Gaseous Pressure-Volume-Temperature Properties of 1,1,1,2,3,3,3-Heptafluoropropane

Lin Shi, Yuan-Yuan Duan,* Ming-Shan Zhu, and Li-Zhong Han
Department of Thermal Engineering, Tsinghua University, Beijing 100084, People's Republic of China

Xia Lei

Beijing United University, Beijing 100054, People's Republic of China

Abstract

One-hundred and forty-one pressure-volume-temperature data points for 1,1,1,2,3,3-heptafluoropropane (HFC-227ea) in the gaseous phase have been measured using Burnett/isochoric methods. Burnett expansion measurements were made both at 363.15 K and at 318.15 K . On the basis of the pressuredensity relationships established at 363.15 K and 318.15 K , data were collected al ong nine isochores for temperatures from 283 to 377 K and pressures from 0.26 to 2.5 MPa . The maximum temperature uncertainty and maximum pressure uncertainty in this work were estimated to be within $\pm 10 \mathrm{mK}$ and ± 500 Pa, respectively. On the basis of the present data and results from the literature, the parameters of a virial equation of state were determined to represent the gaseous thermodynamic properties of HFC227ea. The purity of the sample used in this work is $99.9 \mathrm{~mol} \%$.

Introduction

The expected worldwide ban on many low-molar-mass chlorofluorocarbons has prompted a vigorous search for alternatives with zero ozone-depletion potential (ODP) and lower global-warming potential (GWP). 1,1,1,2,3,3,3-H eptafluoropropane (HF C-227ea) has zero ODP. It is a recently introduced, commercially available hydrofluorocarbon (HFC) useful in fire suppression, refrigeration, sterilization, and propellant applications. It can be used as an alternative to halon, and blends containing HFC-227ea are potential alternatives to HCFC-22 and R502. Effective use of HFC227ea requires that the thermodynamic and transport properties be accurately measured, but there is very little data available. Wirbser et al. (1992) measured the specific heat capacity and Joule-Thomson coefficient of HFC227ea; Salvi-Narkhede et al. (1992) measured the vapor pressure, liquid molar volumes, and ciritical properties; Park (1993) measured the gaseous pressure-volume-temperature (PVT) properties with a Burnett apparatus at five temperatures; Klomfar et al. (1994) measured the liquid PVT properties; Robin (1994) listed the thermophysical properties of HFC-227ea including estimated transport properties; Defibaugh and Moldover (1997) measured the liquid PVT behavior and the saturated liquid density; Weber (1998) measured the vapor pressure of HF C-227ea; L aesecke and H afer (1998) measured the viscosity of HFC227ea with a coiled capillary viscometer at low temperature and a straight capillary viscometer at high temperature; Pátek et al. (1998) measured PVT properties of HF C-227ea with a Burnett apparatus at temperatures of 393 K and 423 K; Shi et al. (1999) measured the vapor pressure; Liu et al. (1999a; b) measured the saturated liquid viscosity and gaseous thermal conductivity.

* To whom correspondence should be addressed. E-mail: yyduan@ te.tsinghua.edu.cn.

This paper reports the experimental results of gaseous PVT properties of HFC-227ea. On the basis of these data and results of literature, parameters of a virial equation of state for HFC-227ea were determined.

Experimental Section

Materials. The sample of HF C-227ea was obtained from Shanghai Huiyou Chemical Corp., China, and was used without further purification. The manufacturer stated that the water content was less than 20 ppm . For the gas chromatographic analysis, the purity of the sample was better than $99.9 \mathrm{~mol} \%$. The sample of helium used for calibration was obtained from Beijing Huanyuan Gas Chemical Corp., China. The manufacturer stated that the sample purity was better than $99.99 \mathrm{~mol} \%$, the impurity being hydrogen, and was used without further purification.

Apparatus. A modified Burnett apparatus was used in this work, which was described previously (Zhu et al., 1992; Fu et al., 1995; Duan et al., 1997), will be introduced briefly here and any modification will be noted. The schematic of the entire measuring system is shown in Figure 1. It includes a high-accuracy thermostat bath, a temperaturemeasurement system, a pressure-measurement and control system, a vacuum system, and a sample cell.

