Liquid-Liquid Equilibria for Mixtures of Acetonitrile + a Carboxylic Acid + Heptane at 298.15 K

Trevor M. Letcher*
Department of Chemistry, University of Natal-Durban, Private Bag X10, Dal bridge 4014, South Africa
\section*{Gan G. Redhi}
Department of Chemistry, M L Sultan Technikon, P. O. Box 1334, Durban 4000, South Africa

Abstract

Liquid-liquid equilibrium data are presented for mixtures of (acetonitrile + a carboxylic acid + heptane) at 298.15 K . The carboxylic acids (C2-C5) are acetic acid, propanoic acid, butanoic acid, 2-methylpropanoic acid, pentanoic acid, and 3 -methylbutanoic acid. The relative mutual sol ubility of all the carboxylic acids is higher in the acetonitrile layer than in the hydrocarbon layer. The influence of 3-methylbutanoic acid, pentanoic acid, 2-methylpropanoic acid, and butanoic acid on the solubility of the hydrocarbons in acetonitrile is greater than that of the acetic and propanoic acids. Three three parameter equations have been fitted to the binodal curve data. These equations are compared and discussed in terms of statistical consistency. Selectivity values for solvent separation efficiency were derived from the equilibrium data. The NRTL and UNIQUAC models were used to correlate the experimental results and to cal culate the phase compositions of the ternary systems. The NRTL equation fitted the experimental data far better than the UNIQUAC equation.

Introduction

A great number of industrial separation processes are concerned with liquid mixtures containing aromatics (benzene, tol uene, p-xylene, al kylbenzenes, etc.) and saturated hydrocarbons (hexane, heptane, octane, decane, dodecane, etc.). According to Bailes (1977), solvents such as sulfur dioxide, N-methylpyrrolidone, N -formylmorpholine, dimethyl sulfoxide, and tetrahydrothiophene 1,1-dioxide (sulfolane) have been used extensively in liquid-liquid extraction processes.
Acetonitrile, a relatively inert and inexpensive solvent, with a high density and low viscosity is also an important sol vent with liquid-liquid extraction potential capabilities. Liquid-liquid equilibria (LLE) data on a few ternary mixtures containing acetonitrile have been publ ished in the literature: (acetonitrile + benzene + heptane) at 318.15 K by Palmer and Smith (1972); (acetonitrile + ethanol or 1-propanol + hexane or heptane or octane) at 298.15 K by Nagata (1987); and (acetonitrile + benzene or toluene + cydohexane) at 298.15 K and 318.15 K by Nagata and Ohta (1983).

This work forms part of a program to determine LLE for industrially useful mixtures. LLE data on systems containing acetonitrile + carboxylic acid mixtures are relatively scarce, and in this work the LLE for (acetonitrile + a carboxylic acid + heptane) mixtures have been determined for each of the C2, C3, C4, and C5 carboxylic acids at 298.15 K .
The binodal curve data have been summarized using a modified Hlavatỳ equation (Hlavatỳ, 1972), a β function, and a $\log \gamma$ equation using methods previously described by Letcher et al. (1990). The tie lines were correlated using the NRTL model of Renon and Prausnitz (1968) and the UNIQUAC model of Abrams and Prausnitz (1975).

[^0]
Experimental Section

Chemicals. The acids were obtained from Acros Chemicals. The compounds were dried using activated type $4 \AA$ molecular sieves and analyzed using the Karl-Fischer technique, showing that the water content was less than 0.01 mass $\%$. Acetonitrile and heptane were purchased from Aldrich Chemical Co. The purity of each of these components was determined by GLC and was al ways better than $99.8 \mathrm{~mol} \%$. The measured physical properties of the reagents used in this work are listed in Table 1 together with literature values.

Procedure. The binodal curves were carried out by the titration method described by Letcher and Siswana (1992). The tie lines were analyzed by the refractive index method of Briggs and Comings (1943), previously used and described by Letcher and Siswana (1992). The estimated precision of the composition of mixtures on the binodal curve was within 5×10^{-3} mole fraction, and that of the tie lines was within 1×10^{-3} mole fraction.

