermal Compressibilities and Specific Volumes of Organic Liquids. <i>J. Chem. Thermodyn.</i> 1975 , <i>7</i> , 271–277.	82-tak/te
75-par/jon	Parkhurst, H. J.; Jonas, J. Dense Liquids. I. The Effect of Density and Temperature on Self-diffusion of Tetramethylsilane and Benzene-d6. <i>J. Chem. Phys.</i> 1975 , <i>63</i> , 2698–2704.	82-tak/te

en	Gehrig, M.; Lentz, H. p, V, T for Benzene in the
	Range 5 to 300 MPa and 323 to 683 K. J. Chem.
	Thermodyn, 1977, 9, 445–450

gup/han Gupta, A. C.; Hanks, R. W. Liquid-Phase PVT Data for Binary Mixtures of Toluene with Nitroethane and Acetone, and Benzene with Acetonitrile, Nitromethane, and Ethanol. *Thermochim. Acta* 1977, 21, 143–152.

- 8-fig/fuc Figuiere, P.; Fuchs, A. H.; Ghelfenstein, M.; Szwarc, H. Pressure–Volume–Temperature Relations for Crystalline Benzene. J. Phys. Chem. Solids 1978, 19, 12–24.
- 8-gou Gouel, P. Density of Alkanes (C₆ to C₁₆), Cycloalkanes, and Alkylbenzenes. *Bull. Cent. Rech. Explor.-Prod. Elf-Aquitaine* **1978**, *2*, 211–225 (in French).

8-gro/wil Grolier, J.-P. E.; Wilhelm, E.; Hamedi, M. H. Molar Heat Capacity and Isothermal Compressibility of Binary Liquid Mixtures: Carbon Tetrachloride + Benzene, Carbon Tetrachloride + Cyclohexane, and Benzene + Cyclohexane. *Ber. Bunsen-Ges. Phys. Chem.* **1978**, *82*, 1282–1290.

- 8-kiy/hal Kiyohara, O.; Halpin, C. J.; Benson, G. C. Ultrasonic Velocities, Compressibilities, and Heat Capacities for Binary Mixtures of Benzene, Cyclohexane and Tetrachloromethane at 298.15 K. J. Chem. Thermodyn. 1978, 10, 721–730.
- -pra/pra Prasad, N.; Prakash, O.; Singh, S.; Prakash, S. Molecular Interaction and Other Thermodynamic Properties in Ternary Liquid Mixtures. Ultrasonics 1978, 77–80.
- -dic Dick, R. D. Shock Compression Data for Liquids. I. Six Hydrocarbon Compounds. J. Chem. Phys. **1979**, 71, 3203–3212.
- -kar/sam Kartsev, V. N.; Samoilov, O. Ya.; Zabelin, V. A. Temperature Dependence of Isothermal Compressibility of Some Normal Liquids and Water. *Zh. Fiz. Khim.* 1979, *53*, 757–759 (in Russian).
- D-kas/fuk Kashiwagi, H.; Fukunaga, T.; Tanaka, Y.; Kubota, H.; Makita, T. Dielectric Constant and Density of Cyclohexane–Benzene Mixture under High Pressure. Rev. Phys. Chem. Jpn. 1979, 49, 70–84.
- 0-tak Takagi, T. Ultrasonic Speeds and Thermodynamics of (Benzene + Aniline) and (Chlorobenzene + Aniline) under High Pressures. *J. Chem. Thermodyn.* **1980**, *12*, 277–286.
- 1-dym/rob Dymond, J. H.; Robertson, J.; Isdale, J. D. Transport Properties of Nonelectrolyte Liquid Mixtures-IV. Viscosity Coefficients for Benzene, Perdeuterobenzene, Hexafluorobenzene, and an Equimolar Mixture of $C_6H_6 + C_6F_6$ from 25 to 100 °C at Pressures up to Freezing Pressure. Int. J. Thermophys. **1981**, 2, 223–236.
- -tak Takagi, T. Ultrasonic Speeds and Thermodynamics of (Benzene + an Isomeric Xylene) under High Pressure. J. Chem. Thermodyn. **1981**, *13*, 291–299.
- -kas/has Kashiwagi, H.; Hashimoto, T.; Tanaka, Y.; Kubota, H.; Makita, T. Thermal Conductivity and Density of Toluene in the Temperature Range 273–373 K at Pressures up to 250 MPa. Int. J. Thermophys. 1982, 3, 201–215.