The temperature of the thermostat bath can be varied from 223 to 453 K . The temperature instability is less than $\pm 2 \mathrm{mK}$ in 1 h , and less than $\pm 5 \mathrm{mK}$ in 8 h . Silicone oil, distilled deionized water, or al cohol can be used as the fluid in the bath, depending on the temperature range. The temperature-measurement system includes the platinum resistance thermometers (Tinsley: 5187SA) with an uncertainty of $\pm 2 \mathrm{mK}$, a precision thermometer bridge (Tinsley: 5840D) with an accuracy within $\pm 1 \mathrm{mK}$, a select switch (Tinsley: 5840CS/6T), and a personal computer. The maximum overall temperature uncertainty for the bath and

Figure 1. Experimental apparatus: (B) thermostat bath, (B1) sample vessel (1000 mL), (B2) sample vessel (600 mL), (B3) sample vessel (200 mL); (C) temperature controller, (CP) cooler, (D) stirrer, (DPI) differential pressure detector, (E) oil piston type pressure gage, (H) heater, (NH) N_{2} bottle, (NL) pressure damper, (OB) oil-gas separator, (PG1, PG2) pressure gage, (PRT) platinum resistance thermometer, (S) temperature sensor, (SB) sample bottle, (SW) selector switch, (TB) thermometer bridge, (V1-V13) valves, (VM) digital multimeter, and (VP) vacuum pump.
the temperature-measurement system was less than ± 10 mK . The temperatures were determined on the International Temperature Scale of 1990 (ITS-90).

The pressure-measurement system can measure pressure in the range of 0.001 to 6 MPa ; it includes a pistontype pressure gauge, a pressure transducer, and a digital pressure gauge. A sensitive diaphragm pressure transducer (Xi'an Instrument: 1151DP) separated the sample in the thermostat bath from nitrogen which transmitted the pressure outside the bath. The accuracy of the transducer is 0.25%, the pressure difference adjustable range is 6 to 38 kPa , the temperature range is 233 to 378 K , and the maximum allowable pressure is 14 MPa . The accuracy of the digital pressure gauge is 0.05% and the pressure range is 1 to 160 kPa . When the pressure is bel ow 160 kPa , the nitrogen transmitted the sample pressure directly to the digital pressure gauge, so the pressure measurement system has a maximum uncertainty of ± 200 Pa. Pressure above 160 kPa is measured with a piston-type pressure gauge, and the accuracy of the piston-type pressure gauge is 0.005% in the pressure range of 0.04 to 6 MPa , while the atmospheric pressure is measured with the digital pressure gauge, and the uncertainty was estimated to be less than $\pm 500 \mathrm{~Pa}$. The extremely high vacuum is about $1.3 \times 10^{-4} \mathrm{~Pa}$.

Procedure. The sample cells are three heavy-walled vessels, which were made of 1Cr18Ni9Ti stainless steel. Two cells (B2 and B3 in Figure 1) separated by a valve were used in the present work; the inner volumes were V_{1} $=600 \mathrm{~mL}$ and $\mathrm{V}_{2}=200 \mathrm{~mL}$, respectively.

Before the experiment, the sample cell was rinsed with acetone to remove any residue from previous experiments and was purged several times with the sample gas. After the sample cell B2 (inner volume, $\mathrm{V}_{1}=600 \mathrm{~mL}$) was filled, the temperature of the thermostat bath was controlled at the experimental temperature. When thermal equilibrium was established between the sample and the heat-transfer fluid in the bath and the pressure remained constant, the temperature and the pressure of the sample were measured. Meanwhile, the sample cell B3 (inner volume, $\mathrm{V}_{2}=$

200 mL) was evacuated by means of an oil diffusion pump to about $1.3 \times 10^{-3} \mathrm{~Pa}$. After the temperature and the initial pressure P_{0} were measured, the expansion val ve was opened, permitting pressure equalization between the two vessels. When thermal equilibrium had been restored, the expansion valve was closed and a new pressure P_{1} and the temperature were measured. The evacuation, expansion, and measurement were repeated to obtain a series of isothermally measured pressures $\mathrm{P}_{0}, \mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{i}-1}, \mathrm{P}_{\mathrm{i}} \ldots$. The series of pressures was related by a nearly constant ratio of volumes. The densities were calculated utilizing a virial equation of state without requiring direct measurement of the mass or inner volume.

After the pressure-density relationships were established at Burnett expansion temperatures, data were collected along isochores. The pressure measurement for each of the isochores at Burnett expansion temperatures was used to determine the density.