Results

The compositions of mixtures on the binodal curve at 298.15 K are given in Table 2, and tie-line compositions are given in Table 3. These compositions are plotted in Figure 1a-f. Three equations have been fitted to the data following the work of Hlavaty (1972). The coefficients A_{i} relate to a modified Hlavatỳ equation

$$
\begin{equation*}
x_{2}=A_{1} x_{A} \ln x_{A}+A_{2} x_{B} \ln x_{B}+A_{3} x_{A} x_{B} \tag{1}
\end{equation*}
$$

the coefficients B_{i} relate to a β function equation

$$
\begin{equation*}
x_{2}=B_{1}\left(1-x_{A}\right)^{B_{2}} x_{A}{ }^{B_{3}} \tag{2}
\end{equation*}
$$

and the coefficients C_{i} relate to the $\log \gamma$ equation

Table 1. Physical Properties of the Pure Components at 298.15 K: Molar Volumes, Vmi $_{\text {, }}$ Refractive Indices, n_{D}, and Volume and Surface Parameters, R and Q

component	$\mathrm{Vmi}^{\mathrm{a}} /$ $\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)$	n_{D}				expt
		R^{b}	Q^{b}			
acetonitrile	52.87	1.3413	1.3416	1.870	1.724	
acetic acid	57.53	1.3697	1.3698	2.202	2.072	
propanoic acid	74.97	1.3846	1.3843	2.877	2.612	
butanoic acid	92.43	1.3955	1.3958	3.551	3.152	
2-methylpropanoic acid	93.44	1.3913	1.3917	3.550	3.148	
pentanoic acid	109.29	1.4064	1.4060	4.226	3.692	
3-methylbutanoic acid	110.54	1.4019	1.4022	4.225	3.688	
heptane	147.47	1.3851	1.3851	5.174	4.396	

${ }^{\text {a }}$ Riddick et al. (1986). ${ }^{\text {b }}$ Gmehling et al. (1993).

Figure 1. Liquid-liquid equilibrium data for the following systems at 298.15 K : (a) acetonitrile (1) + acetic acid (2) + heptane (3); (b) acetonitrile (1) + propanoic acid (2) + heptane (3); (c) acetonitrile (1) + butanoic acid (2) + heptane (3); (d) acetonitrile (1) +2 - methylpropanoic acid (2) + heptane (3); (e) acetonitrile (1) + pentanoic acid (2) + heptane (3); (f) acetonitrile (1) + 3-methylbutanoic acid (2) + heptane (3). [K ey: (\square) experimental points; (\times) experimental tie lines.]

$$
\begin{equation*}
x_{2}=C_{1}\left(-\ln x_{A}\right)^{C_{2}} x_{A} C_{3} \tag{3}
\end{equation*}
$$

where

$$
\begin{align*}
& x_{A}=\left(x_{1}+0.5 x_{2}-x_{1}^{0}\right) /\left(x_{11}^{0}-x_{1}^{0}\right) \tag{4}\\
& x_{B}=\left(x_{11}^{0}-x_{1}-0.5 x_{2}\right) /\left(x_{11}^{0}-x_{1}^{0}\right) \tag{5}
\end{align*}
$$

and x_{1} refers to the mole fraction composition of the acetonitrile, x_{2} refers to the mole fraction of a carboxylic acid, and $x_{11}{ }^{0}$ and $x_{1}{ }^{0}$ are the values of x_{1} on the binodal curve which cuts the $x_{2}=0$ axis and have been used to summarize the binodal curve data. These three equations have been discussed by Letcher and Siswana (1992). The

Table 2. Composition of Points on the Binodal Curve at 298.15 K for the Systems Acetonitrile (1) + a Carboxylic Acid (2) + Heptane (3), Equilibrium Mole Fractions, \mathbf{x}_{1} and x_{2}

