Reviews

P- ρ -*T* Data of Liquids: Summarization and Evaluation. 6. Nonaromatic Hydrocarbons (C_n, $n \ge 5$) except *n*-Alkanes C₅ to C₁₆

Ivan Cibulka^{*,†} and Toshiharu Takagi[‡]

Department of Physical Chemistry, Institute of Chemical Technology, 166 28 Prague, Czech Republic, and Kyoto Institute of Technology, Kyoto 606-8585, Japan

The published experimental data for 56 hydrocarbons (22 alkanes, 11 alkenes, 20 cycloalkanes, and 3 cycloalkenes) are summarized and reviewed, and the parameters of the Tait equation are given. This equation allows the calculation of smoothed values of either the volume ratio $V(P)/V(P_{ref})$ and related properties (relative density $\rho(P)/\rho(P_{ref})$ and compression $\{1 - \rho(P_{ref})/\rho(P\})$) or, using density data at atmospheric pressure ($P_{ref} = 0.1$ MPa) or at saturation ($P_{ref} = P_{sat}$), the liquid density of the substances over a temperature and pressure range. A comparison of isothermal compressibilities calculated from the Tait equation with available data at P = 0.1 MPa from the literature is also presented.

Introduction

This work is the last part of a systematic summarization and critical evaluation of published $P-\rho-T$ data of hydrocarbons C_n , $n \ge 5$, in a liquid state. The data for *n*-alkanes from C₅ to C₁₆ [96-cib/hne] and aromatic hydrocarbons [99cib/tak] have already been reviewed and evaluated. This work concerns the remaining groups of hydrocarbons for which the available published experimental values of density, $\rho(T,P)$ relative density $\rho(T,P)/\rho(T,P=0.1 \text{ MPa or})$ $P_{\rm sat}$), and related quantities of liquids were compiled from the literature and evaluated. The present work and previous reviews [96-cib/hne, 99-cib/tak] do not include compilation or data evaluation for hydrocarbons with less than five carbon atoms; comprehensive reviews of thermodynamic properties (including $P - \rho - T$ surface of the fluid state) for most of these hydrocarbons may be found in the literature [75-zor/hen, 81-bue/mau, 83-wax/gal, 86-jah/jac, 87-you/ely, 89-fri/ely, 91-fri/ing, 91-set/wag].

Sources of Data

The original experimental data (9576 data points for 56 substances) processed were extracted from the source database which was employed for our previous reviews and is currently being updated. A list of substances is presented in Table 1 along with Chemical Abstracts Service Registry Numbers (CASRN) and formulas.

The characteristics of data that were available in the database for density and related quantities (molar and specific volumes, volume or density ratios, compression) of selected compounds are summarized in Table 2. The temperature ranges and numbers of experimental values are restricted up to the critical temperature; that is, only subcritical liquid density data were taken from the source database. No corrections for the different temperature scales were made; the effect is mostly less than the uncertainties in density and/or temperature measurements. Very few researchers declare a particular temperature scale used (see "data type" column and footnotes f through i in Table 2). Similarly, as in our previous reviews, values (denoted by the letter F in the "data type" column of Table 2) calculated from smoothing functions presented in the papers (mostly the Tait equation), following as much as possible the information concerning the distribution of experimental points given by authors, were included for some substances if no direct experimental (D) or smoothed values (S) were available in the papers. The $\rho(T, P)$ values calculated from other properties (C) were also included in the evaluation.

Treatment of Data and Method of Data Evaluation

The procedures of treatment of the data and the critical evaluation were essentially the same as those employed in our previous papers [96-cib/hne, 99-cib/tak]. A brief summarization only is given below.

Available data on the compressed liquid density and related quantities were fitted by a Tait equation with the temperature-dependent parameters C(T) and B(T), written in the form

$$\rho(T, P, \vec{c}, \vec{b}) = \frac{\rho(T, P_{\text{ref}}(T))}{1 - C(T, \vec{c}) \ln\left[\frac{B(T, \vec{b}) + P}{B(T, \vec{b}) + P_{\text{ref}}(T)}\right]}$$
(1)

10.1021/je990140s CCC: \$18.00 © 1999 American Chemical Society Published on Web 09/23/1999

^{*} Corresponding author. Fax: +420-2-2431-0273. E-mail: ivan.cibulka@vscht.cz.

[†] Institute of Chemical Technology.

[‡] Kyoto Institute of Technology

Table 1	List of Subs	stances: 1	Names (A	lternative 1	Names), C	hemical A	Abstracts	Service l	Registry I	Numbers (CASRN,
supplie	d by authors)	, and Sur	nmary Fo	ormulas					_		

name (alternative name)	CASRN	formula	name (alternative name)	CASRN	formula
		A	lkanes		
2-methylbutane (isopentane)	78-78-4	$C_{5}H_{12}$	octadecane	593-45-3	$C_{18}H_{38}$
2,2-dimethylpropane (neopentane)	463-82-1	$C_{5}H_{12}$	7-hexyltridecane	7225-66-3	$C_{19}H_{40}$
2-methylpentane	107-83-5	$C_{6}H_{14}$	eicosane	112-95-8	$C_{20}H_{42}$
3-methylpentane	96-14-0	$C_{6}H_{14}$	docosane	629-97-0	$C_{22}H_{46}$
2,2-dimethylbutane	75-83-2	$C_{6}H_{14}$	tetracosane	646-31-1	$C_{24}H_{50}$
2,3-dimethylbutane	79-29-8	$C_{6}H_{14}$	9-octylheptadecane	7225-64-1	$C_{25}H_{52}$
3-ethylpentane	617-78-7	C7H16	triacontane	638-68-6	$C_{30}H_{62}$
2,2-dimethylpentane	590-35-2	C7H16	2,6,10,15,19,23-hexamethyltetracosane (squalane)	111-01-3	$C_{30}H_{62}$
2,2,3-trimethylbutane	464-06-2	C7H16	11-decylheneicosane	55320-06-4	C31H64
2,2,4-trimethylpentane (isooctane)	540-84-1	$C_{8}H_{18}$	13-dodecylhexacosane	55517-73-2	C38H78
heptadecane	629-78-7	$C_{17}H_{36}$	tetracontane	4181-95-7	$C_{40}H_{82}$
		A	lkenes		
2-methyl-1,3-butadiene (isoprene)	78-79-5	C_5H_8	1-hexene	592-41-6	$C_{6}H_{12}$
1-pentene	109-67-1	$C_{5}H_{10}$	1-heptene	592-76-7	$C_{7}H_{14}$
2-methyl-2-butene (amylene)	513-35-9	$C_{5}H_{10}$	1-octene (caprylene)	111-66-0	$C_{8}H_{16}$
(E)-1,4-hexadiene	7319-00-8	C ₆ H ₁₀	1-nonene	124-11-8	$C_{9}H_{18}$
(2 <i>Z</i> ,4 <i>E</i>)-2,4-hexadiene (2- <i>cis</i> -4- <i>trans</i> -hexadiene)	5194-50-3	$C_{6}H_{10}$	2,6,10,15,19,23-hexamethyl-2,6,10,14,18,22-	7683-64-9	$C_{30}H_{50}$
1,5-hexadiene	592-42-7	C_6H_{10}	tetracosahexaene (squalene)		
		Cycl	oalkanes		
cyclopentane	287-92-3	$C_{5}H_{10}$	butylcyclohexane	1678-93-9	$C_{10}H_{20}$
methylcyclopentane	96-37-7	$C_{6}H_{12}$	bicyclohexyl	92-51-3	$C_{12}H_{22}$
cyclohexane	110-82-7	$C_{6}H_{12}$	octadecahydrochrysene (perhydrochrysene)	2090-14-4	$C_{18}H_{30}$
cyclohexane- d_{12} (dodecadeuteriocyclohexane)	1735-17-7	C ₆ D ₁₂	1,7-dicyclopentyl-4-(3-cyclopentylpropyl)heptane	55429-35-1	$C_{25}H_{46}$
methylcyclohexane	108-87-2	C7H14	1-(1-decahydronaphthyl)pentadecane	66359-82-8	$C_{25}H_{48}$
cycloheptane	291-64-5	C7H14	1-cyclopentyl-4-(3-cyclopentylpropyl)dodecane	7225-68-5	$C_{25}H_{48}$
ethylcyclohexane	1678-91-7	C ₈ H ₁₆	1-cyclohexyl-3-(2-cyclohexylethyl)undecane	7225-69-6	$C_{25}H_{48}$
1-cis-2-dimethylcyclohexane	2207-01-4	C_8H_{16}	9-(2-cyclohexylethyl)heptadecane	25446-35-9	$C_{25}H_{50}$
cyclooctane	292-64-8	C_8H_{16}	9-(3-cyclopentylpropyl)heptadecane	5638-09-5	$C_{25}H_{50}$
trans-bicyclo[4.4.0]decane (trans-decalin)	493-02-7	$C_{10}H_{18}$	1,1-bis(decahydro-1-naphthyl)undecane	55373-96-1	$C_{31}H_{56}$
		Cycl	oalkenes		
1,3-cyclohexadiene	592-57-4	C ₆ H ₈	cyclohexene	110-83-8	C_6H_{10}
1,4-cyclohexadiene	628-41-1	C_6H_8			

where

1

$$C(T, \vec{c}) = \sum_{i=0}^{N_{\rm C}} c_i [(T - T_0)/100]^i$$
$$\vec{c} = \{c_i\} = \{c_0, ..., c_{N_{\rm C}}\} (2)$$

$$B(T,\vec{b}) = \sum_{i=0}^{N_{\rm B}} b_i [(T - T_0)/100]^i$$
$$\vec{b} = \{b_i\} = \{b_0, ..., b_{N_{\rm B}}\}$$
(3)

and T_0 is a parameter with a preselected fixed value for which $C(T_0) = c_0$ and $B(T_0) = b_0$ are valid. The reference values $\rho(T, P_{ref}(T))$ and $P_{ref}(T)$ were selected in the same way as that used previously; that is, at temperatures below the normal boiling temperature, the densities at atmospheric pressure ($P_{ref} = 0.101$ 325 MPa) were used, while for higher temperatures the values along the saturation curve, that is, saturated liquid densities and saturated vapor pressures, were employed. Experimental values of densities at atmospheric pressure or at saturation for the same sample reported along with compressed liquid density data were preferably used for the reference density $\rho(T, P_{ref})$, and thus the values of relative density $\rho(T,P)/\rho(T,P_{ref} = 0.1 \text{ MPa or})$ P_{sat}) reported by the authors were correlated by eq 1. In some cases of isothermal data, the reference density $\rho(T, P_{ref})$ was obtained for each isotherm by an extrapolation of experimental compressed liquid density data to the reference pressure P_{ref} (0.101 325 MPa below or P_{sat} above the normal boiling temperature), using the Tait equation. If the reference values were not available in the original source, and the extrapolation was not feasible (e.g., for isobaric or isochoric data), then the densities obtained from the equations summarized in the Appendix (Table 6) were employed in the correlations. Saturated vapor pressures were calculated from the smoothing functions taken from the literature (for references, see Table 3) and used in the correlations.

The adjustable parameters \vec{c} and \vec{b} of function 1 were obtained by minimizing the objective function

$$\phi(\vec{c},\vec{b}) = \sum_{j=1}^{N_{\rm p}} w_j [\rho_j - \rho(T_j, P_j, \vec{c}, \vec{b})]^2$$
(4)

where ρ_{j} , T_{j} , P_{j} is the *j*th experimental data point, $\rho(T_{j}, P_{j}, \vec{c}, \vec{b})$ is the value calculated from function 1 with the parameters \vec{c} and \vec{b} for the values T_{j} and P_{j} , and N_{p} is the number of experimental values of density used in the correlation. The adjustable parameters were calculated by the Marquardt algorithm in double precision to minimize the influence of rounding errors. The statistical weights w_{j} in eq 4 were defined as

$$w_i = \mu / (\delta \rho_i)^2 \tag{5}$$

where $\delta \rho_j$ is the experimental uncertainty taken from the source database and either given by the authors (preferably) or estimated by a compiler for the *j*th density value in a correlated data set. The uncertainties $\delta \rho_j$ included not only random but also systematic error estimates (if available) and corresponded to the experimental accuracy rather than the precision of measurements. The statistical weight of each density value was adjusted by varying the parameter μ_j ($\mu_j = 0$ for rejected values), taking into account

Table 2. Characteristics of Data Sets: Overall Number of Data Points (N_p), Temperature and Pressure Ranges within the Liquid State (T_{min} , T_{max} , P_{min} , and P_{max}), Experimental Method Used, Types of Data, and Purities of Measured Samples