Calibration with Helium

The apparatus constant can be expressed as the ratio of the total volume of the two cells to one volume of the first cell:

$$
\begin{equation*}
\mathrm{N}=\frac{\mathrm{V}_{1}+\mathrm{V}_{2}}{\mathrm{~V}_{1}} \tag{1}
\end{equation*}
$$

where N is the apparatus constant and V_{1} and V_{2} are the respective volumes of sample cell B2 and B3 in the present work. The sample cells are thick-walled metal vessels and the maximum pressure was less than 2.5 MPa in this work, so the pressure distortion of the cell is negligible. Because the volume of the cell varies linearly with temperature changes in the apparatus, the volume ratio N is a constant in this work.

Helium is well-suited as the calibration gas for the Burnett apparatus. Burnett expansions of helium were made at 317.65 K and 331.35 K to determine the apparatus constant, N. From established principles of the Burnett

Figure 2. Deviations of experimental density from an equation of state (Angus et al., 1977) vs pressure for helium: (ㅁ) $\mathrm{T}=317.65$ K isotherm; $(\Delta) \mathrm{T}=331.35 \mathrm{~K}$ isotherm.
method, the apparatus constant can be determined by

$$
\begin{equation*}
\mathrm{N}=\frac{\rho_{\mathrm{i}-1}}{\rho_{\mathrm{i}}}=\sqrt[i]{\rho_{0} / \rho_{\mathrm{i}}} \tag{2}
\end{equation*}
$$

where ρ_{0} is the initial density and ρ_{i} is the density after the ith expansion. The densities of helium were cal culated from an internationally accepted equation of state (Angus et al., 1977) using experimental temperatures on the ITPS68 scale converted from the ITS-90 scale (Preston-Thomas, 1990) and experimental pressures.

An apparatus constant also can be determined from the pressure ratio (Silberberg et al., 1959) with

$$
\begin{equation*}
N=\lim _{P_{i} \rightarrow 0} \frac{P_{i-1}}{P_{i}}=\lim _{P_{i-1 \rightarrow 0}} \frac{P_{i-1}}{P_{i}} \tag{3}
\end{equation*}
$$

where P_{i} is the pressure after ith expansion. The apparatus constants were extrapolated as 1.32882 and 1.32885 by pressure ratio vs pressure linear extrapolation along $\mathrm{T}=$ 317.65 K and T = 331.35 K isotherms, respectively. The apparatus constant was determined to be

$$
\begin{equation*}
N=1.3288 \pm 0.0001 \tag{4}
\end{equation*}
$$

The experimental densities of helium were calculated from the expansion pressures using $N=1.3288$. Figure 2 shows the deviations of experimental densities from the values calculated using the equation of state for helium; the maximum deviation is less than 0.02%.

Results and Analysis

Burnett expansion measurements were made both at 318.15 K and at 363.15 K . Twenty-five pressures were measured in three separate runs totaling twenty-two expansions ranging in density from 0.037 to $0.37 \mathrm{~mol} \cdot \mathrm{dm}^{-3}$ at 318.15 K , and twenty pressures were measured in two separate runs totaling eighteen expansions ranging in density from 0.10 to $1.3 \mathrm{~mol} \cdot \mathrm{dm}^{-3}$ at 363.15 K . Results are given in Table 1. The densities of Burnett expansion data were analyzed with a two-coefficient virial equation of state; the density uncertainty was estimated to be within $\pm 1 \%$. In Figure 3, ($Z-1) / \rho$ values calculated from the present data are plotted along Burnett expansion isotherms. As shown in this figure, each isotherm can be represented by a straight line. The second and third virial coefficients of HFC-227ea were determined to be $B=$ $-0.3971 \mathrm{dm}^{3} \cdot \mathrm{~mol}^{-1}$ and $\mathrm{C}=0.04770 \mathrm{dm}^{6} \cdot \mathrm{~mol}^{-2}$ at 363.15 K and $B=-0.5589 \mathrm{dm}^{3} \cdot \mathrm{~mol}^{-1}$ and $C=0.04802 \mathrm{dm}^{6} \cdot \mathrm{~mol}^{-2}$

Figure 3. $(Z-1) / \rho$ vs ρ along Burnett isotherms for HFC-227ea. $\mathrm{T}=363.15 \mathrm{~K}:(\mathrm{O})$ isotherm $1 ;(\diamond)$ isotherm $2 . \mathrm{T}=318.15 \mathrm{~K}$: (ロ) isotherm $1 ;(\Delta)$ isotherm 2 ; (\square) isotherm 3.