X_{1}	X_{2}	X_{1}	X_{2}	X_{1}	X2
Acetic Acid					
0.956	0.004	0.504	0.448	0.180	0.706
0.942	0.017	0.400	0.547	0.011	0.560
0.915	0.041	0.252	0.682	0.007	0.388
0.824	0.133	0.191	0.732	0.006	0.305
0.743	0.216	0.103	0.786	0.005	0.211
0.689	0.270	0.051	0.780	0.004	0.060
0.598	0.362	0.023	0.702	0.003	0.014
Propanoic Acid					
0.952	0.010	0.621	0.290	0.216	0.330
0.943	0.016	0.511	0.353	0.161	0.288
0.928	0.031	0.441	0.377	0.113	0.225
0.844	0.110	0.362	0.385	0.070	0.145
0.768	0.178	0.329	0.380	0.038	0.062
0.715	0.222	0.270	0.361	0.019	0.004
Butanoic Acid					
0.951	0.011	0.649	0.238	0.186	0.234
0.917	0.046	0.506	0.292	0.124	0.184
0.854	0.095	0.401	0.299	0.082	0.140
0.787	0.145	0.335	0.289	0.034	0.065
0.742	0.179	0.255	0.264	0.006	0.004
2-Methylpropanoic Acid					
0.953	0.008	0.642	0.237	0.152	0.223
0.945	0.014	0.511	0.284	0.114	0.186
0.925	0.032	0.411	0.298	0.064	0.131
0.858	0.093	0.345	0.293	0.031	0.064
0.788	0.147	0.264	0.275	0.013	0.009
0.737	0.179	0.190	0.248		
Pentanoic Acid					
0.956	0.004	0.755	0.156	0.145	0.201
0.946	0.012	0.663	0.205	0.120	0.181
0.935	0.025	0.519	0.250	0.075	0.135
0.874	0.072	0.376	0.269	0.036	0.070
0.806	0.122	0.298	0.261	0.007	0.005
0.774	0.143	0.223	0.239		
3-M ethylbutanoic Acid					
0.966	0.004	0.759	0.158	0.224	0.244
0.947	0.012	0.665	0.205	0.153	0.202
0.939	0.024	0.529	0.250	0.095	0.151
0.875	0.079	0.455	0.265	0.047	0.084
0.807	0.126	0.377	0.270	0.009	0.006

coefficients A_{i}, B_{i}, and C_{i} are given in Table 4, together with the standard deviation σ, which is defined as

$$
\begin{equation*}
\sigma=\left[\sum\left[\mathrm{x}_{2}(\text { calc })-\mathrm{x}_{2}(\operatorname{expt})\right]^{2} /(\mathrm{n}-3)\right]^{1 / 2} \tag{6}
\end{equation*}
$$

where n is the number of data points and 3 is the number of coefficients (Sen and Srivastava, 1990).
The β function equation gave the best overall fit as compared to the HIavaty equation and $\log \gamma$ function.

Discussion

The binodal curves in Figure 1a-f show that the solubility of heptane in acetonitrile + a carboxylic acid is very much dependent on the type of acid. In theternary systems, heptane is most soluble in the systems containing butanoic acid, 2-methylpropanoic acid, pentanoic acid, or 3-methylbutanoic acid. For a particular carboxylic acid, heptane is more soluble in acetonitrile for mixtures containing propionic acid than for mixtures containing acetic acid.
Figure 1 shows that the area of the two-phase heterogeneous region for the carboxylic acid mixtures decreases in the following order: 3-methylbutanoic acid \sim pentanoic acid < 2-methylpropanoic acid < butanoic acid < propanoic acid < acetic acid. This implies that the mutual solubility

Table 3. Composition of the Conjugate Solutions, $\mathrm{x}^{\prime}{ }_{1}, \mathrm{x}^{\prime}{ }_{2}$ and $\mathbf{x}^{\prime \prime}{ }_{1}, \mathrm{x}^{\prime \prime}{ }_{2}$, at 298.15 K

hydrocarbon-rich		acetonitrile-rich	
X_{1}	$\mathrm{x}^{\prime} 2$	$\mathrm{x}^{\prime \prime}{ }_{1}$	$\mathrm{x}^{\prime \prime}{ }_{2}$
Acetonitrile (1) + Acetic Acid (2) + Heptane (3)			
0.002	0.006	0.917	0.042
0.004	0.142	0.681	0.279
0.006	0.281	0.388	0.557
0.007	0.370	0.192	0.732
0.009	0.463	0.085	0.782
Acetonitrile (1) + Propanoic Acid (2) + Heptane (3)			
0.021	0.001	0.936	0.024
0.033	0.052	0.811	0.140
0.050	0.098	0.643	0.275
0.060	0.123	0.455	0.373
0.079	0.165	0.289	0.370
Acetonitrile (1) + Butanoic Acid (2) + Heptane (3)			
0.014	0.022	0.875	0.078
0.025	0.045	0.742	0.179
0.030	0.059	0.566	0.275
0.038	0.073	0.454	0.299
0.040	0.081	0.300	0.281
Acetonitrile (1) + 2-M ethylpropanoic Acid (2) + Heptane (3)			
0.015	0.018	0.905	0.050
0.018	0.027	0.721	0.189
0.020	0.032	0.477	0.288
0.021	0.038	0.358	0.292
0.026	0.046	0.169	0.227
Acetonitrile (1) + Pentanoic Acid (2) + Heptane (3)			
0.01	0.017	0.920	0.035
0.012	0.027	0.799	0.130
0.019	0.038	0.578	0.238
0.020	0.047	0.390	0.270
0.028	0.059	0.274	0.258
Acetonitrile (1) + Methylbutanoic Acid (2) + Heptane (3)			
0.010	0.012	0.905	0.053
0.012	0.019	0.715	0.184
0.017	0.028	0.548	0.247
0.020	0.034	0.336	0.270
0.021	0.040	0.240	0.247