-nat/nar Nath, J.; Narain, B. Binary Systems of Tetrachloroethylene with Benzene, Toluene, p-Xylene, Carbon Tetrachloride, and Cyclohexane. 1. Ultrasonic Velocities and Adiabatic Compressibilities at 293.15 and 303.15 K, Dielectric Constants at 298.15 and 308.15 K, and Refractive Indexes at 298.15 K. J. Chem. Eng. Data 1982, 27, 308–312.

2-tak/ter Takagi, T.; Teranishi, H. Ultrasonic Speeds and Thermodynamic Properties of (Benzene + Nitrobenzene) under High Pressures. *J. Chem. Thermodyn.* **1982**, *14*, 1167–1173.

82-tak/ter-1 Takagi, T.; Teranishi, H. Ultrasonic Speeds and Thermodynamic Properties of (Benzene + Chlorobenzene) and (Benzene + Bromobenzene) under

	High Pressures. J. Chem. Thermodyn. 1982 , 14, 577–584.	
83-dia/lai	Diaz Pena, M.; Lainez, A.; Rodrigo, M. M.; Aicart, E. Excess Functions of (1-Bromobutane + Benzene) at Various Temperatures. <i>J. Chem. Thermodyn.</i> 1983 , <i>15</i> , 559–565.	8
83-dia/lai-1	Diaz Pena, M.; Lainez, A.; Compostizo, A.; Crespo, A. Excess Functions of (1-Bromobutane + Toluene) at Various Temperatures. <i>J. Chem. Thermodyn.</i> 1983 , <i>15</i> , 807–813.	8
83-gop/rao	Gopal, K.; Rao, N. P. Ultrasonic Studies in Binary Liquid Mixtures with <i>n</i> -Decyl Alcohol as Common Component. <i>Acustica</i> 1983 , <i>54</i> , 115–119.	0
83-kas/fuk	Kashiwagi, H.; Fukunaga, T.; Tanaka, Y.; Kubota, H.; Makita, T. Dielectric Constant and Density of (Benzene + Chlorobenzene) at High Pressures. <i>J.</i> <i>Chem. Thermodyn.</i> 1983 , <i>15</i> , 567–580.	8
83-mcg	McGarry, J. Correlation and Prediction of the Vapor Pressures of Pure Liquids over Large Pressure Ranges. <i>Ind. Eng. Chem., Process Des. Dev.</i> 1983 , <i>22</i> , 313–332.	ð
83-nat/tri	Nath, J.; Tripathi, A. D. Binary Systems of 1,1,2,2- Tetrachloroethane with Benzene, Toluene, <i>p</i> -Xy- lene, Acetone, and Cyclohexane. 1. Excess Volumes, Ultrasonic Velocities, and Adiabatic Compressibili- ties at 298.15 and 308.15 K. <i>J. Chem. Eng. Data</i> 1983 , <i>28</i> , 263–266.	8
83-tam/oho	Tamura, K.; Ohomuro, K.; Murakami, S. Speeds of Sound, Isentropic and Isothermal Compressibilities, and Isochoric Heat Capacities of { $xc-C_6H_{12} + (1-x)-C_6H_6$ }, { $xCCl_4 + (1-x)C_6H_6$ }, and { $xC_7H_{16} + (1-x)-C_6H_6$ } at 298.15 K. J. Chem. Thermodyn. 1983 , <i>15</i> , 859–868.	8