Table 1. Burnett Isotherms for HFC-227ea

No.	T (K)	P (kPa)	$\rho\left(\mathrm{mol} \cdot \mathrm{dm}^{-3}\right)$	Z
363.15 K: Isotherm 1				
0	363.151	2247.066	1.3489	0.55170
1	363.149	1980.337	1.0152	0.64608
2	363.150	1670.963	0.76397	0.72439
3	363.150	1366.938	0.57493	0.78743
4	363.152	1093.654	0.43267	0.83715
5	363.150	861.107	0.32561	0.87587
6	363.150	669.939	0.24504	0.90548
7	363.151	517.103	0.18441	0.92871
8	363.150	396.858	0.13878	0.94710
9	363.151	302.586	0.10444	0.95956
363.15 K: I sotherm 2				
0	363.150	2210.563	1.2897	0.56768
1	363.152	1932.807	0.97055	0.65956
2	363.151	1621.694	0.73039	0.73535
3	363.150	1321.256	0.54966	0.79610
4	363.149	1054.108	0.41365	0.84397
5	363.149	828.164	0.31130	0.88109
6	363.151	643.359	0.23427	0.90953
7	363.150	495.850	0.17630	0.93148
8	363.150	379.868	0.13268	0.94823
9	363.151	289.612	0.09985	0.96063
318.15 K : I sotherm 1				
0	318.150	675.371	0.30659	0.83276
1	318.148	533.069	0.23075	0.87332
2	318.151	415.339	0.17367	0.90407
3	318.152	320.691	0.13071	0.92747
4	318.150	246.079	0.09838	0.94558
5	318.151	187.885	0.07405	0.95923
6	318.149	142.931	0.05573	0.96955
7	318.150	108.469	0.04195	0.97759
318.15 K : I sotherm 2				
0	318.151	779.247	0.36745	0.80169
1	318.150	621.181	0.27656	0.84911
2	318.152	487.634	0.20815	0.88562
3	318.149	378.556	0.15666	0.91347
4	318.151	291.546	0.11791	0.93472
5	318.150	223.237	0.08875	0.95094
6	318.151	170.176	0.06679	0.96316
7	318.151	129.308	0.05027	0.97237
8	318.148	98.031	0.03783	0.97945
318.15 K : I sotherm 3				
0	318.151	781.831	0.36934	0.80024
1	318.149	623.810	0.27792	0.84853
2	318.150	489.793	0.20913	0.88539
3	318.148	380.205	0.15736	0.91338
4	318.151	292.761	0.11841	0.93466
5	318.150	224.088	0.08910	0.95075
6	318.149	170.725	0.06705	0.96262
7	318.151	129.685	0.05045	0.97176

at 318.15 K . After the pressure-density relationships were established both at 363.15 K and at 318.15 K , data were collected along nine isochores. Data along eight isochores