ref	$N_{ m p}$	T_{\min}/K	$T_{\rm max}/{ m K}$	P_{\min}/MPa	P _{max} /MPa	method ^a	data type ^{b}	sample purity ^c /%
				2-Meth	ylbutane			
31-bri	29	273.15	368.15	49.1	882.7	vb	D	
54-isa/li	34	373.15	448.15	1.1	21.6	rl	D	99.89m% ^e
69-mop	37	223.15	298.15	10.2	202.8	vb	D	99.99^{e}
71-hou/hey	15	298.15	298.15	50.0	2400.0	vs	S	
74-hou	12	295.15	295.15	200.0	2400.0	vs	D	
76-sah/gag	7	293.15	293.15	1.0	7.0	ce	F	99.9m ^e
92-wal/bar	180	201.40	259.90	10.0	300.0	VS	S	99.5 ^e
	014	201.10	440.15	1.0	0.000.0	15	5	00.0
total	314	201.40	448.15	1.0	2400.0			
_				2,2-Dimet	hylpropane	_		
68-gon/lee	18	310.93	410.93	0.7	55.2	hp	D	$99.92m^e$
73-daw/sil	61	343.15	393.15	0.6	31.6	vl	D	>99.9°
73-koh/luk	38	298.15	298.15	0.3	6.9	vl	F	>99ª
75-luk/dav	49	298.15	298.15	0.3	6.6	vl	F	$>99m^{a}$
total	166	298.15	410.93	0.3	55.2			
				2-Methy	lpentane			
31-bri	34	273.15	368.15	49.1	1176.9	vb	D	
40-kel/fel	37	373.15	473.15	0.6	31.6	pi	\mathbf{D}^{f}	
76-sah/gag	14	293.15	298.15	1.0	7.0	ce	F	$99.9m^e$
88-mor/aon	64	298.15	313.15	1.8	135.8	vl	D	
total	149	273.15	473.15	0.6	1176.9			
				3-Methy	pentane			
31-bri	40	273.15	368.15	49.1	1176.9	vb	D	
52-day/fel	76	353.15	498.15	0.6	31.6	vl	D	99.80m ^e
76-saĥ/gag	14	293.15	298.15	1.0	7.0	ce	F	$99.9m^d$
88-mor/aon	63	298.15	313.15	2.5	145.4	vl	D	
total	193	273.15	498.15	0.6	1176.9			
				2.2-Dime	thylbutane			
31-bri	26	273.15	368.15	49.1	980.8	vb	D	
43-fel/wat	69	373.15	473.15	1.0	30.4	vl	\mathbf{S}^{f}	
76-sah/gag	14	293.15	298.15	1.0	7.0	ce	F	$99.9m^e$
88-mor/aon	58	298.15	313.15	1.5	124.3	vl	D	
90-pol/wei	72	243.70	313.20	5.0	200.0	vb	F	99.0 ^d
total	239	243.70	473.15	1.0	980.8			
				2.3-Dime	thylbutane			
31-bri	32	273.15	368.15	49.1	1078.8	vb	D	
42-kel/fel	44	373.15	498.15	0.6	31.6	vl	\mathbf{D}^{f}	
76-sah/gag	14	293.15	298.15	1.0	7.0	ce	F	$99.9m^d$
87-hol/goe	5	293.15	293.15	2.0	10.0	mo	\mathbf{D}^{g}	$>99.6m^{e}$
88-mor/aon	61	298.15	313.15	1.6	139.3	vl	D	
90-rie/sch	365	173.20	303.20	10.0	300.0	vs	S Dh	99.5 ^a
93-Dao/cac	215	208.16	298.15	0.2	108.5	rı	D^{n}	99.2m ^e
total	736	173.20	498.15	0.2	1078.8			
				3-Ethy	lpentane	_	_	
70-kus/tas	20	298.15	353.15	39.2	196.1	vl	D	
				2,2-Dimet	hylpentane			
76-sah/gag	14	293.15	298.15	1.0	7.0	ce	F	99.9m ^e
				2,2,3-Trim	ethylbutane			
70-kus/tas	11	298.15	353.15	39.2	156.9	vl	D	
				2,2,4-Trime	ethylpentane			
32-bri	30	273.15	368.15	49.0	980.7	vb	D	
43-fel/wat-1	72	373.15	523.15	0.5	30.4	vl	S	$99.9m^e$
85-dym/isd	43	298.19	372.95	25.4	539.8	vb	\mathbf{D}^{g}	>99m ^d
86-hol/goe	5	293.15	293.15	2.0	10.0	mo	\mathbf{D}^{g}	>99.8m ^e
87-led	70	298.15	358.15	10.0	330.0	vb	S	99.5^{u}
90-mal/woo	115	278.15	323.13	2.5	280.0	VD	F	99.8m ^d
90-111al/w00	40	323.13	249 15	2.5	200.0	vb	Г	00 5 <i>d</i>
91-nan/zia	40	298 15	298 15	2.0	200.0	vD mo	I, D	99.5 ^d
92-naz/gas	77	294.15	538.65	5.0	58.9	bu	Ď	>99.98 ^d
93-mal/woo	89	313.15	353.15	2.6	374.3	vb	D	
94-pad/far	30	298.15	348.15	10.1	100.1	mo/bu	D	99.8 ^e
96-hah/ulc	5	293.15	293.15	2.0	10.0	mo	D	99.92m ^e
96-pad/far-1	47	197.93	298.15	10.1	100.1	mo/bu	\mathbf{D}^{h}	99.7 ^e
96-pad/far-1	30	298.15	348.16	10.1	100.1	mo/bu	\mathbf{D}^{n}	99.7 ^e
total	716	197.93	538.65	0.5	980.7			
				Hepta	decane			
64-doo	60	323.15	573.15	5.0	500.0	vl	S	
87-man/cri	27	298.15	338.15	2.0	10.1	vl	F	$99m^e$
total	87	298.15	573.15	2.0	500.0			

1108	Journal	of	Chemical	and	Engineering	Data,	Vol.	44,	No.	6,	1999
------	---------	----	----------	-----	-------------	-------	------	-----	-----	----	------

Table 2. Continued

ref	$N_{\rm p}$	$T_{\rm min}/{ m K}$	T _{max} /K	P _{min} /MPa	P _{max} /MPa	method ^a	data type ^b	sample purity ^c /%
				Octae	decane			
58-cut/mcm	48	333.15	408.15	34.5	551.3	vb	D	
50 land/and	0.0	010.00	400.15	7-Hexyl	tridecane		C	
59-10w/spe	38	310.93	408.15	20.0	340.0	VD	5	
64-doo	50	373 15	573 15	5 0	sane 500 0	vl	S	
04-000	50	575.15	575.15	J.U Doc	500.0	VI	5	
88-pet/spi	48	323.08	368.26	2.1	16.1	ct	D	$>99\mathrm{m}^{e}$
I I I I I				Tetra	cosane			
87-pet/van	36	333.52	371.22	2.1	12.1	nd	D	$>98m^e$
-				9-Octylhe	eptadecane			
58-cut/mcm	140	310.95	408.15	34.5	1033.7	vb	S	
59-low/spe	20	310.93	372.04	20.0	340.0	vb	S	
total	160	310.93	408.15	20.0	1033.7			
				Triac	ontane			
64-doo	50	373.15	573.15	5.0	500.0	vl	S	
701			2,6,	10,15,19,23-Hez	kamethyltetraco	osane		
70-kus/tas	20	298.15	353.15	39.2	196.1	vl	D	
50 low/one	26	210.02	409.15	11-Decylh	eneicosane	vb	c	
59-10w/spe	30	510.95	406.15	20.0	540.0	VD	3	
59-low/spe	34	310 93	408 15	20 0	1hexacosane 340.0	vh	S	
oo lowspe	01	010.00	100.10	Tetra	contane	VD	5	
64-doo	40	423.15	573.15	5.0	500.0	vl	S	
				2-Methyl-1	.3-butadiene			
32-bri	14	273.15	273.15	49.0	1176.8	vb	D	
				1-Pe	ntene			
51-day/fel	50	353.15	448.15	0.6	31.6	vl	D	99.34m ^e
_				2-Methy	l-2-butene		_	
49-bri	10	298.15	298.15	49.0	490.3	VS	D	
75 1	10	000 15	000 15	(<i>E</i>)-1,4-F	Iexadiene		F	00d
75-DUT/FIC	10	293.15	298.15	1.0	5.0	ce	F	99m ^a
75-bur/ric	10	293 15	298 15	(2Z, 4E)-2, 4 1 0	I-Hexadiene 5 0	CP.	F	99 m ^{<i>d</i>}
vo bullie	10	200.10	200.10	1.0 1.5 Ho	vadiono		Ŧ	00111
75-bur/ric	10	293.15	298.15	1.0	5.0	ce	F	$99.9 \mathrm{m}^d$
				1-He	exene			
70-aba/ker	192	283.15	503.15	4.0	68.7	bu	D	99.8 ^e
72-ker/apa	431	283.15	503.15	0.8	68.7	bu	D	99.98^{e}
75-DUL/LIC 82-gus/gal	10 48	293.15	298.15	1.0	50 0	ce bu	г D	99.9mª
total	681	146.00	503 15	0.8	68 7	bu	D	
totai	001	140.00	505.15	0.0 1 Ho	00.7			
81-gus/naz	78	293.15	523.15	4.0	50.0	bu	D	
8				1-0	ctene			
49-bri	17	298.15	298.15	49.0	3922.7	vs	D	
72-ker/apa	361	283.15	533.15	2.6	68.7	bu	D	99.98 ^e
88-dym/mal	33	298.15	373.15	10.6	312.7	vb	D	$99m^d$
92-maz/gas	70	290.15	536.95	5.0	36.9	bu	D	~99.90*
total	481	283.15	538.95	2.6	3922.7			
84-mis/mal	70	198.00	523.00	1-No 10.0	onene 50.0	bu	р	
04-gu3/gai	10	100.00	3 10 15 10 22	Hovemethyl 9	6 10 14 19 22 +	otracesehovaer	D	
70-kus/tas	20	298.15	353.15	-11exametriyi-2, 39.2	196.1	vl	D	
				Cyclor	pentane			
69-bra/fre	9	303.15	303.15	50.0	450.0	vb	D	
70-kus/tas	20	298.15	353.15	39.2	196.1	vl	D	
92-bao/cac	186	192.79	298.15	0.1	104.3	rl	\mathbf{D}^{n}	>99.5m ^a
total	215	192.79	353.15	0.1	450.0			
80 0-0/00	4.1	900 00	940.00	Methylcy	clopentane	1	Π	
ou-oza/ooy 87-hol/goe	41 5	298.20 293 15	348.20 293 15	9.9 2.0	196.2 10 0	VI mo	D Dg	99.9 m ^e >99.6m ^e
total	16	202 15	3/8 20	2.0	106.9		<u> </u>	00.011
wa	40	~JJ.1J	040.20	2.0	130.2			

Table 2. Conti	inued							
ref	$N_{ m p}$	$T_{\rm min}/{ m K}$	$T_{\rm max}/{ m K}$	P _{min} /MPa	P _{max} /MPa	method ^a	data type ^b	sample purity ^c /%
				Cyclol	hexane			
34-rot/nag	9	289.29	291.47	0.2	20.9	vl	D	
40-sch/hof	3	311.08	377.59	5.5	5.5	vl	D	
57-rea/sag	78	310.93	510.93	0.4	68.5	vl	D^{I}	>99.8m ^e
59-gol/vag	89	293.65	548.15	0.3	53.5	bu	D	
59-gol/vag	80	293.15	553.15	5.1	50.7	bu	S	
62-hol/wha	50	298.16	348.15	1.0	10.0	vl	F	$>99.9^{e}$
70-kus/tas	6	313.15	353.15	39.2	117.7	VI	D	
72-gol/ada	30	303.15	393.15	50.7	253.3	VD	D	00.004
72-ker/apa	541	283.15	553.15	1.1	68.7	bu	D	99.98°
72-1ys 72 han/ana	2000	297.15	297.15	1/9.0	421.0	SW	D	00.000
73-ker/apa	308	293.13	202.10	1.1	08.7	bu	DE	99.98°
73-rog/bur 74 ono/kon	10	290.13	296.15	1.0	10.0	ce hu	r D	>00 00e
74-apa/ker	101	203.13	202.15	2.1	5.0	bu	D E	~ 99.90°
75-DUI/IIC	10	293.13	298.15	1.0	5.0 70.1	ce	F D	00.000
75-gri/mur	40	498.15	048.10 470.15	2.1	79.1	pi 	D	99.90°
75-ras/gri 75-ras/gri	90	298.13	473.13	0.0	80.4 71.0	pi ni	D	99.90°
75-ras/gri	30 75	298.15	473.13	1.0	/1.0	pi vl	D	99.90°
70-gou 79-dic	18	295.00	295.15	1800.0	40.1	VI SW	D	QQ <i>d</i>
79-isd/dvm	4	298.15	348.15	10.0	20.0	ul	Č	>99 ^e
79-isd/dym	2	348.15	348.15	50.0	100.0	vb	D	>99e
79-kas/fuk	32	298.15	348.15	6.9	105.3	vl	D	$99.8v^d$
80-jon/has	40	313.00	383.00	5.0	214.0	vb	D	
82-wis/wue	27	286.80	337.90	10.0	110.0	VS	S	99.9^{e}
84-mat/van	34	288.15	313.15	2.5	35.0	mo	F	
87-sun/kor	80	288.15	323.06	5.0	85.0	ul	C^g	$>99.5v^{a}$
88-mor/aon	27	298.15	313.15	2.4	46.1	VI	D	
89-V05/S10 90. pol/woi	24 35	320.30	450.00	0.4	10.4	vs vb	D F	00 0 <i>d</i>
90-tos/fig	48	308.07	343 15	4.6	101.9	bu	D	99.5 ⁿ
90-tos/fig	6	333.15	333.15	39.8	91.7	bu	D	$99.5 m^{d}$
91-mel/mel	49	293.15	413.15	10.0	250.0	pi	D	ootom
91-tan/hos	23	298.15	348.15	6.2	100.0	va	D	99.8^{e}
92-lag/bon	18	288.15	323.15	5.0	15.0	mo ^j	D	
92-lag/bon	18	288.15	323.15	5.0	15.0	mo ^j	D	
96-pad/far	20	298.15	348.14	5.1	62.8	mo/bu	D	99.85^{e}
total	2128	283.15	553.16	0.2	42600.0			
				Cyclohe	xane- d_{12}			
84-mat/van	35	288.15	313.15	2.5	35.0	mo	F	
				Methylcy	clohexane			
49-bri	11	298.15	298.15	49.0	980.7	vs	D	
69-bra/fre	9	303.15	303.15	50.0	450.0	vb	D	
70-aba/ker	255	283.15	568.15	5.0	68.7	bu	D	99.9 ^e
72-ker/apa	459	283.15	568 15	5.0	60	bu	D	99.98°
72-Kei/apa	90	203.15	302.15	5.1	40.1	vl	D	99.90
79-jon/has	27	203.00	298.00	50.0	500.0	nd	D	
97-bay/bon	15	303.15	343.15	20.0	100.0	mo	D	>99d
total	904	203.00	568 15	0.3	980 7			
totai	304	203.00	508.15	0.5	560.7			
70 lung/tog	19	202 15	959 15		106 1	••1	D	
70-KUS/tas	12 00	290.15 292.65	303.15	5 1	/0.1	vl	ם ח	
70-gou	100	293.05	333.13	5.1	40.1	VI	D	
total	102	293.65	393.15	5.1	196.1			
				Ethylcyc	lohexane			
83-gus/sha	78	293.15	523.15	5.0	50.0	bu	D	
89-vos/s10	Z4	327.10	440.90	0.4	9.7	VS	D	
total	102	293.15	523.15	0.4	50.0			
				1-cis-2-Dimetl	hylcyclohexane			
89-vos/slo	21	325.20	461.20	0.4	9.7	vs	D	
				Cyclo	octane			
78-gou	75	313.65	393.85	5.1	40.1	vl	D	
2			tran	s-Bicyclo[4 4 0]d	lecane (trans-dec	alin)		
70-kus/tas	20	298.15	353.15	39.2	196.1	vl	D	
				Buttelo	lohovono	. –	_	
87-hol/goe	5	293.15	293.15		10.0	mo	Dg	>99.8m ^e
	0			Diarral	ahavyl		~	0000111
88-sid/tei	21	298.20	338.20	0.7	34.5	mo	D	>99m ^d
	~1				0 110		~	