84-kra/nie	Kratzke, H.; Niepmann, R.; Spillner, E.; Kohler, F. Residual Helmholtz Energies of Liquid Benzene between 300 and 465 K and up to 60 MPa. <i>Fluid</i> <i>Phase Equilib.</i> 1984 , <i>16</i> , 287–316. (Data for P-V-T of benzene from: Teichmann, J. Disertation, Ruhr- University, Bochum, Germany, 1978.)	8
84-mat/van	Matsuo, S.; Van Hook, A. Isothermal Compress- ibility of C_6H_6 , C_6D_6 , $c-C_6H_{12}$, $c-C_6D_{12}$, and Their Mixtures from 0.1 to 35 MPa at 288, 298, and 313 K. <i>J. Phys. Chem.</i> 1984 , <i>88</i> , 1032–1040.	8
84-tak/ter	Takagi, T.; Teranishi, H. Ultrasonic Speeds and Densities of Benzene and Toluene under High Pressures. <i>Zairyo (J. Soc. Mater. Sci., Jpn.)</i> 1984 , <i>33</i> , 134–139 (in Japanese).	8
85-alb/gat	Albert, H. J.; Gates, J. A.; Wood, R. M.; Grolier, J P. E. Densities of Toluene, of Butanol and of Their Binary Mixtures from 298 K to 400 K and from 0.5 to 20.0 MPa. <i>Fluid Phase Equilib.</i> 1985 , <i>20</i> , 321– 330.	8
85-eas/woo	Easteal, A. J.; Woolf, L. A. p, V, T and Derived Thermodynamic Data for Toluene, Trichloromethane, Dichloromethane, Acetonitrile, Aniline, and n-Dode- cane. <i>Int. J. Thermophys.</i> 1985 , <i>6</i> , 331–351.	8
85-mak/kis	Makhno, M. G.; Kislyak, G. M.; Porkhunov, A. I.; Serdyuk, L. A. Acoustic and Thermodynamic Prop- erties of <i>sec</i> -Butylbenzene. <i>Ul'trazvuk Termodin</i> . <i>Swistra Vashabertya</i> 1095 111–116 (in Pussian)	8
85-mar/bha	Marwein, B. L.; Bhat, S. N. Ultrasonic Study of Molecular Interactions in Ternary Liquid Mixtures. <i>Acustica</i> 1985 , <i>58</i> , 243–247.	8
85-mur/tra	Muringer, M. J. P.; Trappeniers, N. J.; Biswas, S. N. The Effect of Pressure on the Sound Velocity and Density of Toluene and <i>n</i> -Heptane up to 2600 bar. <i>Phys. Chem. Liq.</i> 1985 , <i>14</i> , 273–296.	8
85-tak/ter	Takagi, T.; Teranishi, H. Ultrasonic Speeds and Thermodynamics for (Toluene + <i>o</i> -Xylene) and (Toluene + Aniline) under High Pressures. <i>J. Chem.</i> <i>Thermodyn.</i> 1985 , <i>17</i> , 1057–1062.	8
85-tam/mur	Tamura, K.; Murakami, S.; Doi, S. Speeds of Sound, Densities, and Isentropic Compressibilities of {xc- C_6H_{12} + (1-x) $C_6H_5CH_3$ }, {xc- $C_6H_{11}CH_3$ + (1-x)- C_6H_6 }, and {xc- $C_6H_{11}CH_3$ + (1-x) $C_6H_5CH_3$ }, from 293.15 to 303.15 K. <i>J. Chem. Thermodyn.</i> 1985 , <i>17</i> , 325–333.	9
85-tek/cib	Tekáč, V.; Cibulka, I.; Holub, R. PVT Properties of Liquids and Liquid Mixtures: A Review of the Experimental Methods and the Literature Data.	9