Table 2. Isochoric PVT Data for HFC-227ea

T (K)	P (kPa)	$\rho\left(\mathrm{mol} \cdot \mathrm{dm}^{-3}\right)$	$\rho_{\text {cal }}\left(\mathrm{mol} \cdot \mathrm{dm}^{-3}\right)$	$100\left(\rho-\rho_{\text {cal }}\right) / \rho_{\text {cal }}$
Isochore 1				
363.150	2200.003	1.27449	1.27634	-0.145
368.151	2292.837	1.27417	1.27524	-0.084
373.150	2383.326	1.27386	1.27363	0.018
377.149	2454.858	1.27360	1.27284	0.060
53150 Isochore 2				
353.150	1791.435	0.95973	0.95901	0.074
358.151	1856.744	0.95949	0.95927	0.023
363.152	1920.530	0.95925	0.95910	0.016
368.150	1983.009	0.95901	0.95866	0.037
373.149	2044.366	0.95877	0.95808	0.073
377.150	2092.981	0.95858	0.95773	0.088
I sochore 3				
343.150	1421.929	0.71491	0.71447	0.061
348.151	1467.092	0.71473	0.71458	0.020
353.150	1511.332	0.71455	0.71453	0.003
358.152	1554.817	0.71437	0.71439	-0.003
363.149	1597.538	0.71420	0.71413	0.009
368.150	1639.779	0.71402	0.71389	0.018
373.148	1681.393	0.71384	0.71356	0.039
377.150	1714.508	0.71370	0.71339	0.044
Isochore 4				
333.150	1093.805	0.52348	0.52341	0.014
338.151	1124.531	0.52335	0.52337	-0.003
343.150	1154.633	0.52322	0.52323	-0.001
348.148	1184.371	0.52309	0.52313	-0.006
353.149	1213.635	0.52296	0.52296	0.001
358.150	1242.654	0.52283	0.52284	-0.001
363.151	1271.268	0.52270	0.52266	0.009
368.150	1299.643	0.52257	0.52249	0.017
373.152	1327.748	0.52244	0.52230	0.027
377.150	1350.015	0.52234	0.52213	0.041
Isochore 5				
323.150	841.024	0.39287	0.39274	0.033
328.151	862.735	0.39277	0.39260	0.043
333.150	884.212	0.39268	0.39252	0.039
338.151	905.527	0.39258	0.39251	0.017
343.149	926.604	0.39248	0.39250	-0.004
348.148	947.326	0.39238	0.39241	-0.007
353.150	967.799	0.39229	0.39230	-0.004
358.151	988.147	0.39219	0.39221	-0.006
363.151	1008.299	0.39209	0.39210	-0.004
368.151	1028.270	0.39199	0.39198	0.004
373.150	1048.133	0.39190	0.39186	0.009
377.149	1063.835	0.39182	0.39172	0.024
I sochore 6				
313.151	625.442	0.28706	0.28709	-0.011
318.150	640.538	0.28699	0.28701	-0.007
323.149	655.403	0.28692	0.28691	0.003
328.151	670.249	0.28685	0.28689	-0.016
333.151	684.828	0.28678	0.28682	-0.016
338.149	699.247	0.28671	0.28674	-0.013
343.151	713.565	0.28663	0.28668	-0.015
348.150	727.721	0.28656	0.28659	-0.009
353.151	741.783	0.28649	0.28651	-0.005
358.150	755.820	0.28642	0.28645	-0.010
363.151	769.627	0.28635	0.28633	0.007
368.150	783.428	0.28628	0.28624	0.014
373.149	797.201	0.28621	0.28617	0.015
377.151	808.119	0.28615	0.28608	0.023
Isochore 7				
303.151	496.934	0.23024	0.23026	-0.011
308.151	508.812	0.23018	0.23024	-0.027
313.149	520.534	0.23012	0.23020	-0.035
318.150	532.086	0.23006	0.23014	-0.033
323.150	543.554	0.23001	0.23009	-0.039
328.150	554.947	0.22995	0.23007	-0.052
333.150	566.146	0.22989	0.23000	-0.046
338.151	577.310	0.22984	0.22995	-0.051
343.150	588.366	0.22978	0.22990	-0.051
348.151	599.298	0.22972	0.22982	-0.042
353.150	609.956	0.22966	0.22965	0.006
358.149	620.731	0.22961	0.22956	0.021

Table 2 (Continued)

T (K)	$\mathrm{P}(\mathrm{kPa})$	$\rho\left(\mathrm{mol} \cdot \mathrm{dm}^{-3}\right)$	$\rho_{\mathrm{cal}}\left(\mathrm{mol} \cdot \mathrm{dm}^{-3}\right)$	$100\left(\rho-\rho_{\text {cal }}\right) / \rho_{\text {cal }}$
I sochore 7				
363.150	631.660	0.22955	0.22955	0.000
368.151	642.441	0.22949	0.22950	-0.004
373.151	653.186	0.22944	0.22945	-0.008
377.150	661.707	0.22939	0.22940	-0.004
I sochore 8				
293.152	351.041	0.16202	0.16204	-0.014
298.150	358.854	0.16198	0.16196	0.010
303.148	366.689	0.16194	0.16192	0.013
308.151	374.380	0.16190	0.16183	0.040
313.150	382.257	0.16186	0.16187	-0.004
318.151	389.757	0.16182	0.16175	0.044
323.151	397.490	0.16178	0.16177	0.008
328.150	405.004	0.16174	0.16171	0.019
333.148	412.462	0.16170	0.16165	0.032
338.149	419.970	0.16166	0.16163	0.020
343.151	427.571	0.16162	0.16166	-0.026
348.151	434.879	0.16158	0.16159	-0.005
353.150	442.235	0.16154	0.16155	-0.005
358.150	449.542	0.16150	0.16150	0.001
363.151	456.870	0.16146	0.16147	-0.005
368.150	464.114	0.16142	0.16141	0.004
373.151	471.388	0.16138	0.16138	0.000
377.150	477.143	0.16135	0.16133	0.009
I sochore 9				
288.150	270.983	0.12419	0.12419	-0.001
293.149	276.873	0.12416	0.12419	-0.027
298.151	282.738	0.12413	0.12419	-0.047
303.151	288.284	0.12410	0.12405	0.044
308.151	294.173	0.12407	0.12408	-0.007
313.150	299.952	0.12404	0.12407	-0.029
318.150	305.508	0.12401	0.12399	0.016