Table 2. Continued

ref	$N_{ m p}$	T_{\min}/\mathbf{K}	$T_{\rm max}/{ m K}$	P _{min} /MPa	P _{max} /MPa	method ^a	data type ^b	sample purity ^c /%
59-low/spe	48	310.93	408.15	Octadecahy 20.0	drochrysene 340.0	vb	S	
58-cut/mcm	113	310.95	1,7-Dicy 408.15	clopentyl-4-(3-cy 34.5	yclopentylpropy 1033.7	l)heptane vb	S	
58-cut/mcm	49	333.15	1-(408.15	1-Decahydronaj 34.5	phthyl)pentadeo 585.7	ane vb	S	
58-cut/mcm	149	310.95	1-Cyclo 408.15	pentyl-4-(3-cycl 34.5	opentylpropyl)d 1033.7	odecane vb	S	
58-cut/mcm	103	310.95	1-Cyc 408.15	lohexyl-3-(2-cyc 34.5	lohexylethyl)un 895.8	decane vb	S	
58-cut/mcm	126	310.95	408.15)-(2-Cyclohexyle 34.5	thyl)heptadecaı 1033.7	ne vb	S	
58-cut/mcm	139	310.95	9- 408.15	(3-Cyclopentylp 34.5	ropyl)heptadeca 1033.7	nne vb	S	
59-low/spe	35	310.93	1,1- 408.15	Bis(decahydro-1 20.0	naphthyl)unde- 300.0	ecane vb	S	
	10	000 15	000 15	1,3-Cyclo	hexadiene		Б	00 d
75-bur/ric 79-dic	10	293.15	298.15	1.0	5.0	ce	F	$99m^d$
total	91	293.00	298.15	1.0	41100.0	310	D	57
totai	21	200.10	230.15	1.0 1.4 Cyclo	41100.0			
75-bur/ric	10	293 15	298 15	1,4-Cyclo 1 0	5 0	ce	F	99 7m ^d
79-dic	11	295.00	295.00	950.0	41700.0	sw	D	97^{d}
total	21	293.15	298.15	1.0	41700.0			
				Cyclo	hexene			
72-ker/apa	364	283.15	533.15	2.6	68.7	bu	D	99.98 ^e
75-bur/ric	10	293.15	298.15	1.0	5.0	ce	F	99.9m ^a
79-010 91-mel/mel	15	293.00 293.15	295.00 413.15	10.0	40300.0	sw	D D	994
total	159	283.15	522 15	10.0	200.0 40300.0	hı	D	
wai	100	200.10	000.10	1.0	10000.0			

^{*a*} Method used for measurements: bu, buoyancy method; ca, densities obtained by integration from thermal expansivities measured by calorimetric method; ce, densities evaluated by integration from isothermal compressibilities obtained by ultracentrifuge method; ct, Cailletet apparatus; hp, high-pressure pycnometer; mo, mechanical oscillator method; mo/bu, combination of vibrating-wire technique with buoyancy principle; nd, not described or stated in the reference; pi, piezometer of unspecified type; rl, expansion principle; sw, shock wave method; ul, densities evaluated from speeds of ultrasound; va, Aime method; vb, variable-volume cell with bellows; vl, variable-volume cell with liquid piston; vs, variable-volume cell with solid piston. For the classification and description of the methods, see ref [85-tek/cib]. ^{*b*} D, direct experimental data; S, smoothed data presented in the reference; C, calculated from other properties; F, values calculated from smoothing equation reported by the researchers. ^{*c*} No letter, unspecified percent; m, mole percent; v, volume percent; w, mass percent. ^{*d*} Purity of source material is given only. ^{*e*} Final purity of the sample. ^{*l*} ITS-27 declared by the researchers. ^{*s*} IPTS-68 declared by the researchers. ^{*l*} Two methods of calibration of DMA 512 vibrating-tube densimeter reported; the first one declared to be superior.

additional available information (sample purity, experimental method used, uncertainties in temperature and pressure measurements). In some cases comparisons of isothermal compressibilities calculated from the fit of a particular data set with independent values (see below and Table 5) were made to facilitate the adjustment. The calculations of the parameters \vec{c} and \vec{b} were repeated until the final fit was obtained where the deviations between retained experimental and smoothed values were roughly equal to the modified experimental uncertainties, $\delta \rho_j \mu_j^{1/2}$, that is, where the weighted standard deviation of the fit was close to unity. In those cases where only one set of smoothed values (S-type data, Table 2) was available for a particular substance, the statistical weights were not modified ($\mu_j = 1$ for retained and $\mu_j = 0$ for rejected data points) and therefore the weighted standard deviation $s_{\rm w}$ (see below) may differ from unity.

Results

Table 3 records the values of the parameters of eq 1 for each substance along with some statistical information of the fits defined as follows:

$$\text{RMSD} = \{\sum_{j=1}^{N_{\text{p}}} [\rho_j - \rho(T_j, P_j, \vec{c}, \vec{b})]^2 / N_{\text{p}}\}^{1/2}$$
(6)

$$\text{RMSD}_{\rm r} / \% = 100 \{ \sum_{j=1}^{N_{\rm p}} [1 - \rho(T_{j^{\rm p}} P_{j^{\rm p}} \vec{c}, \vec{b}) / \rho_j]^2 / N_{\rm p} \}^{1/2} \quad (7)$$

bias =
$$\sum_{j=1}^{N_{\rm p}} [\rho_j - \rho(T_{j}, P_j, \vec{c}, \vec{b})] / N_{\rm p}$$
 (8)

$$\pm = \sum_{j=1}^{N_{\rm p}} \operatorname{sign}[\rho_j - \rho(T_j, P_j, \vec{c}, \vec{b})] \cdot 1$$
(9)

$$s_{\rm w} = [\phi/(N_{\rm p} - N_{\rm C} - N_{\rm B} - 2)]^{1/2}$$
 (10)

where N_p is the overall number of experimental data points retained for the correlation. The characteristics are given on an absolute density scale (kg·m⁻³), which is more illustrative than on a relative density scale.

Table 3. Parameters c_i , b_i , and T_0 of Eq 1, Temperature and Pressure Ranges^a (T_{\min} , T_{\max} , P_{\min} , and P_{\max}), Absolute (RMSD) and Relative (RMSD_r) Root Mean Square Deviations, Biases (Bias), Number of Data Points (N_p), \pm , Weighted Standard Deviations (s_w), and References to Saturated Vapor Pressure (ref(P_{sat})) for the Fits Where T_{\max} Is Higher Than the Normal Boiling Temperature