	Fluid Phase Equilib. 1985 , 19, 33–149.
86-gam/tar	Gamboa, I.; Tardajos, G.; Diaz Pena, M.; Aicart, E. Isothermal Compressibility of (Toluene + <i>n</i> -Decane) and (Toluene + n-Dodecane) at Various Tempera- tures. <i>J. Chem. Thermodyn.</i> 1986 , <i>18</i> , 885–890.
86-kar	Karvo, M. Ultrasonic Speeds and Isentropic Com- pressibilities of Sulfolane + Benzene, + Toluene, + <i>p</i> -Xylene, and + Mesitylene at 303.15 K. <i>J. Chem.</i> <i>Thermodyn.</i> 1986 , <i>18</i> , 809–813.
86-tar/dia	Tardajos, G.; Diaz Pena, M.; Lainez, A.; Aicart, E. Speed of Sound in and Isothermal Compressibility and Isobaric Expansivity of Pure Liquids at 298.15 K. <i>J. Chem. Eng. Data</i> 1986 , <i>31</i> , 492–493.
86-tar/dia-1	Tardajos, G.; Diaz Pena, M.; Aicart, E. Speed of Sound in Pure Liquids by Pulse-Echo-Overlap Method. J. Chem. Thermodyn. 1986 , <i>18</i> , 683–689.
87-eas/woo	Easteal, H. A.; Woolf, L. A. Freezing Pressures, p, V, T, and Self-Diffusion Data at 298 and 313 K and Pressures up to 300 MPa for 1,3,5-Trimethylbenzene. <i>Int. J. Thermophys.</i> 1987 , <i>8</i> , 71–79.
87-hol/goe	Holzapfel, K.; Goetze, G.; Demiriz, A. M.; Kohler, F. Volume and Isothermal Compressibility of Some Normal Alkanes (C5-C16) + 2,3-Dimethylbutane, + Methylcyclopentane, + Butylcyclohexane, + Ben- zene, + 2-Propanone, or + Tetrachloromethane. <i>Int.</i> <i>Data Ser., Sel. Data Mixtures, Ser. A</i> 1987 , <i>15</i> (1), 30–56.
87-rat/sin	Rattan, V. K.; Singh, S.; Sethi, B. P.; Raju, K. S. N. Speed of Sound, Densities, and Viscosities of (Cumene + Ethanol or 1-Propanol) at 298.15 and 308.15 K. <i>J. Chem. Thermodyn.</i> 1987 , <i>19</i> , 535– 538.
87-str/bal	Straty, G. C.; Ball, M. J.; Bruno, T. J. <i>PVT</i> Measurements on Benzene at Temperatures to 723 K. <i>J. Chem. Eng. Data</i> 1987 , <i>32</i> , 163–166.
87-sun/kor	Sun, T. F.; Kortbeek, P. J.; Trappeniers, N. J.; Biswas, S. N. Acoustic and Thermodynamic Proper- ties of Benzene and Cyclohexane as a Function of Pressure and Temperature. <i>Phys. Chem. Liq.</i> 1987 , <i>16</i> , 163–178.
87-tak/ter	Takagi, T.; Teranishi, T. Ultrasonic Speed in Com- pressed Liquid by a Sing-around Method. <i>J. Chem.</i> <i>Thermodyn.</i> 1987 , <i>19</i> , 1299–1304.
88-dym/mal	Dymond, J. H.; Malhotra, R.; Isdale, J. D.; Glen, N. F. (p, ρ , T) of <i>n</i> -Heptane, Toluene, and Oct-1-ene in the Range 298 to 373 K and 0.1 to 400 MPa and Representation by the Tait Equation. <i>J. Chem. Thermodyn.</i> 1988 , <i>20</i> , 603–614.
88-goo	Goodwin, R. D. Benzene Thermophysical Properties from 279 to 900 K at Pressures to 1000 Bar. <i>J. Phys.</i> <i>Chem. Ref. Data</i> 1988 , <i>17</i> , 1541–1636.
88-sid/tej	Siddiqi, S. A.; Teja, A. S. High-Pressure Densities of Mixtures of Coal Chemicals. <i>Chem. Eng. Com-</i> <i>mun.</i> 1988 , <i>72</i> , 159–169.
88-str/bal	Straty, G. C.; Ball, M. J.; Bruno, T. J. <i>PVT</i> of Toluene at Temperatures to 673 K. <i>J. Chem. Eng.</i> <i>Data</i> 1988 , <i>33</i> , 115–117.
89-goo	Goodwin, R. D. Toluene Thermophysical Properties from 178 to 800 K at Pressures to 1000 Bar. <i>J. Phys.</i> <i>Chem. Ref. Data</i> 1989 , <i>18</i> , 1565–1636.
89-mat/aic	Matilla, A. D.; Aicart, E.; Diaz Pena, M.; Tardajos, G. Isobaric Thermal Expansion and Isothermal Compressibility of Ethylbenzene $+ n$ -Hexane, and $+ n$ -Octane at 25 and 45 °C. <i>J. Solution Chem.</i> 1989 , <i>18</i> , 143–150.
89-mat/tar	Matilla, A. D.; Tardajos, G.; Diaz Pena, M.; Aicart, E. First and Second Thermodynamic Mixing Func- tions of Ethylbenzene + n-Nonane, + n-Decane, and + n-Dodecane at 25 and 45 °C. <i>J. Solution Chem.</i> 1989 , <i>18</i> , 893–901.
90-amb/ewi	Ambrose, D.; Ewing, M. B.; Ghiassee, N. B.; Sanchez Ochoa, J. C. The Ebulliometric Method of Vapour- Pressure Measurements: Vapour Pressure of Ben- zene, Hexafluorobenzene, and Naphthalene. <i>J.</i> <i>Chem. Thermodyn.</i> 1990 , <i>22</i> , 589–605.
90-bru/wei	Bruesewitz, M.; Weiss, A. Pressure-Temperature- Dependence of Mass Density and Self-diffusion Coefficients in Binary Liquid System n-Hexane/