Table 3. Comparison of Burnett Isotherms Using Isochoric Coupling

isochore	P_{318} (kPa)	$\rho_{318}\left(\mathrm{~mol} \cdot \mathrm{dm}^{-3}\right)$	$\rho_{363}\left(\mathrm{~mol} \cdot \mathrm{dm}^{-3}\right)$	$\rho_{\text {EOS }}\left(\mathrm{mol} \cdot \mathrm{dm}^{-3}\right)$	100($\left.\left.\rho_{318}-\rho_{363}\right) / \rho_{363}\right)$	100(($\left.\left.\rho_{318}-\rho_{\text {EOS }}\right) / \rho_{\text {EOS }}\right)$
6	640.538	0.28077	0.28699	0.28701	0.028	0.021
7	532.086	0.23017	0.23006	0.23014	0.048	0.013
8	389.757	0.16176	0.16182	0.16175	-0.037	0.006

were measured in the temperature range from 293.15 to 377.15 K ; the pressure measurement for each isochore at 363.15 K was used to determine the density. Data along one other isochore were measured in the temperature range from 283.15 to 318.15 K ; the pressure measurement for the isochore at 318.15 K was used to determine the density. A temperature correction to the densities was made to compensate for the thermal expansion of the sample cell. Results of the isochoric measurements are given in Table 2. Figure 4 shows the location in pressure and temperature of the present data and of the vapor pressure data of Shi et al. (1999).

The densities of isochores 6-8 are also calculated from the 318.15 K isotherm to examine the experimental accuracy. Table 3 contains the densities determined by a different method. The densities ρ_{363} listed in Table 3 were calculated using the isochore pressures at 363.15 K and then corrected for volume distortion due to thermal expansion as temperature changes to provide the densities at 318.15 K ; the densities label ed ρ_{318} come from the isochore pressures at 318.15 K and the densities $\rho_{\text {EOs }}$ were calculated from the equation of state. The maximum difference of ρ_{363} and ρ_{318} was less than 0.1%.

Equation of State

The present data and the results of Pátek et al. (1998) having densities less than $2.5 \mathrm{~mol} \cdot \mathrm{dm}^{-3}$ were correlated with a virial equation including temperature dependence,

Figure 4. Distribution of PVT and vapor pressure measurements for HFC-227ea. (ㅁ) Vapor pressure data (Shi et al., 1999); (-) calculation from vapor pressure equation (Shi et al., 1999); (\square) critical point; (\diamond) Burnett measurements; (Δ) isochoric measurements.

$$
\begin{equation*}
\frac{\mathrm{P}}{\rho \mathrm{RT}}=1+\mathrm{B} \rho+\mathrm{C} \rho^{2}+\mathrm{D} \rho^{3} \tag{5}
\end{equation*}
$$

where

$$
\begin{gathered}
B=B_{0}+B_{1} T_{r}^{-1}+B_{2} T_{r}^{-2}+B_{3} T_{r}^{-3}+B_{4} T_{r}^{-6}+B_{5} T_{r}^{-8} \\
C=C_{0} T_{r}^{-5}+C_{1} T_{r}^{-6} \\
D=D_{0}+D_{1} T_{r}
\end{gathered}
$$

Figure 5. Pressure deviations of measured PVT data for HFC227ea from values calculated using eq 5: (ロ) this work; (Δ) Pátek et al. (1998).
and