	2-methyl- butane	2,2-dimethyl- propane	2-methyl- pentane	3-methyl- pentane	2,2-dimethyl- butane	2,3-dimethy butane	l- 2,3-di but	methyl- tane ^b	3-ethyl- pentane
c_0	0.088008	0.086510	0.089537	0.087915	0.088950	0.073172	0.087	435	0.091852
c_1/K^{-1} b_0/MPa	97.8313	27.3297	49.8393	48.9510	45.1214	$0.004085 \\ 39.8600$	48.81	86	67.8829
$b_1/(MPa\cdot K^{-1})$ $b_2/(MPa\cdot K^{-2})$	-84.7915 23.2045	-34.2103 7.6955	-49.6496 14.4427	-44.2980 9.2935	-43.9956 10.1425	-38.8467 11.2092	$-40.2 \\ -30.9$	2085 1644	-57.8087 19.1434
$b_3/(\text{MPa}\cdot\text{K}^{-3})$	201 40	200.15	-1.3079	202.15	200 15	-1.2447	909.1	E	200 15
$T_{0/K}$ T_{min}/K	201.40 223.15	298.15 298.15	298.15 273.15	293.15	298.15 243.70	298.15 208.16	298.1	5 5	298.15 298.15
$T_{\rm max}/{ m K}$ $P_{\rm min}/{ m MPa}$	298.15 1.00	393.15 0.30	473.15 0.57	473.15 0.57	473.15 1.00	473.15 0.18	313.13 1.00	5	$353.15 \\ 39.23$
$P_{\rm max}/{\rm MPa}$	2400.00	31.58	1176.90	145.40	200.00	106.25	139.3	0	196.13
RMSD/(kg/iii *) RMSD _r /%	0.057	0.207	0.272	0.435	0.490	0.477 0.072	0.189		0.128
bias/(kg·m ⁻³) N _n	$-0.115 \\ 56$	0.041 148	$-0.042 \\ 141$	0.040 140	-0.016 210	$-0.165 \\ 280$	-0.04 80	9	0.000 20
\pm^{r}	-10	-2	11	-8 1 140	20	-104	-20		0
$ref(P_{sat})$	0.314	83-mcg	83-mcg	83-mcg	83-mcg	83-mcg	1.037		1.012
	2,2-dimethyl- pentane	2,2,3-trimethy butane	l- 2,2,4-trime pentan	thyl- e heptad	ecane octadec	ane 7-hexylt	ridecane	eicosane	docosane
<u></u>	0.079479	0.090175	0.087786	0.0877	28 0.08780	0.08883	0	0.086743	0.039049
b_0/MPa $b_1/(\text{MPa}\cdot\text{K}^{-1})$	$50.5418 \\ -59.0336$	$37.2254 \\ -29.6553$	$46.4381 \\ -39.8361$	89.5233 -53.26	3 56.3108 48 -34.89	$68.8356 \\ 99 -44.662$	8	68.2027 - 43.1426	38.0546 -43.4898
$b_2/(MPa\cdot K^{-2})$ $b_2/(MPa\cdot K^{-3})$		23.8796	10.6744	8.7057	14.5622	8.8493		7.6667	39.1505
$b_4/(MPa\cdot K^{-4})$	000.45	050 45	0.5894	000.45	100.15	070.04		070 15	000.00
T_0/K T_{min}/K	293.15 293.15	353.15 298.15	323.15 197.93	323.15 298.15	408.15 333.15	372.04 310.93		373.15 373.15	323.08 323.08
$T_{\rm max}/{\rm K}$	298.15	353.15 39 23	523.15 0.51	573.15 2 03	408.15	408.15		573.15 5.00	368.26 2.05
$P_{\text{max}}/\text{MPa}$	7.00	156.91	882.60	500.00	551.28	340.00		500.00	16.05
$RMSD/(kg \cdot m^{-3})$ $RMSD_r/\%$	0.005 0.001	0.082 0.011	0.639 0.091	$0.944 \\ 0.121$	0.403 0.051	0.230 0.028		0.159	0.422 0.055
bias/(kg·m ⁻³)	0.001	-0.001	-0.082	0.035 87	0.023	0.027 36		0.067 50	-0.001
±	2	1	-56	-11	-4	-2		0	-16
$ref(P_{sat})$	0.007	0.920	1.124 83-mcg	0.855	0.907	0.899		0.797	1.138
	tetracosane	9-octyl- heptadecane	triacontane	HMTC ^c	11-decyl- heneicosane	13-dodecyl- hexacosane	tetracon	2-i tane l	methyl-1,3- outadiene
	tetracosane 0.057048	9-octyl- heptadecane 0.092203	triacontane 0.086183	HMTC ^c	11-decyl- heneicosane 0.088556	13-dodecyl- hexacosane 0.089487	tetracon 0.086751	2-: tane l 1 0.0	methyl-1,3- outadiene 099097
c_0 b_0/MPa $b_1/(MPa\cdot K^{-1})$	tetracosane 0.057048 54.7838 -31.0645	9-octyl- heptadecane 0.092203 84.8571 -48.6706	triacontane 0.086183 81.9415 -53.8673	HMTC ^c 0.090208 122.1435 -52.1931	11-decyl- heneicosane 0.088556 84.9378 -46.0832	13-dodecyl- hexacosane 0.089487 90.1315 -46.9989	tetracon 0.086751 66.5183 -41.386	2-1 tane l 1 0.0 80 7	methyl-1,3- outadiene 099097 0.8813
	tetracosane 0.057048 54.7838 -31.0645	9-octyl- heptadecane 0.092203 84.8571 -48.6706 12.2404	triacontane 0.086183 81.9415 -53.8673 15.3258 2.0521	HMTC ^c 0.090208 122.1435 -52.1931 -4.5813	11-decyl- heneicosane 0.088556 84.9378 -46.0832 6.0890	13-dodecyl- hexacosane 0.089487 90.1315 -46.9989 8.1517	tetracom 0.086751 66.5183 -41.386 9.0745	2-1 tane l 1 0.0 80 7	methyl-1,3- outadiene 099097 9.8813
$c_0 \ b_0/MPa \ b_1/(MPa \cdot K^{-1}) \ b_2/(MPa \cdot K^{-2}) \ b_3/(MPa \cdot K^{-3}) \ T_0/K$	tetracosane 0.057048 54.7838 -31.0645 333.52	9-octyl- heptadecane 0.092203 84.8571 -48.6706 12.2404 372.05	triacontane 0.086183 81.9415 -53.8673 15.3258 -2.0531 373.15	HMTC ^c 0.090208 122.1435 -52.1931 -4.5813 298.15	11-decyl- heneicosane 0.088556 84.9378 -46.0832 6.0890 372.04	13-dodecyl- hexacosane 0.089487 90.1315 -46.9989 8.1517 372.04	tetracom 0.086751 66.5183 -41.386 9.0745 423.15	2-j tane l 1 0.0 7 80 7 27	methyl-1,3- outadiene 099097 0.8813 3.15
$c_0 \ b_0/MPa \ b_1/(MPa \cdot K^{-1}) \ b_2/(MPa \cdot K^{-2}) \ b_3/(MPa \cdot K^{-3}) \ T_0/K \ T_{min}/K \ T_{max}/K$	tetracosane 0.057048 54.7838 -31.0645 333.52 333.52 371.22	9-octyl- heptadecane 0.092203 84.8571 -48.6706 12.2404 372.05 310.93 408.15	triacontane 0.086183 81.9415 -53.8673 15.3258 -2.0531 373.15 373.15 573.15	HMTC ^c 0.090208 122.1435 -52.1931 -4.5813 298.15 298.15 353.15	11-decyl- heneicosane 0.088556 84.9378 -46.0832 6.0890 372.04 310.93 408.15	13-dodecyl- hexacosane 0.089487 90.1315 -46.9989 8.1517 372.04 310.93 408.15	tetracom 0.086751 66.5183 -41.386 9.0745 423.15 423.15 573.15	2-1 tane I I 0.1 80 7 27 27 27 27	methyl-1,3- outadiene 099097 .8813 3.15 3.15 3.15
c_0 b_0 /MPa b_1 /(MPa·K ⁻¹) b_2 /(MPa·K ⁻²) b_3 /(MPa·K ⁻³) T_0 /K T_{min}/K T_{max}/K P_{min}/MPa P	tetracosane 0.057048 54.7838 -31.0645 333.52 333.52 371.22 2.07 12.07	9-octyl- heptadecane 0.092203 84.8571 -48.6706 12.2404 372.05 310.93 408.15 20.00 1022 65	triacontane 0.086183 81.9415 -53.8673 15.3258 -2.0531 373.15 373.15 573.15 573.15 500 500 00	HMTC ^c 0.090208 122.1435 -52.1931 -4.5813 298.15 298.15 353.15 39.23 106 12	11-decyl- heneicosane 0.088556 84.9378 -46.0832 6.0890 372.04 310.93 408.15 40.00 240.00	13-dodecyl- hexacosane 0.089487 90.1315 -46.9989 8.1517 372.04 310.93 408.15 20.00 240.00	tetracom 0.086751 66.5183 -41.386 9.0745 423.15 423.15 573.15 5.00 5.00 00	2-i tane l 1 0.1 80 7 27 27 27 27 27 11	methyl-1,3- outadiene 099097 0.8813 3.15 3.15 3.15 0.03 76 80
$ \begin{array}{c} c_0 \\ b_0/MPa \\ b_1/(MPa\cdot K^{-1}) \\ b_2/(MPa\cdot K^{-2}) \\ b_3/(MPa\cdot K^{-3}) \\ T_0/K \\ T_{min}/K \\ T_{max}/K \\ P_{min}/MPa \\ P_{max}/MPa \\ RMSD/(kg\cdot m^{-3}) \\ RMSD/(kg\cdot m^{-3}) \end{array} $	tetracosane 0.057048 54.7838 -31.0645 333.52 333.52 371.22 2.07 12.07 0.195	9-octyl- heptadecane 0.092203 84.8571 -48.6706 12.2404 372.05 310.93 408.15 20.00 1033.65 0.655	triacontane 0.086183 81.9415 -53.8673 15.3258 -2.0531 373.15 373.15 573.15 5.00 500.00 0.973	HMTC ^c 0.090208 122.1435 -52.1931 -4.5813 298.15 298.15 353.15 39.23 196.13 0.057	11-decyl- heneicosane 0.088556 84.9378 -46.0832 6.0890 372.04 310.93 408.15 40.00 340.00 0.302	13-dodecyl- hexacosane 0.089487 90.1315 -46.9989 8.1517 372.04 310.93 408.15 20.00 340.00 0.226	tetracom 0.086751 66.5183 -41.386 9.0745 423.15 423.15 573.15 5.00 500.00 1.267	2-i tane l 1 0.0 7 27 27 27 49 11 0.1	methyl-1,3- outadiene 099097 0.8813 3.15 3.15 3.15 3.15 0.03 76.80 568
	tetracosane 0.057048 54.7838 -31.0645 333.52 371.22 2.07 12.07 0.195 0.026 0.000	9-octyl- heptadecane 0.092203 84.8571 -48.6706 12.2404 372.05 310.93 408.15 20.00 1033.65 0.655 0.075 0.060	triacontane 0.086183 81.9415 -53.8673 15.3258 -2.0531 373.15 573.15 573.15 500 500.00 0.973 0.124 0.099	HMTC ^c 0.090208 122.1435 -52.1931 -4.5813 298.15 298.15 353.15 39.23 196.13 0.057 0.007 0.000	11-decyl- heneicosane 0.088556 84.9378 -46.0832 6.0890 372.04 310.93 408.15 40.00 340.00 0.302 0.036 0.022	13-dodecyl- hexacosane 0.089487 90.1315 -46.9989 8.1517 372.04 310.93 408.15 20.00 340.00 0.226 0.027 0.029	tetracom 0.086751 66.5183 -41.386 9.0745 423.15 423.15 573.15 5.00 500.00 1.267 0.159 0.142	2-i tane l 1 0.0 7 27 27 27 27 49 11 0.0 0.0	methyl-1,3- outadiene 099097 0.8813 3.15 3.15 0.03 76.80 568 064 041
$\begin{array}{c} c_0\\ b_0/\text{MPa}\\ b_1/(\text{MPa}\cdot\text{K}^{-1})\\ b_2/(\text{MPa}\cdot\text{K}^{-2})\\ b_3/(\text{MPa}\cdot\text{K}^{-3})\\ T_0/\text{K}\\ T_{\text{min}}/\text{K}\\ T_{\text{max}}/\text{K}\\ P_{\text{min}}/\text{MPa}\\ RMSD/(\text{kg}\cdot\text{m}^{-3})\\ RMSD_{\text{f}}/\%\\ \text{bias}/(\text{kg}\cdot\text{m}^{-3})\\ N_p\\ + \end{array}$	tetracosane 0.057048 54.7838 -31.0645 333.52 371.22 2.07 12.07 0.195 0.026 0.000 36 -12	9-octyl- heptadecane 0.092203 84.8571 -48.6706 12.2404 372.05 310.93 408.15 20.00 1033.65 0.655 0.075 0.060 136 4	triacontane 0.086183 81.9415 -53.8673 15.3258 -2.0531 373.15 573.15 573.15 500 500.00 0.973 0.124 0.099 47 11	HMTC ^c 0.090208 122.1435 -52.1931 -4.5813 298.15 298.15 353.15 39.23 196.13 0.057 0.007 0.000 20 0	11-decyl- heneicosane 0.088556 84.9378 -46.0832 6.0890 372.04 310.93 408.15 40.00 340.00 0.302 0.036 0.022 31	13-dodecyl- hexacosane 0.089487 90.1315 -46.9989 8.1517 372.04 310.93 408.15 20.00 340.00 0.226 0.027 0.029 30 4	tetracom 0.086751 66.5183 -41.386 9.0745 423.15 423.15 573.15 500.00 1.267 0.159 0.142 40 8	2-itane l 1 0.1 80 7 27 27 27 49 11 0.1 0.1 0.1 0.4 2	methyl-1,3- outadiene 099097 0.8813 3.15 3.15 3.15 3.15 0.03 76.80 568 064 041
$\begin{array}{c} c_0\\ b_0/\text{MPa}\\ b_1/(\text{MPa}\cdot\text{K}^{-1})\\ b_2/(\text{MPa}\cdot\text{K}^{-2})\\ b_3/(\text{MPa}\cdot\text{K}^{-3})\\ T_0/\text{K}\\ T_{\text{min}}/\text{K}\\ T_{\text{max}}/\text{K}\\ P_{\text{min}}/\text{MPa}\\ P_{\text{max}}/\text{MPa}\\ \text{RMSD}/(\text{kg}\cdot\text{m}^{-3})\\ \text{RMSD}_{1}/\%\\ \text{bias}/(\text{kg}\cdot\text{m}^{-3})\\ N_{\text{p}}\\ \pm\\ s_{\text{w}} \end{array}$	tetracosane 0.057048 54.7838 -31.0645 333.52 333.52 371.22 2.07 12.07 0.195 0.026 0.000 36 -12 0.258	9-octyl- heptadecane 0.092203 84.8571 -48.6706 12.2404 372.05 310.93 408.15 20.00 1033.65 0.655 0.075 0.060 136 4 0.910	triacontane 0.086183 81.9415 -53.8673 15.3258 -2.0531 373.15 573.15 573.15 573.15 500 500.00 0.973 0.124 0.099 47 11 0.621	HMTC ^c 0.090208 122.1435 -52.1931 -4.5813 298.15 298.15 353.15 39.23 196.13 0.057 0.007 0.000 20 0 0.284	11-decyl- heneicosane 0.088556 84.9378 -46.0832 6.0890 372.04 310.93 408.15 40.00 340.00 0.302 0.036 0.022 31 1 0.260	13-dodecyl- hexacosane 0.089487 90.1315 -46.9989 8.1517 372.04 310.93 408.15 20.00 340.00 0.226 0.027 0.029 30 4 0.193	tetracom 0.086751 66.5183 -41.386 9.0745 423.15 423.15 573.15 5.00 500.00 1.267 0.159 0.142 40 8 0.799	2-itane l 1 0.0 80 7 27 27 27 49 11 0.1 0.0 0.1 42 0.3	methyl-1,3- outadiene 099097 0.8813 3.15 3.15 0.03 76.80 568 064 041