of the components is increased as the carbon chain length of the acid is increased and also that heptane is most soluble in the acetonitrile-3-methylbutanoic acid or ace-tonitrile-pentanoic acid mixture and least soluble in the acetonitrile-acetic acid mixture. The relative solubility of an acid in acetonitrile or the alkane is evident from the tie lines. The slopes of the tielines obtained in this work show that all the acids are more soluble in the acetonitrile than the alkane (hydrocarbon) mixture. For the C5 acids, the gradient of the tie lines for 3-methyl butanoic acid is greater than those for pentanoic acid. This could be attributable to the greater solubilizing effect of the two methyl groups on the terminal carbon of 3-methyl butanoic acid as opposed to its straight chain isomer. A similar effect is noted for 2-methylpropanoic acid as compared to butanoic acid.

The effectiveness of extraction of a carboxylic acid (2) by acetonitrile is given by its selectivity (ω), which is a measure of the ability of acetonitrile to separate the carboxylic acid (2) from heptane (Letcher et al., 1996):
$\omega=$ (distribution coeff of carboxylic acids)/
(distribution coeff of heptane)
$=[($ mole fraction of carboxylic acid (2) in acetonitrilerich phase)/(mole fraction of carboxylic acid (2)
in heptane-rich phase)]/[(mole fraction of heptane (3)
in acetonitrile-rich phase)/(mole fraction of heptane (3) in heptane-rich phase)]

Table 4. Coefficients A_{i}, B_{i}, and C_{i} in Equations 1-3 at 298.15 K

Hlavatỳ	β	$\log \gamma$
Acetonitrile (1) + Acetic Acid (2) + Heptane (3)		
$\mathrm{A}_{1}=0.254$	$\mathrm{B}_{1}=4.235$	$\mathrm{C}_{1}=3.831$
$\mathrm{A}_{2}=0.686$	$\mathrm{B}_{2}=1.271$	$\mathrm{C}_{2}=1.229$
$\mathrm{A}_{3}=4.309$	$\mathrm{B}_{3}=1.215$	$\mathrm{C}_{3}=1.682$
$\sigma=0.022$	$\sigma=0.020$	$\sigma=0.022$
Acetonitrile (1) + Propanoic Acid (2) + Heptane (3)		
$\mathrm{A}_{1}=0.297$	$\mathrm{B}_{1}=1.633$	$\mathrm{C}_{1}=1.523$
$\mathrm{A}_{2}=-0.269$	$\mathrm{B}_{2}=0.925$	$\mathrm{C}_{2}=0.896$
$\mathrm{A}_{3}=1.552$	$\mathrm{B}_{3}=1.182$	$\mathrm{C}_{3}=1.531$
$\sigma=0.010$	$\sigma=0.009$	$\sigma=0.010$
Acetonitrile (1) + Butanoic Acid (2) + Heptane (3)		
$\mathrm{A}_{1}=-0.0018$	$\mathrm{B}_{1}=1.001$	$\mathrm{C}_{1}=3.831$
$\mathrm{A}_{2}=-0.473$	$\mathrm{B}_{2}=0.766$	$\mathrm{C}_{2}=1.229$
$\mathrm{A}_{3}=0.942$	$\mathrm{B}_{3}=1.001$	$\mathrm{C}_{3}=1.682$
$\sigma=0.006$	$\sigma=0.007$	$\sigma=0.008$
Acetonitrile (1) + 2-M ethylpropanoic Acid (2) + Heptane (3)		
$\mathrm{A}_{1}=-0.140$	$\mathrm{B}_{1}=0.945$	$\mathrm{C}_{1}=0.891$
$\mathrm{A}_{2}=-0.456$	$\mathrm{B}_{2}=0.759$	$\mathrm{C}_{2}=0.736$
$\mathrm{A}_{3}=0.355$	$\mathrm{B}_{3}=0.915$	$\mathrm{C}_{3}=1.200$
$\sigma=0.004$	$\sigma=0.005$	$\sigma=0.007$
Acetonitrile (1) + Pentanoic Acid (2) + Heptane (3)		
$\mathrm{A}_{1}=-0.102$	$\mathrm{B}_{1}=0.883$	$\mathrm{C}_{1}=0.830$
$\mathrm{A}_{2}=-0.341$	$\mathrm{B}_{2}=0.792$	$\mathrm{C}_{2}=0.768$
$\mathrm{A}_{3}=0.460$	$\mathrm{B}_{3}=0.924$	$\mathrm{C}_{3}=1.221$
$\sigma=0.004$	$\sigma=0.004$	$\sigma=0.003$