90-pol/wei	Benzene. <i>Ber. Bunsen-Ges. Phys. Chem.</i> 1990 , <i>94</i> , 386-391. Polzin, B.; Weiss, A. Transport Properties of Liq-	94-tar/cas-1	Taravillo, M.; Castro, S.; Baonza, V. G.; Caceres, M.; Nunez, J. Equation of State of Liquid o-Xylene at Low Temperatures and High Pressures. <i>J. Chem.</i>
I	uids. VIII. Molar Volume and Self-Diffusion of Organic Liquids at Pressures up to 200 MPa. <i>Ber.</i> <i>Bunsen-Ges. Phys. Chem.</i> 1990 , <i>94</i> , 746–758.	94-trc	Soc., Faraday Trans. 1994 , 90, 3527–3532. TRC Tables 23-2-(33.11000)-d. C–H. <i>n</i> -Alkylben- zenes, C ₆ to C ₂₂ . TRC Thermodynamic Tables-
90-sek/ven	Sekar, P. R.; Venkateswarlu, R.; Reddy, K. S. Excess Volumes, Isentropic Compressibilities, and Viscosities of Binary Mixtures Containing Cyclo-	05 sho/los	Hydrocarbons; Thermodynamics Research Center, The Texas A&M University System: College Sta- tion, TX, 1994, pp 3200–3202.
90-yok/mor	Yokoyama, C.; Moriya, S.; Takahashi, S. PVTx Relationships and Solid-Liquid Equilibria for the	95-cna/iee	<i>m</i> -Xylene and <i>m</i> -Cresol + Tetralin Mixtures at 298–348 K and up to 30 MPa. <i>J. Chem. Eng. Data</i> 1995 , <i>40</i> , 1115–1118.
90-zho/lag	<i>Fluid Phase Equilib.</i> 1990 , <i>60</i> , 295–308. Zhou, H.; Lagourette, B.; Aliez, J.; Xans, P.; Nontel, F. Extension of the Application of the Simba Equa	95-fuj/tam	Fujii, S.; Tamura, K.; Murakami, S. Thermody- namic Properties of (an Alkylbenzene + Cyclohex- ane) at the Temperature 298.15 K. J. Chem. Ther-
	r. Extension of the Application of the Density on n-Alkanes-Benzene and Alkylbenzenes Mixtures. <i>Fluid Phase Equilib.</i> 1990 , <i>59</i> , 309–328.	95-hoc/bur	<i>modyn.</i> 1995 , <i>27</i> , 1319–1328. Hocq, H.; Bur, Y.; Berro, C. Densities of Liquid Water, Toluene, and Methanol at 240 to 450 K and
91-chy/gre	Chylinski, K.; Gregorowicz, J. Liquid-Phase PVT Data of Alkylbenzenes. <i>Fluid Phase Equilib.</i> 1991 , <i>64</i> , 237–249.		up to 70 MPa and of Gaseous Methanol at 420 to 450 K and up to 2 MPa. <i>ELDATA Int. Electron. J. PhysChem. Data</i> 1995 , <i>1</i> , 79–86.
91-deu/ros	Deul, R.; Rosenzweig, S.; Franck, E. U. The Dielec- tric Constant and Density of Benzene to 400 °C and 3000 bar. <i>Ber. Bunsen-Ges. Phys. Chem.</i> 1991 , <i>95</i> , 515–519.	95-yok/ebi	Yokoyama, C.; Ebina, T.; Takahashi, S. High- Pressure Solid-Liquid Equilibria and PVTx Rela- tionships for the 1-Methylnaphthalene-Indole Sys- tem. <i>Fluid Phase Equilib.</i> 1995 , <i>104</i> , 391–402.
91-kan/lag	Kanti, M.; Lagourette, B.; Alliez, J.; Boned, C. Viscosity of Binary Heptane-Nonylbenzene as a Function of Pressure and Temperature: Application of Element's Theorem. <i>Fluid Bhage Equilib</i> 1001, 65	96-cha/lee	Chang, JS.; Lee, MJ. Densities of <i>m</i> -Cresol + Quinoline and <i>m</i> -Cresol + 1-Methylnaphthalene Mixtures at (298 to 348) K and up to 30 MPa. <i>J.</i> <i>Chem. Eng. Data</i> 1996 , <i>41</i> , 275–278.
91-sun/bom	Sun, T. F.; Bominaar, S. A. R. C.; Ten Seldam, C. A.; Biswas, S. N. Evaluation of the Thermophysical	96-cha/lee-1	Chang, JS.; Lee, MJ.; Lin, HM. Densities of <i>m</i> -Xylene + Quinoline and <i>m</i> -Xylene + Tetralin from (333 to 413) K and up to 30 MPa. <i>J. Chem. Eng. Data</i> 1996 , <i>41</i> , 1117–1120.
	Properties of Toluene and n-Heptane from 180 to 320 K and up to 260 MPa from Speed-of-Sound Data. <i>Ber. Bunsen-Ges. Phys. Chem.</i> 1991 , <i>95</i> , 696–704.	96-cib/hne	Cibulka, I.; Hnědkovský, L. Liquid Densities at Elevated Pressures of <i>n</i> -Alkanes from C ₅ to C ₁₆ : A Critical Evaluation of Experimental Data. <i>J. Chem.</i> <i>Eng. Data</i> 1996 , <i>41</i> , 657–668.