$\begin{array}{c} c_0\\ b_0/\text{MPa}\\ b_1/(\text{MPa}\cdot\text{K}^{-1})\\ b_2/(\text{MPa}\cdot\text{K}^{-2})\\ b_3/(\text{MPa}\cdot\text{K}^{-3})\\ T_0/\text{K}\\ T_{\text{min}}/\text{K}\\ T_{\text{max}}/\text{K}\\ P_{\text{min}}/\text{MPa}\\ P_{\text{max}}/\text{MPa}\\ \text{RMSD}/(\text{kg}\cdot\text{m}^{-3})\\ \text{RMSD}_{\text{I}}\%\\ \text{bias}/(\text{kg}\cdot\text{m}^{-3})\\ N_{\text{p}}\\ \pm\\ s_{\text{w}} \end{array}$	tetracosane 0.057048 54.7838 -31.0645 333.52 371.22 2.07 12.07 0.195 0.026 0.000 36 -12 0.258 1-pentene	9-octyl- heptadecane 0.092203 84.8571 -48.6706 12.2404 372.05 310.93 408.15 20.00 1033.65 0.655 0.075 0.060 136 4 0.910 2-methyl-2- butene	triacontane 0.086183 81.9415 -53.8673 15.3258 -2.0531 373.15 573.15 500 500.00 0.973 0.124 0.099 47 11 0.621 (E)-1,4-hexadie	HMTC ^c 0.090208 122.1435 -52.1931 -4.5813 298.15 298.15 353.15 39.23 196.13 0.057 0.007 0.000 20 0 0.284 (2Z,4E)-1 ne hexadie	11-decyl- heneicosane 0.088556 84.9378 -46.0832 6.0890 372.04 310.93 408.15 40.00 340.00 0.302 0.036 0.022 31 1 0.260 2,4- ne 1,5-hexa	13-dodecyl- hexacosane 0.089487 90.1315 -46.9989 8.1517 372.04 310.93 408.15 20.00 340.00 0.226 0.027 0.029 30 4 0.193 diene 1-hex	tetracom 0.086751 66.5183 -41.386 9.0745 423.15 423.15 573.15 5.00 500.00 1.267 0.159 0.142 40 8 0.799 ene 1-h	2-itane l 1 0.4 80 7 27 27 27 27 27 49 11 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	methyl-1,3- butadiene 099097 0.8813 3.15 3.15 3.15 3.15 0.03 76.80 568 064 041 9006 1-octene
$\begin{array}{c} c_{0} \\ b_{0}/\text{MPa} \\ b_{1}/(\text{MPa}\cdot\text{K}^{-1}) \\ b_{2}/(\text{MPa}\cdot\text{K}^{-2}) \\ b_{3}/(\text{MPa}\cdot\text{K}^{-3}) \\ T_{0}/\text{K} \\ T_{\text{min}}/\text{K} \\ T_{\text{max}}/\text{K} \\ P_{\text{min}}/\text{MPa} \\ RMSD(\text{kg}\cdot\text{m}^{-3}) \\ RMSD_{r}/\% \\ \text{bias}/(\text{kg}\cdot\text{m}^{-3}) \\ N_{p} \\ \pm \\ s_{w} \end{array}$	tetracosane 0.057048 54.7838 -31.0645 333.52 333.52 371.22 2.07 12.07 0.195 0.026 0.000 36 -12 0.258 1-pentene 0.080544	9-octyl- heptadecane 0.092203 84.8571 -48.6706 12.2404 372.05 310.93 408.15 20.00 1033.65 0.655 0.075 0.060 136 4 0.910 2-methyl-2- butene 0.096076	triacontane 0.086183 81.9415 -53.8673 15.3258 -2.0531 373.15 573.15 573.15 573.15 500 500.00 0.973 0.124 0.099 47 11 0.621 (E)-1,4-hexadie 0.076611	HMTC ^c 0.090208 122.1435 -52.1931 -4.5813 298.15 298.15 353.15 39.23 196.13 0.057 0.007 0.000 20 0 0.284 (2Z,4E)-1 ne hexadie 0.075707	11-decyl- heneicosane 0.088556 84.9378 -46.0832 6.0890 372.04 310.93 408.15 40.00 340.00 0.302 0.036 0.022 31 1 0.260 2,4- ne 1,5-hexa	13-dodecyl- hexacosane 0.089487 90.1315 -46.9989 8.1517 372.04 310.93 408.15 20.00 340.00 0.226 0.027 0.029 30 4 0.193	tetracom 0.086751 66.5183 -41.386 9.0745 423.15 423.15 573.15 5.00 500.00 1.267 0.159 0.142 40 8 0.799 ene 1-h 421 0.13	2-i tane l 0.0.0 7 27 27 27 49 11 0.1 0.1 0.1 0.1 0.1 20.1 20.1 20.1 2	methyl-1,3- butadiene 099097 0.8813 3.15 3.15 3.15 3.15 0.03 76.80 568 064 041 906 1-octene 0.089528
$ \begin{array}{c} c_{0} \\ b_{0}/\text{MPa} \\ b_{1}/(\text{MPa}\cdot\text{K}^{-1}) \\ b_{2}/(\text{MPa}\cdot\text{K}^{-2}) \\ b_{3}/(\text{MPa}\cdot\text{K}^{-3}) \\ T_{0}/\text{K} \\ T_{min}/\text{K} \\ T_{max}/\text{K} \\ P_{min}/\text{MPa} \\ P_{max}/\text{MPa} \\ RMSD/(\text{kg}\cdot\text{m}^{-3}) \\ RMSD_{1}/\% \\ \text{bias}/(\text{kg}\cdot\text{m}^{-3}) \\ N_{p} \\ \pm \\ s_{w} \\ \hline \end{array} $	tetracosane 0.057048 54.7838 -31.0645 333.52 333.52 371.22 2.07 12.07 0.195 0.026 0.000 36 -12 0.258 1-pentene 0.080544 6.2555 -20.6345	9-octyl- heptadecane 0.092203 84.8571 -48.6706 12.2404 372.05 310.93 408.15 20.00 1033.65 0.655 0.075 0.060 136 4 0.910 2-methyl-2- butene 0.096076 51.9434	triacontane 0.086183 81.9415 -53.8673 15.3258 -2.0531 373.15 573.15 5.00 500.00 0.973 0.124 0.099 47 11 0.621 (E)-1,4-hexadie 0.076611 51.6052 -55.3701	HMTC ^c 0.090208 122.1435 -52.1931 -4.5813 298.15 298.15 298.15 39.23 196.13 0.057 0.007 0.000 20 0 0.284 (2Z,4E)-7 hexadie 0.075707 60.1053 -60.767'	11-decyl- heneicosane 0.088556 84.9378 -46.0832 6.0890 372.04 310.93 408.15 40.00 340.00 0.302 0.036 0.022 31 1 0.260 2,4- ne 1,5-hexa 7 0.084083 53.5627 7 -54.875	13-dodecyl- hexacosane 0.089487 90.1315 -46.9989 8.1517 372.04 310.93 408.15 20.00 340.00 0.226 0.027 0.029 30 4 0.193	tetracom 0.086751 66.5183 -41.386 9.0745 423.15 423.15 573.15 5.00 500.00 1.267 0.159 0.142 40 8 0.799 ene 1-h 421 0.13 64 117 730 -10	2	methyl-1,3- butadiene 099097 0.8813 3.15 3.15 3.15 3.15 3.15 76.80 568 064 041 906 1-octene 0.089528 67.6214 -39.3409
$ \begin{array}{c} c_{0} \\ b_{0}/MPa \\ b_{1}/(MPa \cdot K^{-1}) \\ b_{2}/(MPa \cdot K^{-2}) \\ b_{3}/(MPa \cdot K^{-3}) \\ T_{0}/K \\ T_{max}/K \\ P_{min}/MPa \\ P_{max}/MPa \\ RMSD/(kg \cdot m^{-3}) \\ RMSD_{1}/\% \\ bias/(kg \cdot m^{-3}) \\ N_{p} \\ \pm \\ s_{w} \end{array} $	tetracosane 0.057048 54.7838 -31.0645 333.52 371.22 2.07 12.07 0.195 0.026 0.000 36 -12 0.258 1-pentene 0.080544 6.2555 -20.6345 9.3081	9-octyl- heptadecane 0.092203 84.8571 -48.6706 12.2404 372.05 310.93 408.15 20.00 1033.65 0.655 0.075 0.060 136 4 0.910 2-methyl-2- butene 0.096076 51.9434	triacontane 0.086183 81.9415 -53.8673 15.3258 -2.0531 373.15 573.15 500 500.00 0.973 0.124 0.099 47 11 0.621 (E)-1,4-hexadie 0.076611 51.6052 -55.3701	HMTC ^c 0.090208 122.1435 -52.1931 -4.5813 298.15 298.15 39.23 196.13 0.057 0.007 0.000 20 0 0.284 (2Z,4E)-7 ne hexadie 0.075707 60.1053 -60.767	11-decyl- heneicosane 0.088556 84.9378 -46.0832 6.0890 372.04 310.93 408.15 40.00 340.00 0.302 0.036 0.022 31 1 0.260 2,4- ne 1,5-hexa 53.5627 7 -54.8753	13-dodecyl- hexacosane 0.089487 90.1315 -46.9989 8.1517 372.04 310.93 408.15 20.00 340.00 0.226 0.027 0.029 30 4 0.193 diene 1-hex 5 51.150 5 -49.5 14.477 -1.06	tetracom 0.086751 66.5183 -41.386 9.0745 423.15 423.15 573.15 5.00 500.00 1.267 0.159 0.142 40 8 0.799 ene 1-h 421 0.15 64 117 730 -10 25 87	2-i tane l 0.0.0 7 27 27 27 27 49 11 0.1 0.0 0.0 0.0 0.0 14 2 0.3 0.1 8 0.5 5.5210	methyl-1,3- butadiene 099097 0.8813 3.15 3.15 3.15 3.15 0.03 76.80 568 064 041 906 1-octene 0.089528 67.6214 -39.3409 1.7555 1 2891
$ \frac{c_0}{b_0/MPa} \\ \frac{b_0/MPa}{b_1/(MPa \cdot K^{-1})} \\ \frac{b_2/(MPa \cdot K^{-2})}{b_3/(MPa \cdot K^{-3})} \\ \frac{c_0}{T_0/K} \\ \frac{T_{min}/K}{T_{max}/K} \\ \frac{T_{min}/MPa}{P_{max}/MPa} \\ \frac{P_{max}/MPa}{RMSD/(kg \cdot m^{-3})} \\ \frac{RMSD_1}{W} \\ \frac{b_0/MPa}{b_{1/(MPa \cdot K^{-1})}} \\ \frac{b_0/MPa}{b_2/(MPa \cdot K^{-2})} \\ \frac{b_3/(MPa \cdot K^{-4})}{T_0/K} \\ \frac{T_0}{T_0/K} \\ \frac{b_0/MPa \cdot K^{-4}}{T_0/K} $	tetracosane 0.057048 54.7838 -31.0645 333.52 371.22 2.07 12.07 0.195 0.026 0.000 36 -12 0.258 1-pentene 0.080544 6.2555 -20.6345 9.3081	9-octyl- heptadecane 0.092203 84.8571 -48.6706 12.2404 372.05 310.93 408.15 20.00 1033.65 0.655 0.075 0.060 136 4 0.910 2-methyl-2- butene 0.096076 51.9434	triacontane 0.086183 81.9415 -53.8673 15.3258 -2.0531 373.15 573.15 573.15 573.15 500 500.00 0.973 0.124 0.099 47 11 0.621 (E)-1,4-hexadie 0.076611 51.6052 -55.3701	HMTC ^c 0.090208 122.1435 -52.1931 -4.5813 298.15 298.15 353.15 353.15 39.23 196.13 0.057 0.007 0.000 20 0 0.284 (2Z,4E)-7 60.1053 -60.767 200.15	11-decyl- heneicosane 0.088556 84.9378 -46.0832 6.0890 372.04 310.93 408.15 40.00 340.00 0.322 0.036 0.022 31 1 0.260 2,4- ne 1,5-hexa 53.5627 7 -54.875	13-dodecyl- hexacosane 0.089487 90.1315 -46.9989 8.1517 372.04 310.93 408.15 20.00 340.00 0.226 0.029 30 4 0.193 diene 1-hex 30.085 51.15 5 -49.5 5 -49.5 5 -49.5 5 -49.5 5 -49.5 5 -60.27 0.029	tetracom 0.086751 66.5183 -41.386 9.0745 423.15 573.15 500 500.00 1.267 0.159 0.142 40 8 0.799 ene 1-h 421 0.15 64 117 730 -10 25 87 93 0.000 93 0.000 0.1267 0.159 0.142 0.799 0.142 0.799 0.142 0.799 0.142 0.799 0.142 0.799 0.142 0.799 0.142 0.799 0.142 0.799 0.142 0.799 0.142 0.799 0.142 0.799 0.142 0.799 0.142 0.799 0.142 0.799 0.142 0.799 0.142 0.799 0.142 0.799 0.142 0.799 0.167 0.159 0.167 0.167 0.179 0.142 0.799 0.142 0.799 0.142 0.159 0.167 0.167 0.179 0.167 0.179 0.142 0.799 0.167 0.159 0.167 0.179 0.167 0.179 0.142 0.159 0.142 0.799 0.142 0.159 0.167 0.159 0.142 0.159 0.142 0.799 0.167 0.159 0.167 0.159 0.142 0.159 0.167 0.159 0.142 0.159 0.142 0.159 0.142 0.159 0.142 0.159 0.142 0.159 0.142 0.159 0.142 0.159 0.142 0.159 0.159 0.142 0.159 0.159 0.167 0.159 0.167 0.159 0.167 0.159 0.167 0.159 0.159 0.167 0.159 0.167 0.159 0.167 0.159 0.167 0.159 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.167 0.170 0.167	2-i tane l 0.0.0 7 27 27 27 49 11 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	methyl-1,3- butadiene 099097 .8813 3.15 3.15 3.15 .03 76.80 568 064 041 906 1-octene 0.089528 67.6214 -39.3409 1.7555 1.2891
$\begin{array}{c} c_{0} \\ b_{0}/\text{MPa} \\ b_{1}/(\text{MPa}\cdot\text{K}^{-1}) \\ b_{2}/(\text{MPa}\cdot\text{K}^{-2}) \\ b_{3}/(\text{MPa}\cdot\text{K}^{-3}) \\ T_{0}/\text{K} \\ T_{max}/\text{K} \\ T_{max}/\text{K} \\ P_{ma}/\text{MPa} \\ RMSD/(\text{kg}\cdot\text{m}^{-3}) \\ RMSD_{1}/\% \\ \text{bias}/(\text{kg}\cdot\text{m}^{-3}) \\ N_{p} \\ \pm \\ s_{w} \\ \hline \end{array}$	tetracosane 0.057048 54.7838 -31.0645 333.52 333.52 371.22 2.07 12.07 0.195 0.026 0.000 36 -12 0.258 1-pentene 0.080544 6.2555 -20.6345 9.3081 398.15 353.15	9-octyl- heptadecane 0.092203 84.8571 -48.6706 12.2404 372.05 310.93 408.15 20.00 1033.65 0.655 0.075 0.060 136 4 0.910 2-methyl-2- butene 0.096076 51.9434	triacontane 0.086183 81.9415 -53.8673 15.3258 -2.0531 373.15 573.15 5.00 500.00 0.973 0.124 0.099 47 11 0.621 (E)-1,4-hexadie 0.076611 51.6052 -55.3701	HMTC ^c 0.090208 122.1435 -52.1931 -4.5813 298.15 298.15 298.15 39.23 196.13 0.057 0.007 0.000 20 0 0.284 (2Z,4E)-7 ne hexadie 0.075707 60.1053 -60.767 293.15 293.15	11-decyl- heneicosane 0.088556 84.9378 -46.0832 6.0890 372.04 310.93 408.15 40.00 340.00 0.302 0.036 0.022 31 1 0.260 2,4- ne 1,5-hexa 7 -54.875 293.15 293.15	13-dodecyl- hexacosane 0.089487 90.1315 -46.9989 8.1517 372.04 310.93 408.15 20.00 340.00 0.226 0.027 0.029 30 4 0.193 diene 1-hex 5 5 -49.5 14.477 -1.06 -0.27 298.1 146.00	$\begin{array}{c} \text{tetracon}\\ \hline 0.086751\\ 66.5183\\ -41.386\\ 9.0745\\ 423.15\\ 423.15\\ 573.15\\ 5.00\\ 500.00\\ 1.267\\ 0.159\\ 0.142\\ 40\\ 8\\ 0.799\\ \hline \begin{array}{c} \text{ene} 1\text{-h}\\ 421 0.13\\ 64 117\\ 730 -10\\ 25\\ 87\\ 93\\ 5 293\\ 0 293\\ \end{array}$	2-i tane l 0.0.0 7 27 27 27 27 49 11 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	methyl-1,3- butadiene 099097 0.8813 3.15 3.15 3.15 3.15 0.03 76.80 568 064 041 906 1-octene 0.089528 67.6214 -39.3409 1.7555 1.2891 298.15 290.15