Acetonitrile (1) + 3-M ethylbutanoic Acid (2) + Heptane (3)
$\mathrm{A}_{1}=-0.023$
$\mathrm{B}_{1}=0.966$
$\mathrm{C}_{1}=0.904$
$\mathrm{A}_{2}=-0.261 \quad \mathrm{~B}_{2}=0.847 \quad \mathrm{C}_{2}=0.821$
$\mathrm{A}_{3}=0.692 \quad \mathrm{~B}_{3}=0.982 \quad \mathrm{C}_{3}=1.297$
$\sigma=0.005 \quad \sigma=0.005 \quad \sigma=0.004$

Representative values of selectivity for the middle of the area of the measured tie lines are 26, 29, 27, 36, 32, and 41 for acetic acid, propanoic acid, butanoic acid, 2-methylpropanoic acid, pentanoic acid, and 3-methylbutanoic acid, respectively. From the selectivity data, it can be concluded that the separation of all the carboxylic acids from heptane by extraction is feasible. It can also be concluded that acetonitrile is an especially good component for the separation of mixtures of heptane and 2-methylpropanoic acid or heptane and 3-methylbutanoic acid.
Tie-Line Correlation. Thermodynamic models such as the nonrandom two liquid equation NRTL (Renon and Prausnitz, 1968) and the universal quasichemical equation UNIQUAC (Abrams and Prausnitz, 1975) are used to correlate the experimental data for the ternary systems discussed here. The equations and algorithms used in the calculation of the composition of the liquid phases follow the method used by Walas (1985). The objective function used to minimize the difference between the experimental and calculated concentrations is defined as

$$
\begin{array}{r}
F(P)=\sum_{i=1}^{n}\left[\left(x_{1 i}^{\prime}\right)^{\text {expt }}-\left(x^{\prime}{ }_{1 i}(P, T)\right)^{\text {calc }}\right]^{2}+\left[\left(x_{2 i}^{\prime}\right)^{\text {expt }}-\right. \\
\left.\left(x^{\prime}{ }_{2 i}(P, T)\right)^{\text {calc }}\right]^{2}+\left[\left(x^{\prime \prime}{ }_{1 i}\right)^{\text {expt }}-\left(x^{\prime \prime}{ }_{1 i}(P, T)\right)^{\text {calc }}\right]^{2}+ \\
{\left[\left(x^{\prime \prime}{ }_{2 i}\right)^{\text {expt }}-\left(x^{\prime \prime}{ }_{2 i}(P, T)\right)^{\text {calc }}\right]^{2}} \tag{7}
\end{array}
$$

where P is the set of parameters vector, n is the number of experimental points, $\left(x_{1 i}^{\prime}\right),\left(X_{2 i}^{\prime}\right)^{\text {expt }}$, and $\left.\left(x_{1 i}^{\prime}\right)^{\text {calc }}(P, T)\right)^{\text {calc, }}$ $\left.\left(x_{2}^{\prime}\right)(P, T)\right)^{\text {calc }}$ are the experimental and calculated mole fractions of one phase, and ($\left.x^{\prime \prime}{ }_{1 i}\right)^{\text {expt, }}\left(x^{\prime \prime}{ }_{2 i}\right)^{\text {expt, }}$, and $\left(x^{\prime \prime}{ }_{1 i}{ }^{-}\right.$ $\left.(P, T))^{\text {calc }},\left(x^{\prime \prime}{ }_{2 i}\right)(P, T)\right)^{\text {calc }}$ are the experimental and cal culated mole fractions of the second phase. The pure component structural parameters R (volume parameter) and Q (surface parameter) in the UNIQUAC equation were obtained