92-lag/bon	Lagourette, B.; Boned, C.; Saint-Guirons, H.; Xans, P.; Zhou, H. Densimeter Calibration Method Versus Temperature and Pressure. <i>Meas. Sci. Technol.</i> 1992 , <i>3</i> , 669–703.	96-mag/bru	Magee, J. W.; Bruno, T. J. Isochoric (p, ρ, T) Measurements for Liquid Toluene from 180 to 400 K at Pressures to 35 MPa. <i>J. Chem. Eng. Data</i> 1996 , 41, 900–905.
93-cda	CDATA, Database of Physical and Transport Prop- erties of Pure Fluids, Department of Physical Chem- istry, Institute of Chemical Technology, Prague; FIZ CHEMIE GmbH: Berlin, 1993.	96-nat	Nath, J. Speeds of Sound and Isentropic Compress- ibilities of $\{xC_2H_5OC_2H_5 + (1-x)C_6H_6\}$ and $\{xC_2H_5-OC_2H_5 + (1-x)CCl_4\}$ at $T = 298.15$ K. J. Chem. Thermodyn. 1996 , 28, 167–170.
93-gar/ban	Garg, S. K.; Banipal, T. S.; Ahluwalia, J. C. Heat Capacities and Densities of Liquid <i>o</i> -Xylene, <i>m</i> - Xylene, <i>p</i> -Xylene, and Ethylbenzene, at Tempera-	96-poe/kir	Poehler, H.; Kiran, E. Volumetric Properties of Carbon Dioxide + Toluene at High Pressures. J. Chem. Eng. Data 1996 , 41, 482–486.
	tures from 318.15 K to 373.15 K and at Pressures up to 10 MPa. <i>J. Chem. Thermodyn.</i> 1993 , <i>25</i> , 57– 62.	96-trc	TRC Tables 23-2-(33.11100)-d. C–H. Alkylben- zenes, C ₆ to C ₉ . TRC Thermodynamic Tables- Hydrocarbons; Thermodynamics Research Center,
93-mal/woo	Malhotra, R.; Woolf, L. A. Volumetric Measure- ments under Pressure for 2,2,4-Trimethylpentane at Temperatures up to 353.15 K and for Benzene	96-trc-1	The Texas A&M University System: College Sta- tion, TX, 1996; pp 3290–3294. TRC Tables 23-2-(33.111110)-d. C-H. Alkylben-
00 / 1	to 348.15 K. <i>Int. J. Thermophys.</i> 1993 , <i>14</i> , 1153–1172.		zenes, C ₁₀ . TRC Thermodynamic Tables-Hydrocar- bons; Thermodynamics Research Center, The Texas A&M University System: College Station, TX,
93-sre/nai	Sreenivasuu, B.; Naidu, P. K. Excess Volumes and Isentropic Compressibilities of Mixtures of <i>p</i> -Xylene with 2-Propanol, 2-Methyl-1-propanol, and 3-Meth- yl-1-butanol at 303.15 K. <i>J. Chem. Eng. Data</i> 1993 , <i>38</i> , 619–621.	96-zab/ruz	 1996; pp 3330-3351. Zábranský, M.; Růžička, V.; Majer, V.; Domalski, E. S. Heat Capacities of Liquids. Review and Recommended Values. <i>Journal of Physical and Chemical Reference Data</i>, Monograph No. 6; Ameri-
94-bao/cac	Baonza, V. G.; Caceres Alonso, M.; Nunez Delgado, J. Application of Simple Expressions for the High- Pressure Volumetric Behaviour of Liquid Mesity- lene. J. Chem. Soc., Faraday Trans. 1994 , <i>90</i> , 553– 557.	97-bay/bon	can Chemical Society: Washington, D.C., 1996. Baylaucq, A.; Boned, C.; Dague, P.; Lagourette, B. Measurements of the Viscosity and Density of Three Hydrocarbons and the Three Associated Binary Mixtures Versus Pressure and Temperature. <i>Int J</i>
94-cas/tar	Castro, S.; Taravillo, M.; Baonza, V. G.; Caceres, M.; Nunez, J. Thermodynamic Behaviour of Liquid p-Xylene near Freezing. <i>J. Chem. Soc., Faraday</i> <i>Trans</i> 1994 <i>90</i> 3645–3649.	97-cha/lee	<i>Thermophys.</i> 1997 , <i>18</i> , 3–23. Chang, JS.; Lee, MJ.; Lin, HM. Densities of <i>m</i> -Xylene + Diphenylmethane and <i>m</i> -Cresol + Diphenylmethane from 222 K to 412 K and Bree
94-cib/zik	Cibulka, I.; Ziková, M. Liquid Densities at Elevated Pressure of 1-Alkanols from C ₁ to C ₁₀ : A Critical Evaluation of Evanemental Data. <i>J. Cham. For</i>	07 -1-:4	Supreny international of the second state of t
94-tar/cas	Data 1994 , <i>39</i> , 876–886. Taravillo, M.; Castro, S.; Baonza, V. G.; Caceres,	97-CHI/KNI	 Chinto, K. D.; Knipmeyer, S. E.; Nguyen, A.; Steele, W. V. Thermodynamic Equilibria in Xylene Isomer- ization. The Thermodynamic Properties of <i>p</i>-Xylene. J. Chem. Eng. Data 1997. 42, 248–261.
	M.; Nunez, J. 1 nermophysical Properties of Liquid m-Xylene at High Pressures. J. Chem. Soc., Fara- day Trans, 1994, 90, 1217–1221.	97-cib/hne	Cibulka, I.; Hnědkovský, L.; Takagi, T. $P-\rho-T$ Data of Liquids: Summarization and Evaluation