$ \frac{c_0}{b_0/MPa} \\ \frac{b_0/MPa}{b_1/(MPa \cdot K^{-1})} \\ \frac{b_2/(MPa \cdot K^{-2})}{b_3/(MPa \cdot K^{-3})} \\ \frac{T_{min}/K}{T_{max}/K} \\ \frac{T_{min}/MPa}{P_{max}/MPa} \\ \frac{RMSD}{kg \cdot m^{-3}} \\ \frac{RMSD}{kg \cdot m^{-3}} \\ \frac{K}{b_0/MPa} \\ \frac{L}{b_0/MPa \cdot K^{-1}} \\ \frac{L}{b_3/(MPa \cdot K^{-1})} \\ \frac{L}{b_3/(MPa \cdot K^{-3})} \\ \frac{L}{b_0/MPa \cdot K^{-3}} \\ \frac$	tetracosane 0.057048 54.7838 -31.0645 333.52 371.22 2.07 12.07 0.195 0.026 0.000 36 -12 0.258 1-pentene 0.080544 6.2555 -20.6345 9.3081 398.15 353.15 448.15 0.57	9-octyl- heptadecane 0.092203 84.8571 -48.6706 12.2404 372.05 310.93 408.15 20.00 1033.65 0.655 0.075 0.060 136 4 0.910 2-methyl-2- butene 0.096076 51.9434 298.15 298.15 298.15 298.15 298.15	triacontane 0.086183 81.9415 -53.8673 15.3258 -2.0531 373.15 573.15 500 500.00 0.973 0.124 0.099 47 11 0.621 (E)-1,4-hexadie 0.076611 51.6052 -55.3701 293.15 293.15 298.15 1.00	HMTC ^c 0.090208 122.1435 -52.1931 -4.5813 298.15 298.15 298.15 39.23 196.13 0.057 0.007 0.000 20 0 0.284 (2Z,4E)-3 ne hexadie 0.075707 60.1053 -60.767 293.15 298.15 100	11-decyl- heneicosane 0.088556 84.9378 -46.0832 6.0890 372.04 310.93 408.15 40.00 340.00 0.302 0.036 0.022 31 1 0.260 2,4- ne 1,5-hexa 7 -54.875 293.15 293.15 298.15 1 00	13-dodecyl- hexacosane 0.089487 90.1315 -46.9989 8.1517 372.04 310.93 408.15 20.00 340.00 0.226 0.027 0.029 30 4 0.193 diene 1-hex 5 5.155 5 -49.5 14.477 -1.06 -0.27 298.1 146.00 81	$\begin{array}{c} \text{tetracon}\\ 0.086751\\ 66.5183\\ -41.386\\ 9.0745\\ 423.15\\ 573.15\\ 5.00\\ 500.00\\ 1.267\\ 0.159\\ 0.142\\ 40\\ 8\\ 0.799\\ \hline \end{array}$ ene 1-h 421 0.13 64 117 730 -10 25 87 93 5 293 0 293 5 353 5 00	2-i tane l 0.0.0 7 27 27 27 49 11 0.1 0.0 0.0 0.0 14 2 0.3 6085 .6648 05.5210	methyl-1,3- butadiene 099097 0.8813 3.15 3.15 3.15 3.15 0.03 76.80 568 064 041 906 1-octene 0.089528 67.6214 -39.3409 1.7555 1.2891 298.15 290.15 538.95 5.00
$ \frac{c_0}{b_0/MPa} \\ \frac{b_0/MPa}{b_1/(MPa \cdot K^{-1})} \\ \frac{b_2/(MPa \cdot K^{-2})}{b_2/(MPa \cdot K^{-2})} \\ \frac{b_2/(MPa \cdot K^{-2})}{b_3/(MPa} \\ \frac{b_0/MPa}{MMSD/(kg \cdot m^{-3})} \\ \frac{b_0/MPa}{MSD/1\%} \\ \frac{b_0/MPa}{b_1/(MPa \cdot K^{-1})} \\ \frac{b_0/(MPa \cdot K^{-2})}{b_3/(MPa \cdot K^{-2})} \\ \frac{b_3/(MPa \cdot K^{-3})}{b_4/(MPa \cdot K^{-4})} \\ \frac{T_{min}/K}{T_{max}/K} \\ \frac{T_{max}/MPa}{P_{max}/MPa} \\ \frac{b_0/MPa}{P_{max}/MPa} \\ \frac{b_0/(b_1 - max)}{MPa} \\ \frac{b_0/(b_1 - max)}{DMSD/b_1/b_2} \\ \frac{b_0/(b_1 - max)}{DM$	tetracosane 0.057048 54.7838 -31.0645 333.52 333.52 371.22 2.07 12.07 0.195 0.026 0.000 36 -12 0.258 1-pentene 0.080544 6.2555 -20.6345 9.3081 398.15 353.15 448.15 0.57 31.60	9-octyl- heptadecane 0.092203 84.8571 -48.6706 12.2404 372.05 310.93 408.15 20.00 1033.65 0.655 0.075 0.060 136 4 0.910 2-methyl-2- butene 0.096076 51.9434 298.15 200 200 200 200 200 200 200 200 200 20	triacontane 0.086183 81.9415 -53.8673 15.3258 -2.0531 373.15 573.15 573.15 573.15 500 500.00 0.973 0.124 0.099 47 11 0.621 (E)-1,4-hexadie 0.076611 51.6052 -55.3701 293.15 293.15 293.15 293.15 293.15 293.15	$\begin{array}{r} \text{HMTC}^c \\ \hline 0.090208 \\ 122.1435 \\ -52.1931 \\ -4.5813 \\ \hline 298.15 \\ 298.15 \\ 353.15 \\ 39.23 \\ 196.13 \\ 0.057 \\ 0.007 \\ 0.000 \\ 20 \\ 0 \\ 0.284 \\ \hline (2Z,4E)^2 \\ \text{ne} \text{hexadie} \\ \hline 0.075707 \\ 60.1053 \\ -60.767 \\ \hline 293.15 \\ 293.15 \\ 293.15 \\ 298.15 \\ 1.00 \\ 5.00 \\ 0.002 \\ \end{array}$	11-decyl- heneicosane 0.088556 84.9378 -46.0832 6.0890 372.04 310.93 408.15 40.00 0.302 0.036 0.022 31 1 0.260 2,4- ne 1,5-hexa 7 0.084083 53.5627 7 -54.875 293.15 293.15 293.15 293.15 293.15	13-dodecyl- hexacosane 0.089487 90.1315 -46.9989 8.1517 372.04 310.93 408.15 20.00 340.00 0.226 0.027 0.029 30 4 0.193 diene 1-hex 5 5 14.477 -1.06 -0.27 298.1 146.00 473.1 0.81 68.75 1.077	$\begin{array}{c} \text{tetracon}\\ \hline 0.086751\\ 66.5183\\ -41.386\\ 9.0745\\ 423.15\\ 423.15\\ 573.15\\ 573.15\\ 5.00\\ 500.00\\ 1.267\\ 0.159\\ 0.142\\ 40\\ 8\\ 0.799\\ \hline \begin{array}{c}\\ \text{ene} & 1\text{-h}\\ 421 & 0.15\\ 64\\ 117\\ 730\\ -10\\ 25\\ 87\\ 93\\ 5\\ 293\\ 5\\ 353\\ 5\\ 5\\ 293\\ 5\\ 5\\ 5\\ 293\\ 5\\ 5\\ 353\\ 5\\ 5\\ 0\\ 203\\ 1\\ 1\\ 7\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\$	2-i tane l 0.0.0 7 27 27 27 49 11 0.1 0.0 0.0 0.0 14 2 0.3 0.0 0.0 0.0 14 2 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	methyl-1,3- butadiene 099097 0.8813 3.15 3.15 3.15 0.03 76.80 568 064 041 906 1-octene 0.089528 67.6214 -39.3409 1.7555 1.2891 298.15 290.15 538.95 5.00 312.70 1.227
$ \frac{c_0}{b_0/MPa} \\ \frac{b_0/MPa}{b_1/(MPa \cdot K^{-1})} \\ \frac{b_2/(MPa \cdot K^{-2})}{b_2/(MPa \cdot K^{-3})} \\ \frac{c_0}{T_0/K} \\ \frac{T_{min}/K}{T_{max}/K} \\ \frac{T_{min}/MPa}{P_{max}/MPa} \\ \frac{P_{max}/MPa}{RMSD/(kg \cdot m^{-3})} \\ \frac{MSD}{N_p} \\ \frac{\pm}{S_W} \\ \frac{c_0}{b_0/MPa} \\ \frac{b_1/(MPa \cdot K^{-1})}{b_2/(MPa \cdot K^{-2})} \\ \frac{b_2/(MPa \cdot K^{-2})}{b_3/(MPa \cdot K^{-3})} \\ \frac{b_1/(MPa \cdot K^{-3})}{b_4/(MPa \cdot K^{-4})} \\ \frac{T_0/K}{T_{max}/K} \\ \frac{T_{min}/MPa}{P_{max}/MPa} \\ \frac{P_{max}/MPa}{RMSD/(kg \cdot m^{-3})} \\ RMSD/(kg \cdot m^{-3}) \\ RMSD/(kg \cdot m^{-3}) \\ RMSD/(\% - 3) \\ \frac{RMSD}{N_0} \\ \frac{T_0}{N_0} \\ T_$	tetracosane 0.057048 54.7838 -31.0645 333.52 333.52 371.22 2.07 12.07 0.195 0.026 0.000 36 -12 0.258 1-pentene 0.080544 6.2555 -20.6345 9.3081 398.15 353.15 448.15 0.57 31.60 0.453 0.090	9-octyl- heptadecane 0.092203 84.8571 -48.6706 12.2404 372.05 310.93 408.15 20.00 1033.65 0.655 0.075 0.060 136 4 0.910 2-methyl-2- butene 0.096076 51.9434 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 20.03 49.03 0.205 0.205 0.027	triacontane 0.086183 81.9415 -53.8673 15.3258 -2.0531 373.15 573.15 573.15 573.15 500 500.00 0.973 0.124 0.099 47 11 0.621 (E)-1,4-hexadie 0.076611 51.6052 -55.3701 293.15 293	$\begin{array}{r c c c c c c c c c c c c c c c c c c c$	11-decyl- heneicosane 0.088556 84,9378 -46.0832 6.0890 372.04 310.93 408.15 40.00 340.00 0.302 0.036 0.022 31 1 0.260 2,4- ne 1,5-hexa 7 -54.875 293.15 293.15 298.15 1.00 5.00 0.001 0.000	13-dodecyl- hexacosane 0.089487 90.1315 -46.9989 8.1517 372.04 310.93 408.15 20.00 340.00 0.226 0.027 0.029 30 4 0.193 diene 1-hex 3 0.085 5 11.55 -49.5 14.477 -1.06 -0.27 298.11 146.00 473.15 0.81 68.75 1.017 0.159	$\begin{array}{c} \text{tetracon}\\ \hline 0.086751\\ 66.5183\\ -41.386\\ 9.0745\\ 423.15\\ 423.15\\ 573.15\\ 573.15\\ 5.00\\ 500.00\\ 1.267\\ 0.159\\ 0.142\\ 40\\ 8\\ 0.799\\ \hline \begin{array}{c} \text{ene} 1\text{-h}\\ 421 0.13\\ 64 117\\ 730 -10\\ 25\\ 87\\ 93\\ 5 293\\ 5 353\\ 5 0.0\\ 50.0\\ 50.0\\ 1.16\\ 0.16\\ 0.16\\ 0.16\\ \hline \end{array}$	2-i tane l 0.0.0 7 27 27 27 27 49 11 0.1 0.0 0.0 0.1 14 2 0.3 0.1 5.5210 5.5210 5.15 .15 .15 .15 .15 .15 .15 .15 .15 .1	methyl-1,3- butadiene 099097 0.8813 3.15 3.15 3.15 3.15 0.03 76.80 568 064 041 906 1-octene 0.089528 67.6214 -39.3409 1.7555 1.2891 298.15 290.15 538.95 5.00 312.70 1.337 0.205
$ \frac{C_0}{b_0/MPa} \\ \frac{b_0/MPa}{b_1/(MPa \cdot K^{-1})} \\ \frac{b_2/(MPa \cdot K^{-2})}{b_3/(MPa \cdot K^{-3})} \\ \frac{T_0/K}{T_0/K} \\ \frac{T_{min}/K}{T_{max}/K} \\ \frac{T_{min}/MPa}{P_{max}/MPa} \\ \frac{RMSD}{kg \cdot m^{-3}} \\ \frac{RMSD}{kg \cdot m^{-3}} \\ \frac{K}{kg $	tetracosane 0.057048 54.7838 -31.0645 333.52 371.22 2.07 12.07 0.195 0.026 0.000 36 -12 0.258 1-pentene 0.080544 6.2555 -20.6345 9.3081 398.15 353.15 448.15 0.57 31.60 0.453 0.090 -0.056 50	9-octyl- heptadecane 0.092203 84.8571 -48.6706 12.2404 372.05 310.93 408.15 20.00 1033.65 0.655 0.075 0.060 136 4 0.910 2-methyl-2- butene 0.096076 51.9434 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 298.15 2003 2005 0.027 0.014 10	triacontane 0.086183 81.9415 -53.8673 15.3258 -2.0531 373.15 573.15 5.00 500.00 0.973 0.124 0.099 47 11 0.621 (E)-1,4-hexadie 0.076611 51.6052 -55.3701 293.15 293.15 293.15 293.15 293.15 1.00 5.00 0.002 0.000 10	$\begin{array}{r} \text{HMTC}^c \\ \hline 0.090208 \\ 122.1435 \\ -52.1931 \\ -4.5813 \\ \hline 298.15 \\ 298.15 \\ 39.23 \\ 196.13 \\ 0.057 \\ 0.007 \\ 0.000 \\ 20 \\ 0 \\ 0.284 \\ \hline (2Z,4E)^2 \\ \text{ne} \text{hexadie} \\ \hline 0.075707 \\ 60.1053 \\ -60.767 \\ \hline 293.15 \\ 293.15 \\ 298.15 \\ 1.00 \\ 5.00 \\ 0.002 \\ 0.000 \\ 0.000 \\ 10 \\ \end{array}$	11-decyl- heneicosane 0.088556 84.9378 -46.0832 6.0890 372.04 310.93 408.15 40.00 340.00 0.302 0.036 0.022 31 1 0.260 2,4- ne 1,5-hexa 293.15 293.15 293.15 293.15 293.15 293.15 293.15 293.15 293.15 293.15	13-dodecyl- hexacosane 0.089487 90.1315 -46.9989 8.1517 372.04 310.93 408.15 20.00 340.00 0.226 0.027 0.029 30 4 0.193 diene 1-hex 5 5.155 5 -49.5 14.477 -1.06 -0.27 298.1 146.00 473.1 0.81 68.75 1.017 0.159 -0.24 418	$\begin{array}{c} \text{tetracon}\\ \hline 0.086751\\ 66.5183\\ -41.386\\ 9.0745\\ 423.15\\ 573.15\\ 5.00\\ 500.00\\ 1.267\\ 0.159\\ 0.142\\ 40\\ 8\\ 0.799\\ \hline \end{array}$	2-itane 1 1 0.0 807 27 27 49 11 0.1 0.0 0.0 0.0 14 2 0.3 6085 .6648 05.5210 3.15 .15 .15 .15 .15 .15 .15 .15	methyl-1,3- butadiene 099097 0.8813 3.15 3.15 3.15 3.15 0.03 76.80 568 064 041 906 1-octene 0.089528 67.6214 -39.3409 1.7555 1.2891 298.15 290.15 538.95 5.00 312.70 1.337 0.205 0.321 100
$ \begin{array}{c} c_{0} \\ b_{0}/MPa \\ b_{1}/(MPa \cdot K^{-1}) \\ b_{2}/(MPa \cdot K^{-2}) \\ b_{3}/(MPa \cdot K^{-3}) \\ T_{0}/K \\ T_{min}/K \\ T_{max}/K \\ P_{min}/MPa \\ P_{max}/MPa \\ RMSD/(kg \cdot m^{-3}) \\ RMSD_{1}/\% \\ bias/(kg \cdot m^{-3}) \\ N_{p} \\ \pm \\ s_{w} \\ \end{array} $	tetracosane 0.057048 54.7838 -31.0645 333.52 371.22 2.07 12.07 0.195 0.026 0.000 36 -12 0.258 1-pentene 0.080544 6.2555 -20.6345 9.3081 398.15 353.15 448.15 0.57 31.60 0.453 0.090 -0.056 50 -20 1.066	9-octyl- heptadecane 0.092203 84.8571 -48.6706 12.2404 372.05 310.93 408.15 20.00 1033.65 0.655 0.075 0.060 136 4 0.910 2-methyl-2- butene 0.096076 51.9434 298.15 200 200 200 200 200 200 200 200 200 20	triacontane 0.086183 81.9415 -53.8673 15.3258 -2.0531 373.15 573.15 573.15 500 500.00 0.973 0.124 0.099 47 11 0.621 (E)-1,4-hexadie 0.076611 51.6052 -55.3701 293.15 293.15 293.15 293.15 293.15 293.15 203.6 100 2002 0.000 0.000 10 20036	HMTC ^c 0.090208 122.1435 -52.1931 -4.5813 298.15 298.15 353.15 39.23 196.13 0.057 0.007 0.000 20 0 0.284 (2Z,4E)-1 ne hexadie 0.075707 60.1053 -60.767 293.15 293.15 298.15 1.00 5.00 0.002 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002 0.002 0.000 0.002 0.002 0.000 0.002 0.002 0.000 0.002 0.002 0.000 0.002 0.002 0.000 0.002 0.002 0.000 0.002 0.002 0.000 0.002 0.002 0.002 0.002 0.002 0.002 0.000 0.002 0.0	11-decyl- heneicosane 0.088556 84.9378 -46.0832 6.0890 372.04 310.93 408.15 40.00 340.00 0.302 0.036 0.022 31 1 0.260 2,4- ne 1,5-hexa 7 0.084083 53.5627 7 -54.875 293.15	13-dodecyl- hexacosane 0.089487 90.1315 -46.9989 8.1517 372.04 310.93 408.15 20.00 340.00 0.226 0.027 0.029 30 4 0.193 diene 1-hex 5 5.1.156	$\begin{array}{c} \text{tetracon}\\ \hline 0.086751\\ 66.5183\\ -41.386\\ 9.0745\\ 423.15\\ 423.15\\ 573.15\\ 573.15\\ 5.00\\ 500.00\\ 1.267\\ 0.159\\ 0.142\\ 40\\ 8\\ 0.799\\ \hline \begin{array}{c} \text{ene} 1\text{-h}\\ 421 0.15\\ 64 117\\ 730 -10\\ 25\\ 87\\ 93\\ 5 293\\ 5 293\\ 5 353\\ 5 0.0\\ 50.0\\ 1.16\\ 6 -0.\\ 23\\ -7\\ 1.96\\ \end{array}$	2-i tane l 0.0.0 7 27 27 27 27 49 11 0.1 0.1 0.1 0.1 0.1 0.1 0.1	methyl-1,3- butadiene 099097 0.8813 3.15 3.15 3.15 3.15 0.03 76.80 568 064 041 9006 1-octene 0.089528 67.6214 -39.3409 1.7555 1.2891 298.15 290.15 538.95 5.00 312.70 1.337 0.205 0.321 100 14 1.659