Table 5. Values of the Parameters for the NRTL and UNIQUAC Equations, Determined from Ternary Liquid-Liquid Equilibria for the Systems Acetonitrile (1) + a Carboxylic Acid (2) + Heptane (3) as Well as the Calculated Root Mean Square Deviation, rms ${ }^{\text {b }}$

component	parameters ($\bullet^{\text {mol }}{ }^{-1}$)			
	NRTLa		UNIQUAC	
	$\mathrm{g}_{\mathrm{ij}}-\mathrm{g}_{\mathrm{j}}$	$\mathrm{gji}^{-} \mathrm{gii}^{\text {l }}$	$\Delta \mathrm{u}_{\mathrm{ij}}$	$\Delta u_{j i}$
Acetonitrile (1) + Acetic Acid (2) + Heptane (3)(0.003)				
1-2 2-1	-2360.27	6107.47	0.20	0.23
1-3 3-1	3606.27	15248.29	-0.10	0.03
2-3 3-2	7038.95	-707.69	-8.59	8.53
$\underset{(0.006)}{\text { Acetonitrile (1) }}+\underset{(0.021)}{\text { Propanoic Acid (2) }}+\underset{\text { Heptane (3) }}{\text { Hen }}$				
1-2 2-1	4693.46	11522.21	-338.94	40853.60
1-3 3-1	6928.49	6076.73	68.66	10939.72
2-3 3-2	916.90	9840.28	619.13	2510.25
$\underset{(0.019)}{ }$ Acetonitrile (1) Butanoic Acid (2) $+\underset{(0.242)}{\text { Heptane (3) }}$				
1-2 2-1	66013.37	14504.09	-21.81	-97.54
1-3 3-1	4724.83	6077.16	98.28	78.39
2-3 3-2	4227.85	3160.78	-100.16	18.73

Acetonitrile (1) + 2-Methyl propanoic Acid (2) + Heptane (3)

	(0.013)		(0.051)	
1-2 2-1	-4705.61	20825.59	-2859.04	-1391.75
1-3 3-1	6819.80	4903.75	1541.87	4593.31
2-3 3-2	-2445.64	8426.63	-309.47	-1549.41
$\underset{(0.003)}{ }$ Acetonitrile (1) Pentanoic Acid (2) $+\underset{(0.018)}{\text { Heptane (3) }}$				
1-2 2-1	-43.94	8800.71	1628.90	21818.88
1-3 3-1	6537.71	7980.18	1864.77	40216.15
2-3 3-2	-2709.08	11811.35	-2317.15	12027.50
Acetonitrile (1) $+\underset{(0.022)}{\text { 3-Methylbutanoic Acid (2) }}+\underset{(0.233)}{\text { Heptane (3) }}$				
1-2 2-1	50216.71	24207.70	2.79	49.45
1-3 3-1	4604.56	5987.53	99.65	70.01
2-3 3-2	4781.79	4074.60	-224.95	-10.01

${ }^{\text {a }}$ Calculated with $\mathrm{a}_{\mathrm{ij}}=0.2$. ${ }^{\mathrm{b}}$ The rms deviations are given in parentheses.
from the tables of modified UNIFAC, published by Gmehling et al. (1993) (see Table 1).

For the NRTL model the third randomness parameter α_{ij} was set at a value of 0.2 . The parameters cal culated in this way, $g_{j i}-g_{j j}, g_{j i}-g_{i i}$, and $\Delta u_{i j}, \Delta u_{j i}$, for NRTL and UNIQUAC, respectively, are shown in Table 5. The model correlation parameters are included in Table 5, together with the root mean square values. The root mean square value defined below can be taken as a measure of the precision of the correlations:

$$
\begin{equation*}
\mathrm{rms}=\left(\sum_{\mathrm{i}} \sum_{i} \sum_{\mathrm{m}}\left[\mathrm{x}_{\mathrm{ilm}}^{\text {expt }}-\mathrm{x}_{\mathrm{ilm}}^{\text {calc }}\right]^{2} / 6 \mathrm{k}\right)^{1 / 2} \tag{8}
\end{equation*}
$$

where x is the mole fraction and the subscripts i, I, and m designate the component, phase, and tie line, respectively. As can be observed from Table 5, the correlation obtained with the NRTL model is significantly better than that obtained with the UNIQUAC model: the average root mean square deviation phase composition error was 0.011 for NRTL as compared to 0.132 for UNIQUAC.