$$
\begin{gathered}
\mathrm{B}_{0}=-11.14985183 \mathrm{dm}^{3} \cdot \mathrm{~mol}^{-1} \\
\mathrm{~B}_{1}=43.23199803 \mathrm{dm}^{3} \cdot \mathrm{~mol}^{-1} \\
\mathrm{~B}_{2}=-59.12465541 \mathrm{dm}^{3} \cdot \mathrm{~mol}^{-1} \\
\mathrm{~B}_{3}=-29.00619343 \mathrm{dm}^{3} \cdot \mathrm{~mol}^{-1} \\
\mathrm{~B}_{4}=-2.824121515 \mathrm{dm}^{3} \cdot \mathrm{~mol}^{-1} \\
\mathrm{~B}_{5}=0.4976305563 \mathrm{dm}^{3} \cdot \mathrm{~mol}^{-1} \\
\mathrm{C}_{0}=0.1819008454 \mathrm{dm}^{6} \cdot \mathrm{~mol}^{-2} \\
\mathrm{C}_{1}=-0.1359264488 \mathrm{dm}^{6} \cdot \mathrm{~mol}^{-2} \\
\mathrm{D}_{0}=-8.889623857 \times 10^{-3} \mathrm{dm}^{9} \cdot \mathrm{~mol}^{-3} \\
\mathrm{D}_{1}=-8.353339687 \times 10^{-3} \mathrm{dm}^{9} \cdot \mathrm{~mol}^{-3} \\
\mathrm{R}=8.314471 \mathrm{~J} \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~K}^{-1} \\
\mathrm{~T}_{\mathrm{r}}=\mathrm{T} / \mathrm{T}_{\mathrm{c}} \\
\mathrm{~T}_{\mathrm{c}}=375.95 \mathrm{~K}
\end{gathered}
$$

and where the units of T are K, those of P are kPa , and those of ρ are mol $\cdot \mathrm{dm}^{-3}$.

The suitable range of this equation is from 283 to 453 K in temperature and up to $2.5 \mathrm{~mol} \cdot \mathrm{dm}^{-3}$ in density. The maximum and root mean square pressure deviations of our data from eq 5 were 0.14% and 0.030%, respectively, and 0.064% and 0.034% for the results of Pátek et al. (1998). Figures 5 and 6 show the pressure and density deviations of our data and the results of Pátek et al. (1998) from eq 5. Figure 7 shows the pressure deviations of the values of Park (1993) having densities less than $2.5 \mathrm{~mol} \cdot \mathrm{dm}^{-3}$ from eq 5; Park's values are 0.05% to 1.3% higher than eq 5. The critical temperature $\left(T_{c}\right)$ needed in this equation comes from Defibaugh and Moldover (1997).

Conclusions

Some 141 PVT data points for HF C-227ea in the gaseous phase have been measured using Burnett/isochoric methods. The temperature range is from 283 to 377 K , the pressure range is from 0.1 to 2.5 MPa , and the density

Figure 6. Density deviations of measured PVT data for HFC227ea from values calculated using eq 5 (one point out of the scale); (\square) this work; (Δ) Pátek et al. (1998).

Figure 7. Pressure deviations of Park's results for HFC-227ea from values calculatedd using eq 5: (ㅁ) Park (1993).
range is from 0.037 to $1.35 \mathrm{~mol} \cdot \mathrm{dm}^{-3}$. The maximum temperature uncertainty and maximum pressure uncertainty in this work were estimated to be within $\pm 10 \mathrm{mK}$ and ± 500 Pa, respectively. The parameters of a virial equation of state were determined to represent the gaseous thermodynamic properties of HFC-227ea.

Acknowledgment

We thank D. R. Defibaugh and J. Pátek for providing the experimental data for the vapor pressure and PVT properties of HFC-227ea. We also thank Mr. Yi-Dong Fu for providing useful help in the measurements. This work is supported by the National Nature Science Foundation of China (Grant No. 59906006) and part of this work is supported by the Department of Thermal Engineering, Tsinghua University.

Literature Cited

Angus, S.; de Reuck, K. M.; McCarty, R. D. International Thermodynamic Tables of theFluid StateHelium-4, Pergamon: Oxford, 1977. Defibaugh, D. R.; Moldover, M. R. Compressed and Saturated Liquid Densities for 18 Halogenated Organic Compounds. J. Chem. Eng. Data 1997, 42, 650-652.
Duan, Y. Y.; Zhu, M. S.; Han, L. Z. Experimental Pressure-VolumeTemperature Data and An Equation of State for Trifluoroiodomethane ($\mathrm{CF}_{3} \mathrm{I}$) in Gaseous Phase. Fluid Phase Equilibr. 1997, 131, 233241.

Fu, Y. D.; Han, L. Z.; Zhu, M. S. PVT Properties, Vapor Pressures and Critical Parameters of HFC-32. Fluid Phase Equilibr. 1995, 111, 273-286.
Huber, M.; Gallagher, J.; Mclinden, M.; M orrison G. NIST Standard Reference Database 23: NIST Thermodynamic properties of refrigerants and refrigerant mixtures database (RETPROP), version 5.0. U. S. Department of Commerce Washington, DC, 1996.