quids: Summarization and Evaluation.

3. Ethers, Ketones, Aldehydes, Carboxylic Acids, and Esters. *J. Chem. Eng. Data* **1997**, *42*, 2–26.

97-cib/hne-1 Cibulka, I.; Hnědkovský, L.; Takagi, T. $P - \rho - T$ Data of Liquids: Summarization and Evaluation. 4. Higher 1-Alkanols (C₁₁, C₁₂, C₁₄, C₁₆), Secondary, Tertiary, and Branched Alkanols, Cycloalkanols, Alkanediols, Alkanetriols, Ether Alkanols, and Aromatic Hydroxy Derivatives. *J. Chem. Eng. Data* **1997**, *42*, 415–433.

97-oho/tam Ohomuro, K.; Tamura, K.; Murakami, S. Excess Volumes and Isentropic Compressibilities of the

Binary Mixtures of Cyclohexanone with Globular Species at T=298.15 K. J. Chem. Thermodyn. **1997**, 29, 287–294.

97-poe/kir Poehler, H.; Kiran, E. Volumetric Properties of Sulfur Hexafluoride + Pentane and Sulfur Hexafluoride + Toluene at High Pressures. J. Chem. Eng. Data **1997**, 42, 389–394.

Received for review November 11, 1998. Accepted February 4, 1999. JE980278V