Table 3. Continued

	1 nonono	umted	avalanantan	methy	/l-	avalahavana	avalahavana d	methyl-
<u>(</u> 0	0 177574	0.091245	0.088558	0.088010		0.085159	0.079666	0.086999
b_0 /MPa	381.1410	139.3681	67.5860	55.0075	,	60.3130	70.2463	80.3279
$b_1/(MPa\cdot K^{-1})$ $b_2/(MPa\cdot K^{-2})$	-215.6507	-59.0280	-61.0179	-50.074	1	-53.8926	-65.3112 -39.6447	-63.5774
$b_{3}/(MPa\cdot K^{-3})$	30.9232		-5.3135	-0.2112		-3.8318	-33.0447	-1.9196
$b_4/(MPa\cdot K^{-4})$	109.00	202.15	4.4400	222.20		0.5957	200 15	909 15
$T_{0/\mathbf{K}}$ T_{min}/\mathbf{K}	198.00	298.15	192.79	293.15		286.80	288.15	203.00
$T_{\rm max}/{ m K}$	398.00 10.00	353.15 39.23	353.15 0.12	348.20 2 00		523.15 0.57	313.15 2 50	523.15 0 35
$P_{\text{max}}/\text{MPa}$	50.00	196.13	196.13	196.20		250.00	35.00	500.00
RMSD/(kg·m ⁻³) RMSD _r /%	0.694 0.092	0.098	0.405 0.050	0.484 0.063		0.654 0.087	0.022	0.418 0.053
bias/(kg·m ⁻³)	-0.018	0.002	0.052	-0.173		0.024	-0.001	0.020
\pm	0	4	22	-12		-46	-3	16
$s_{\rm w} m ref(P_{sat})$	0.923	0.982	0.862 83-mcg	0.841 83-mcg		0.966 83-mcg	0.945	0.905 83-mcg
		ethylcy-	1- <i>cis</i> -2-dim	ethyl-				
	cycloheptane	clohexane	cyclooct	ane cycle	ooctane	trans-bicycl	o[4.4.0]decane	butylcyclohexane
b_0/MPa	$0.090935 \\ 103.3619$	$0.110464 \\ 127.7228$	$0.217447 \\ 154.2895$	0.08 98.4	6604 214	$0.092138 \\ 125.1795$		0.100791 113.3482
$b_1/(MPa\cdot K^{-1})$	-62.9119	-116.7650	-72.7266	-63	.1555	-56.0076		
$b_3/(MPa\cdot K^{-3})$	4.2338	-27.1569		9.00	09	-8.3097		
<i>b</i> ₄/(MPa∙K ⁻⁴) <i>T</i> ₀/K	293.65	4.6173 293.15	325.20	313.	65	298.15		293.15
T_{\min}/K	293.65	293.15	325.20	313.	65	298.15		293.15
$P_{\rm min}/{\rm MPa}$	5.10	0.40	0.40	5.10	00	39.23		2.00
P _{max} /MPa RMSD/(kg·m ⁻³)	196.13 0.330	50.00 0.842	9.70 0.625	40.1 0.21	0 1	196.13 0.019		10.00 0.003
RMSD _r /%	0.041	0.117	0.082	0.02	6	0.002		0.000
$N_{\rm p}$	102	93	-0.043 21	-0.0 75	103	20		5
± Sw	40 0.946	9 0.987	-2 0.041	$-3 \\ 0.83$	3	2 0.898		1 0.129
$ref(P_{sat})$		79-dyk/rep	83-mcg	84-b	ou/fri			
	hiovolohovul	octadeo	ahydro-		1-	(1-decahydro-	no CPPD/	CUUI
6	0 132677	0.0846	75	0.090467	0.087	100	0.09267	2 0.092218
b_0/MPa	204.0178	117.22	89	88.6294	84.83	48	103.126	4 88.5456
$b_1/(MPa\cdot K^{-1})$ $b_2/(MPa\cdot K^{-2})$	-89.8586	-58.90 7.4154	60	-44.092617.6652	-46.9	55	-54.092 14.6027	7.6328
T_0/K T_{min}/K	298.20 298.20	388.15 310 93		408.15 310.95	408.1	5 5	372.05 310.95	408.15 310.95
$T_{\rm max}/{\rm K}$	338.20	408.15		408.15	408.1	5	408.15	408.15
P _{min} /MPa P _{max} /MPa	0.69 34.48	20.00 340.00		34.46 1033.65	34.46 585.7	4	34.46 1033.65	34.46 895.83
RMSD/(kg·m ⁻³)	0.199	0.359		0.741	0.445		1.209	0.869
bias/(kg·m ⁻³)	-0.039	-0.025		0.052	0.025		0.070	0.067
$\frac{N_{\rm p}}{\pm}$	$\frac{21}{-3}$	$48 \\ -6$		-113 -11	49 11		149	103 11
$S_{ m W}$	0.993	0.257		0.553	0.352		0.914	0.664
	9-(2-cyclohexyl ethyl)heptadeca	l- 9-(3-c ne propyl)]	yclopentyl- heptadecane	DHNU ^h	1.3-cvc	lohexadiene	1.4-cvclohexadie	ene cvclohexene
<i>C</i> ₀	0.089788	0.09210	00	0.081991	0.0681	86	0.088429	0.053518
b_0/MPa $b_1/(MPa\cdot K^{-1})$	74.5186 -44.2218	94.3384 -51.20	1 70	$100.3959 \\ -43.0062$	69.630 -63.76	6 68	101.2434 	53.7914 - 52.3852
$b_2/(\text{MPa}\cdot\text{K}^{-2})$	11.8896	070.07		21.8428	00.70		121.0700	16.0062
T_{0}/K T_{min}/K	408.15 310.95	372.05 310.95		388.15 310.93	295.00 293.15		293.15	293.15 293.15
T_{max}/K	408.15 34 46	408.15		408.15	298.15		298.15 1.00	353.15
$P_{\text{max}}/\text{MPa}$	1033.65	1033.65	i	300.00	5.00		5.00	250.00
кмSD/(kg·m ⁻³) RMSD _r /%	0.501 0.054	$0.563 \\ 0.062$		0.589 0.062	$0.002 \\ 0.000$		0.002	2.480 0.298
bias/(kg·m ⁻³)	0.028	0.048		0.094	0.000		0.000	-1.117
1 $^{\mathbf{v}\mathbf{p}}$ \pm	0	-17		33 7	0		0	-30
S_{W}	0.390	0.447		0.447	0.030		0.026	1.367

^{*a*} The low limit of the pressure ranges is 0.1 MPa or a saturation pressure (whichever is higher) for all fits; P_{min} is the lowest pressure in a particular set of compressed liquid density data retained for the correlation. ^{*b*} Narrow temperature range fit. ^{*c*} HMTC = 2,6,10,15,19,23-hexamethyltetracosane. ^{*d*} HMTE = 2,6,10,15,19,23-hexamethyl-2,6,10,14,18,22-tetracosahexaene. ^{*e*} DPPH = 1,7-dicyclopentyl-4-(3-cyclopentylpropyl) heptane. ^{*f*} CPPD = 1-cyclopentyl-4-(3-cyclopentylpropyl)dodecane. ^{*g*} CHHU = 1-cyclohexyl-3-(2-cyclohexylethyl)undecane. ^{*h*} DHNU = 1,1-bis(decahydro-1-naphthyl)undecane.

Table 4. Statistical Characteristics of Individual Data Sets for the Fits in Table 3: Temperature and Pressure Ranges Taken into the Correlations, T_{min} , T_{Max} , P_{min} , and P_{Max} , Absolute, RMSD, and Relative, RMSD_r, Root Mean Square Deviations, Biases, bias, Number of Data Points, N_{p} , \pm , and Origin of the Reference Density Values Used in the Correlations, RD^a

ref	T_{\min}/K	$T_{\text{max}}/\mathbf{K}$	P_{\min}/MPa	P _{max} /MPa	RMSD/kg•m ^{−3}	RMSD _r /%	bias/kg·m ⁻³	$N_{ m p}$	±	$\mathbf{R}\mathbf{D}^{a}$
				2-M	ethylbutane					
31-bri					4.819	0.579	3.560	9	9	0
54-isa/li	0 0									
69-mop	223.15	298.15	10.2	202.8	0.382	0.054	0.011	37	1	0
71-hou/hey					5.155	0.599	-4.962	15	-15	0
74-hou	295.15	295.15	200.0	2400.0	0.675	0.077	-0.571	12	-10	0
76-sah/gag	293.15	293.15	1.0	7.0	0.015	0.002	-0.002	7	-1	0
92-wal/bar					4.861	0.400	-4.914	88	-86	0
				2,2-Di	methylpropane					
68-gon/lee					6.122	1.041	2.508	12	6	р
73-daw/sil	343.15	393.15	0.6	31.6	0.322	0.064	0.100	61	25	р
73-koh/luk	298.15	298.15	0.3	6.9	0.022	0.004	0.009	38	6	0
75-luk/dav	298.15	298.15	0.3	6.6	0.011	0.002	-0.008	49	-33	0
				2-Me	ethylpentane					
31-bri	273.15	368.15	196.2	1176.9	4.994	0.587	-0.174	26	4	0
40-kel/fel	373.15	473.15	0.6	31.6	0.912	0.198	-0.015	37	1	р
76-sah/gag	293.15	298.15	1.0	7.0	0.041	0.006	0.031	14	10	0
88-mor/aon	298.15	313.15	1.8	135.8	0.189	0.028	-0.020	64	-4	0
				3-Me	ethylpentane					
31-bri					5.892	0.827	5.785	5	5	0
52-day/fel	353.15	473.15	0.6	31.6	0.656	0.127	0.109	63	11	р
76-sah/gag	293.15	298.15	1.0	7.0	0.102	0.015	-0.089	14	-14	0
88-mor/aon	298.15	313.15	2.5	145.4	0.156	0.022	-0.001	63	-5	0
				2,2-Di	imethylbutane					
31-bri					71.770	10.155	-55.372	11	-11	0
43-fel/wat	373.15	473.15	1.0	30.4	0.740	0.144	-0.098	66	-16	р
76-sah/gag	293.15	298.15	1.0	7.0	0.088	0.014	0.066	14	12	0
88-mor/aon	298.15	313.15	1.5	124.3	0.271	0.039	-0.048	58	0	0
90-pol/wei	243.70	313.20	5.0	200.0	0.393	0.052	0.070	72	24	0
				2,3-Di	imethylbutane					
31-bri					4.188	0.579	3.704	5	5	0
42-kel/fel	373.15	473.15	0.6	31.6	0.651	0.114	0.010	37	1	0
76-sah/gag	293.15	298.15	1.0	7.0	0.159	0.024	-0.145	14	-14	0
87-hol/goe	293.15	293.15	2.0	10.0	0.041	0.006	0.017	5	1	0
88-mor/aon	298.15	313.15	1.6	36.8	0.265	0.040	-0.013	22	-4	0
90-rie/sch	000 10	000 15	0.0	100.0	4.266	0.608	-0.976	140	-40	0
93-Da0/cac	208.10	298.15	0.2	100.3	0.478	0.068	-0.220	202	-88	0
			2,3-Dime	thylbutane (N	arrow Temperatur	e Range Fit)		_	_	
31-bri								0	0	
42-kel/fel	000 15	000 15	1.0	~ 0	0.105	0.010	0.100	0	0	
76-san/gag	293.15	298.15	1.0	7.0	0.125	0.019	-0.108	14	-14	0
87-1101/gue	293.13	293.13	2.0	10.0	0.012	0.002	0.009	61 61	_0	0
90-rie/sch	290.15	313.15	1.0	139.3	4 831	0.030	-4 561	26	-26	0
93-bao/cac					2.481	0.349	-2.047	51	-49	0
oo badi dad				0.5		01010		01	10	U
70 1	909 15	959 15	20.9	3-E	thylpentane	0.017	0.000	90	0	
/U-KUS/tas	298.15	353.15	39.2	196.1	0.128	0.017	0.000	20	0	0
				2,2-Di	methylpentane					
76-sah/gag	293.15	298.15	1.0	7.0	0.005	0.001	0.001	14	2	0
				2,2,3-T	rimethylbutane					
70-kus/tas	298.15	353.15	39.2	156.9	0.082	0.011	-0.001	11	1	0
				994.Tr	vimethylpentane					
32-hri	273 15	323 15	392.3	882.6	1 290	0 145	0 471	8	2	0
43-fel/wat-1	373.15	523.15	0.5	30.4	0.714	0.134	0.218	69	31	n
85-dvm/isd	298.19	372.95	25.4	539.8	0.552	0.070	0.139	43	11	Р 0
86-hol/goe	293.15	293.15	2.0	10.0	0.014	0.002	0.010	5	5	0
87-led					3.426	0.438	2.884	70	70	0
90-mal/woo	278.15	313.15	2.5	280.0	0.236	0.031	-0.112	92	-56	0
90-mal/woo					1.220	0.163	-1.130	46	-46	0
90-pol/wei	273.15	348.15	5.0	200.0	0.683	0.087	-0.303	48	-14	0
91-pap/zia					0.918	0.130	-0.823	9	-9	0
92-naz/gas	010 17	050 15	0.0	074.0	7.699	1.313	-3.564	0	-60	ор
93-mal/w00	313.15 200.15	333.15 240.15	2.6	3/4.3	0.584	0.076	-0.160	89 20	-19	0
96-hah/ulo	290.13 202 15	340.13 202 15	10.1 9 M	100.1	0.04ð 0.019	0.090	0.344	50	ას _ვ	0
96-nad/far-1	107 02	248 35	۵.0 10 1	100.1	1 030	0.003	-0.610	97	-17	0
96-pad/far-1	298 15	348 16	10.1	100.1	0.833	0.114	-0.683	30	-26	0
55 puului 1	~00.10	010.10	10.1	100.1	0.000	0,111	0.000	50	~0	0
61 des	000 1 "	570 15	E 0	He FOR A	eptadecane	0.145	0.054	00	0	6
04-000 87-man/ori	323.13 202 15	373.13 339.15	5.U 2.0	500.0 10.1	1.130	0.145	0.054	0U 97	-2	0
or-man/th	~JO.1J	000.10	۵.0	10.1	0.071	0.009	-0.000	61	-9	U

 Table 4.
 Continued

ref	T _{min} /K	T _{max} /K	P _{min} /MPa	P _{max} /MPa	RMSD/kg⋅m ⁻³	RMSD _r /%	bias/kg∙m ⁻³	$N_{\rm p}$	±	RD ^a
				C	Octadecane					
58-cut/mcm	333.15	408.15	34.5	551.3	0.403	0.051	0.023	48	-4	0
59-low/spe	310.93	408.15	20.0	7-H 340.0	exyltridecane 0.230	0.028	0.027	36	-2	0
64-doo	373 15	573 15	5.0	500.0	Eicosane	0 150	0.067	50	0	0
04-000	575.15	575.15	5.0	500.0	Docosane	0.155	0.007	50	0	0
88-pet/spi	323.08	368.26	2.1	16.1	0.422	0.055	-0.001	48	-16	р
				Т	etracosane					
87-pet/van	333.52	371.22	2.1	12.1	0.195	0.026	0.000	36	-12	р
58 cut/mcm	310.05	408 15	34.5	9-Oct	ylheptadecane	0 079	-0.051	116	-16	0
59-low/spe	310.93	372.04	20.0	340.0	0.737	0.072	0.703	20	20	0
				Т	riacontane					
64-doo	373.15	573.15	5.0	500.0	0.973	0.124	0.099	47	11	0
			2	,6,10,15,19,23	-Hexamethyltetrac	cosane			_	
70-kus/tas	298.15	353.15	39.2	196.1	0.057	0.007	0.000	20	0	0
59-low/spe	310.93	408 15	40.0	11-De 340.0	cylheneicosane	0.036	0.022	31	1	0
55-10W/Spe	510.55	400.15	40.0	13-Doc	decylbevacosane	0.030	0.022	51	1	0
59-low/spe	310.93	408.15	20.0	340.0	0.226	0.027	0.029	30	4	0
				Te	etracontane					
64-doo	423.15	573.15	5.0	500.0	1.267	0.159	0.142	40	8	0
29 hr:	979 15	979 15	40.0	2-Meth	yl-1,3-butadiene	0.064	0.041	14	9	<u>^</u>
32-011	273.13	275.15	49.0	1170.0	0.300	0.004	0.041	14	2	0
51-day/fel	353.15	448.15	0.6	31.6	0.453	0.090	-0.056	50	-20	ор
				2-Me	ethyl-2-butene					
49-bri	298.15	298.15	49.0	490.3	0.205	0.027	0.014	10	-4	0
75	000 15	000 15	1.0	(<i>E</i>)-1	1,4-Hexadiene	0.000	0.000	10	0	
75-DUI/FIC	293.15	298.15	1.0	3.U (9.7.4.E	0.002	0.000	0.000	10	2	0
75-bur/ric	293.15	298.15	1.0	5.0	0.002	0.000	0.000	10	2	0
				1,5	5-Hexadiene					
75-bur/ric	293.15	298.15	1.0	5.0	0.001	0.000	0.000	10	-2	0
70 shallor					1-Hexene	0 100	0.409	100	69	
70-aba/ker 72-ker/apa	283.15	473.15	0.8	68.7	1.279	0.199	-0.492 -0.262	366	-62 -102	op op
75-bur/ric	293.15	298.15	1.0	5.0	0.024	0.004	0.015	10	4	0
82-gus/gal	146.00	274.00	5.0	50.0	0.672	0.088	-0.168	42	-8	0
91 gue/pog	902 15	959 15	5.0	50.0	1-Heptene	0 160	0 165	99	7	<u>^</u>
81-gus/naz	293.13	333.15	5.0	50.0	1.102	0.169	-0.165	23	-7	0
49-bri					1-Octene 3 440	0 430	-3 389	6	-6	0
72-ker/apa					3.186	0.486	0.709	361	78	ope
88-dym/mal	298.15	373.15	10.6	312.7	0.616	0.082	-0.076	33	-1	o
92-naz/gas	290.15	538.95	5.0	58.9	1.576	0.244	0.516	67	15	ор
84 gus/gal	108.00	208.00	10.0	50.0	1-Nonene	0.002	_0.018	4.4	0	0
64-gus/gai	196.00	396.00	10.0	22 Hovemeth	U.094	0.092	-0.018	44	0	0
70-kus/tas	298.15	353.15	2,0,10,15,19, 39.2	23-Hexametri 196.1	0.098	0.011	0.002	20	4	0
				Cy	yclopentane					
69-bra/fre	040.45	050.45		400.4	3.698	0.452	3.402	3	3	0
70-kus/tas 92-bao/cac	313.15 192.79	353.15 298.15	39.2 0.1	196.1 104.3	1.503	0.185	0.682	14 186	6 16	op o
02 buo/cuc	102.70	200.10	0.1	Moth	vlevelopentane	0.010	0.000	100	10	U
80-oza/ooy	298.20	348.20	9.9	196.2	0.512	0.066	-0.194	41	-11	op
87-hol/goe	293.15	293.15	2.0	10.0	0.010	0.001	-0.002	5	-1	0
0 1				C	yclohexane	0.00-	0.10-	-	-	
34-rot/nag					0.538	0.068	0.467	9	9	0
40-SCII/1101 57-rea/sag					1.700 2 396	0.241	0.308 1 077	১ 78	1 40	e
59-gol/vag					3.959	0.697	1.793	64	16	e
59-gol/vag					7.709	1.226	-5.683	56	-56	ор
62-hol/wha	298.16	348.15	1.0	10.0	0.008	0.001	0.005	50	34	0