Klomfar, J.; Hruby, J.; Sifner, O. Measurements of the (T, P, ρ) Behaviour of 1,1,1,2,3,3,3-Heptafluoropropane (Refrigerant R227) in the Liquid Phase. J. Chem. Thermodyn. 1994, 26, 965-970.

Laesecke, A.; Hafer, R. F. Viscosity of Fluorinated Propane Isomers. 2. Measurements of Three Compounds and Model Comparisons. J . Chem. Eng. Data 1998, 43, 84-92.
Liu, X. Y.; Shi, L.; Zhu, M. S.; Han, L. Z. Liquid Viscosity of 1,1,1,2,3,3,3-H eptafluoropropane (HFC-227ea) along the Saturation Line. J. Chem. Eng. Data 1999a, 44, 688-692.
Liu, X. Y.; Shi, L.; Duan, Y. Y.; Zhu, M. S.; Han, L. Z. Thermal Conductivity of Gaseous 1,1,1,2,3,3,3-Heptafluoropropane (HFC227ea). J. Chem. Eng. Data. 1999b, 44, 882-886.
Park, Y. J. Bestimmung des thermischen Verhaltens neuer Arbeitsstoffe der Energietechnik mit Hife einer Burnett-Apparatus. Thesis, Universitat Karlsruhe, 1993.
Pátek, J.; Klomfar, J.; Prazak, J.; Sifner, O. The (P, $\rho, ~ T$) Behaviour of 1,1,1,2,3,3,3-Heptafluoropropane (HFC-227ea) Measured with a Burnett Apparatus. J. Chem. Thermodyn. 1998, 30, 1159-1172.
Preston-Thomas, H. The International Temperature Scale of 1990 (ITS90). Metrologia 1990, 27, 3-10.

Robin, M. L. Thermophysical Properties of HFC-227ea. Proceedings of 1994 International CFC \& Halon Alternatives Conference Washington, DC; 1994; pp 105-113.
Salvi-Narkhede, M.; Wang, B. H.; Adcock, J . L.; Van Hook, W. A. Vapor Pressures, Liquid Molar Volumes, Vapor Nonideality, and Critical Properties of some Partially Fluorinated Ethers $\left(\mathrm{CF}_{3} \mathrm{OCF}_{2} \mathrm{CF}_{2} \mathrm{H}\right.$,
$\mathrm{CF}_{3} \mathrm{OCF}_{2} \mathrm{H}$, and $\mathrm{CF}_{3} \mathrm{OCH}_{3}$), Some Perfluoroethers $\left(\mathrm{CF}_{3} \mathrm{OCF}_{2} \mathrm{OCF}_{3}\right.$, $\mathrm{C}_{-} \mathrm{CF}_{2} \mathrm{OCF}_{2} \mathrm{OCF}_{2}$, and $\mathrm{C}-\mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{O}$) and of $\mathrm{CHF}_{2} \mathrm{Br}$ and $\mathrm{CF}_{3}{ }^{-}$ CFHCF 3 . J. Chem. Thermodyn. 1992, 24, 1065-1075.
Shi, L.; Duan, Y. Y.; Zhu, M. S.; Han, L. Z.; Lei, X. Vapor Pressure of 1,1,1,2,3,3,3-Heptafluoropropane. Fluid PhaseEquili br. 1999, 163, 109-117.
Silberberg, I. A.; K obe, K. A.; McK etta, J J J. Gas Compressibilities with the Burnett Apparatus, M ethod and Apparatus. J. Chem. Eng. Data 1959, 4, 314-323.
Weber, L. A. Personal communication, 1998.
Wirbser, H.; Bräuning, G.; Gurtner, J.; Ernst, G. Flow-Calorimetric Specific Heat Capacities and J oule-Thomson Coefficients of $\mathrm{CF}_{3}-$ CFHCF_{3} (R227) -a New Working Fluid in Energy Technics-at Pressures up to 15MPa and Temperatures Between 253K and 423K. J. Chem. Thermodyn. 1992, 24, 761-772.

Zhu, M. S.; Fu, Y. D.; Han, L. Z. An Experimental Study of PVT Properties of CFC Alternative HFC-134a. Fluid Phase Equilibr. 1992, 80, 149-156.

Received for review May 14, 1999. Accepted September 3, 1999.
J E9901334