Conclusion

Liquid-liquid equilibrium data for the six ternary mixtures [acetonitrile (1) + acetic acid or propanoic acid or butanoic acid or 2-methylpropanoic acid or pentanoic acid or 3-methylbutanoic acid (2) + heptane (3)] were determined at 298.15 K .
The separations of a carboxylic acid from heptane by extraction with acetonitrile are feasible as can be concluded from the distribution and selectivity data. The four carboxylic acids butanoic acid, 2-methylpropanoic acid, pentanoic acid, and 3-methylbutanoic acid are better solvents for the acetonitrile + heptane mixtures than are the other acids at 298.15 K . Three equations have been fitted to the binodal curve data.

Equations relating to the NRTL and UNIQUAC models have been fitted to the experimental tie lines. The better results have been obtained using the NRTL model.

Literature Cited

Abrams, D. S.; Prausnitz, J. M.. Statistical thermodynamics of liquid mixtures; a new expression for the excess Gibbs energy of partly or completely miscible systems. AIChE J. 1975, 21,116-128.
Bailes, P. J. Solvent extraction in the petroleum and petrochemical industries. Chem. Ind. 1977, 15, 69-73.
Briggs, S. W.; Commings, E. W. Tie-line correlations and plait point determination. Ind. Eng. Chem. 1943, 35, 411-415.
Gmehling, J.; Li, J .; Schiller, M. A. Modified UNIFAC model. 2. Present parameter matrix and results for different thermodynamic properties. Ind. Eng. Chem. Res. 1993, 32, 178-193.
Hlavatỳ, K. Correlation of the binodal curve in a ternary mixture with one pair of immiscible liquids. Collect. Czech. Chem. Commun. 1972, 37, 4005-4007.
Letcher, T. M.; Siswana, P. M. Liquid-liquid equilibria for mixtures of an alkanol + water + a methyl substituted benzene at $25^{\circ} \mathrm{C}$. Fluid Phase Equilib. 1992, 74, 203-217.
Letcher, T. M.; Sewry, J. D.; Radloff, S. E. Liquid-liquid equilibria of benzene + water + n-alcohol at 298.15 K. S. Afr. J. Chem. 1990, 43, 56-58.
Letcher, T. M.; Redhi, G. G.; Radloff, S. E.; Domańska, U. Liquidliquid equilibria of the ternary mixtures with sulfolane at 303.15 K. J . Chem. Eng. Data 1996, 41, 634-638.

Nagata, I. Liquid-liquid equilibria for ternary acetonitrile-ethanolsaturated hydrocarbon and acetonitrile-1-propanol-saturated hydrocarbon mixtures. Thermochim. Acta 1987, 119, 357-368.
Nagata, I.; Ohta, T. Liquid-liquid equilibria for the systems acetoni-trile-benzene-cyclohexane, acetonitrile-toluene-cyclohexane, and methanol-ethanol-cyclohexane. J. Chem. Eng. Data 1983, 28, 256-259.
Palmer, A. D.; Smith, B. D. Thermodynamic excess property measurements for acetonitrile-benzene-n-heptane. J. Chem. Eng. Data 1972, 17, 71-76.
Renon, H.; Prausnitz, J. M. Local composition in thermodynamic excess funtions for liquid mixtures. AIChE J. 1968, 14, 135-144.
Riddick, J. A.; Bunger, W.; Sakano, T. K. Organic Solvents: Physical Properties and Methods of Purification, 4th ed.; J ohn Wiley \& Sons: New York, 1986.
Sen, A.; Srivastava, M. Regression Analysis Theory, Methods and Applications; Springer-Verlag: New York, 1990; p 16.
Walas, S. W. Phase Equilibria in Chemi cal Engineering; Butterworth Publishers: Boston, 1985; p 343.

Received for review April 26, 1999. Accepted J une 30, 1999. The authors wish to thank FRD (South Africa) for financial support.

J E990112+

[^0]: * To whom correspondence should be addressed.