Table 4. Con	tinued									
ref	T_{\min}/K	$T_{\rm max}/{ m K}$	P _{min} /MPa	P _{max} /MPa	RMSD/kg·m ⁻³	RMSD _r /%	bias/kg·m ⁻³	$N_{ m p}$	±	RD ^a
				Cyclohe	exane (continued)					
70-kus/tas					1.565	0.201	-1.492	6	-6	0
72-gol/ada					6.137	0.763	-5.887	24	-24	0
72-ker/apa					1.636	0.242	-1.160	440	-356	ор
72-lys					15.999	1.875	-15.999	1	-1	0
73-ker/apa					1.455	0.215	-1.107	272	-212	ор
73-rog/bur	298.15	298.15	1.0	10.0	0.075	0.010	-0.064	10	-10	0
74-ana/ker					2 707	0.426	-1 572	90	-56	on
75-bur/ric	293 15	298 15	1.0	5.0	0.029	0.004	-0.025	10	-10	0
75-bui/mun	409.15	599.15	9.1	70.1	1.046	0.105	0.020	20	10	0
75-gr1/mur	496.15	323.13	2.1	79.1	1.040	0.165	0.322	20 00	14	р
75-ras/gri	298.15	4/3.15	0.6	85.4	0.271	0.038	0.013	96	-6	ор
75-ras/gri	298.15	473.15	1.6	71.0	0.121	0.017	-0.001	35	1	ор
78-gou	314.15	393.15	5.1	40.1	0.428	0.057	0.164	75	37	р
79-dic								0	0	e
79-isd/dym	298.15	348.15	10.0	20.0	0.272	0.035	-0.245	4	-4	0
79-isd/dym	348.15	348.15	50.0	100.0	0.869	0.110	-0.868	2	-2	0
79-kas/fuk	298 15	348 15	6.9	105.3	0.313	0.040	-0.192	32	-18	0
80-ion/has	313.00	383.00	5.0	214.0	0.010	0.122	-0.659	38	-26	one
80-juii/iias	313.00	383.00	10.0	£14.0	0.547	0.122	-0.039	30	-20	ope
82-wis/wue	286.80	337.90	10.0	110.0	0.496	0.063	-0.219	24	-6	0
84-mat/van	288.15	313.15	2.5	35.0	0.120	0.015	0.094	34	34	0
87-sun/kor	288.15	323.06	5.0	85.0	0.260	0.033	-0.233	80	-80	0
88-mor/aon	298.15	313.15	2.4	46.1	0.216	0.028	-0.098	27	-9	0
89-vos/slo					3.755	0.563	3.299	24	24	e
90-pol/wei	293.20	368.10	5.0	180.0	0.793	0.097	0.538	35	21	0
90-tos/fig					1.787	0.227	-1.483	48	-40	0
90-tos/fig					1.680	0.211	-1.579	6	-6	0
91-mel/mel	293.15	413.15	10.0	250.0	1.855	0.234	0.850	49	13	pe
91-tan/hos	298.15	348.15	6.2	100.0	0.264	0.034	-0.202	23	-21	0
92-lag/bon	288.15	323.15	5.0	15.0	0.334	0.043	-0.249	18	-14	0
92-lag/bon	288.15	323.15	5.0	15.0	0.331	0.042	0.229	18	14	0
96-pad/far	298.15	348.14	5.1	38.0	0.359	0.047	-0.140	20	-8	0
· · · · · · · · · · · · · · · · · · ·					11 7				-	-
84-mat/van	288.15	313.15	2.5	35.0	d_{12} 0.022	0.002	-0.001	35	$^{-3}$	0
40.1				Metr	iylcyclohexane	0 5 1 0	0.450	10	0	
49-bri					4.330	0.519	-3.459	10	-8	0
69-bra/fre					1.899	0.216	0.287	9	-1	0
70-aba/ker					3.347	0.490	-2.415	195	-185	ор
72-ker/apa					4.305	0.628	-2.446	351	-331	ор
72-ker/apa	283.15	523.15	0.3	4.0	0.433	0.068	-0.024	20	-4	ор
78-gou	293.15	392.55	5.1	40.1	0.191	0.025	0.075	75	25	р
79-jon/has	203.00	298.00	50.0	500.0	0.819	0.094	-0.083	21	-3	0
97-bay/bon	303.15	343.15	20.0	40.0	0.351	0.046	-0.157	6	$^{-2}$	0
Ū				C	valahantana					
70 1	909.15	959 15	20.9	100.1		0.090	0 100	10	4	
70-KUS/tas	298.15	353.15	39.2	196.1	0.211	0.026	-0.100	12	-4	0
78-gou	293.65	393.15	5.1	40.1	0.343	0.043	0.166	90	44	р
				Eth	ylcyclohexane					
83-gus/sha	293.15	523.15	5.0	50.0	0.781	0.111	-0.054	72	-4	op
89-vos/slo	327.10	440.90	0.4	9.7	1.022	0.136	0.502	21	13	b
				1						1
00/-1-	005 00	401.00	0.4	1- <i>CIS</i> -Z-D1	metnyicycionexan	e	0.040	0.1	0	
89-vos/s10	325.20	461.20	0.4	9.7	0.625	0.082	-0.043	21	-2	р
				C	Cvclooctane					
78-gou	313.65	393.85	5.1	40.1	0.211	0.026	-0.003	75	$^{-3}$	p
				D1 1 14	4.011 ()	1 1			-	r
MO 1 ()			tr	ans-Bicyclo[4.	4.0]decane (<i>trans</i> -o	decalin)				
70-kus/tas	298.15	353.15	39.2	196.1	0.019	0.002	0.000	20	2	0
				But	vlcvclohexane					
87-hol/goe	293.15	293.15	2.0	10.0	0.003	0.000	0.000	5	1	0
or nongoe	200.10	200.10	2.0	10.0	0.000	0.000	0.000	0	1	0
				В	icyclohexyl					
88-sid/tej	298.20	338.20	0.7	34.5	0.199	0.023	-0.039	21	-3	0
				Octade	cahydrochrysene					
59-low/spe	310.93	408 15	20.0	340.0	0 359	0.036	-0.025	18	-6	0
55-10W/Spc	510.55	400.10	20.0	540.0	0.000	0.000	0.025	10	0	0
			1,7-D	icyclopentyl-4-	(3-cyclopentylprop	oyl)heptane				
58-cut/mcm	310.95	408.15	34.5	1033.7	0.741	0.077	0.052	113	-11	0
				1 (1 Decebydy	onanhthyl)nontad	00000				
58 out/man	222 15	109 15	21 5			0.040	0.095	40	11	0
Jo-cut/IllCill	JJJ.13	400.10	34.3	303.7	0.443	0.049	0.020	49	11	U
			1-Cy	clopentyl-4-(3	-cyclopentylpropyl)dodecane				
58-cut/mcm	310.95	408.15	34.5	1033.7	1.209	0.128	0.070	149	3	0
			1.0	volohoral 9 (9	avalahavalatha	Indecara				
59 out/man	210.05	100 15	1-C	yciollexyl-3-(2	-cyclollexylethyl)u		0.007	109	11	c
58-cut/mcm	310.95	408.15	34.5	893.8	0.869	0.093	0.067	103	11	0

 Table 4. Continued

ref	T_{\min}/\mathbf{K}	$T_{\rm max}/{ m K}$	P _{min} /MPa	P _{max} /MPa	$RMSD/kg \cdot m^{-3}$	RMSD _r /%	bias/kg·m ⁻³	$N_{ m p}$	±	RD^a
9-(2-Cyclohexylethyl)heptadecane										
58-cut/mcm	310.95	408.15	34.5	1033.7	0.501	0.054	0.028	126	0	0
				9-(3-Cvclopen	tvlpropyl)heptadeo	ane				
58-cut/mcm	310.95	408.15	34.5	1033.7	0.563	0.062	0.048	139	-17	0
			1.	1-Bis(decahyd	lro-1-naphthyl)und	lecane				
59-low/spe	310.93	408.15	20.0	300.0	0.589	0.062	0.094	35	7	0
				1.3-C	vclohexadiene					
75-bur/ric	293.15	298.15	1.0	5.0	0.002	0.000	0.000	10	0	0
79-dic								0	0	
				1.4-C	vclohexadiene					
75-bur/ric	293.15	298.15	1.0	5.0	0.002	0.000	0.000	10	0	0
79-dic								0	0	
				C	vclohexene					
72-ker/apa					3.103	0.382	-2.881	140	-138	0
75-bur/ric	293.15	298.15	1.0	5.0	0.012	0.001	0.001	10	-2	0
79-dic								0	0	
91-mel/mel	293.15	353.15	10.0	250.0	2.773	0.333	-1.396	40	-28	р

a o, from the same source as the compressed liquid density data; e, from the smoothing equation (see Appendix); p, extrapolated to P_{ref} along isotherms using the Tait equation.

The temperature and pressure ranges of the validity of the fits given in the table allow one to avoid extrapolation using eq 1 with the parameters from Table 3 beyond the P-T areas of the retained data. The P-T areas that are not rectangular are shown in the figures (Figure 1), which provide crude information on the distribution of the retained data points. Nonrectangular P-T areas appeared mostly for measurements where the P-T range approached the vicinity of a solid-liquid equilibrium line.

Table 4 summarizes some statistical information derived from the fits. Only those data subsets for which the temperature and pressure ranges are displayed in the table were retained in the correlations. The statistical characteristics of these subsets refer only to the data points retained in the correlation. On the other hand, the characteristics of the rejected subsets, that is, those for which no T and P ranges are given in the table, illustrate the deviations of the rejected points from eq 1, but only for those values within the P-T areas of the retained data (see Table 3 and Figure 1). If only one set of smoothed $P-\rho-T$ values available in original sources (S-type data) or one set of values generated from published equations (F-type data) for a particular substance was fitted by eq 1, then the average deviations of the fit (RMSD, RMSD_r) do not reflect the real accuracy of the experiment and consequently the weighted standard deviation s_w may be lower than unity (the deviations of both the smoothed input data and the F-type data from eq 1 are lower than the experimental uncertainty declared by the authors).

Values at high temperatures of some retained data sets were rejected in those cases where large deviations from the Tait equation were observed and it was not possible to improve the fit by the additional parameters b_i and c_i . Thus, the P-T ranges of some fits do not cover the entire original range of retained data sets. The temperature and/or pressure ranges were sometimes enlarged by retaining less accurate and less reliable values in the ranges beyond those of more accurate data sets but only in those cases where the representation of accurate data was not affected by the enlargement and the enlargement did not result in a distortion of the B(T) function. The absence of extremes and inflection points on the function B(T) (eq 3) of all final fits was checked.

A comparison of isothermal compressibilities, $\beta_T = -(1/V)(\partial V/\partial P)_T = (1/\rho)(\partial \rho/\partial P)_T$, calculated from the fits for $P = -(1/\rho)(\partial \rho/\partial P)_T$

0.1 MPa with available values published in the literature is presented in Table 5, which provides a rough check of the consistency of the fits with independent data. The literature values of isothermal compressibility used for the comparison in Table 5 are the values obtained mostly from speed-of-sound measurements and were either taken directly from the papers or calculated from the equation

$$\beta_T = \frac{1}{\rho} \left[\frac{1}{u^2} + \frac{TM\alpha_{\rm P}^2}{c_{\rm P}} \right] \tag{11}$$

where M, u, α_P , and c_P are the molar mass, speed of sound, isobaric thermal expansivity ($\alpha_P = (1/V)(\partial V/\partial T)_P = -(1/\rho)(\partial \rho/\partial T)_P$), and molar isobaric heat capacity, respectively. The values of the input quantities in eq 11 were taken from the different sources cited in Table 5.

Alkanes. Data [92-wal/bar] for 2-methylbutane in the low-temperature range differ from those by Mopsik [69-mop]. Tentative fits of each of those data sets revealed that the data of Mopsik [69-mop] gave much better agreement (positive deviations about 1% on average) with isothermal compressibilities evaluated from speed of sound [92-wal/bar] than with $P-\rho-T$ data [92-wal/bar] (negative deviations in the range from -1.6% at 203 K to -12.2% at 243 K). The final fit yields the average deviation in the isothermal compressibility 2% (positive, see Table 5), even when the values extrapolated beyond the temperature range of the fit are included.

The agreement between the calculated and experimental isothermal compressibilities of 2-methylpentane is satisfactory (deviation 1.8% on average) at temperatures where the fit represents the data of Sahli et al. and Moriyoshi and Aono [76-sah/gag, 88-mor/aon] while a larger deviation (-4.3%) is observed at 273.15 K where the fit is based on less accurate data by Bridgman [31-bri]. Bridgman's data were, however, rejected for P < 196 MPa.

The average deviations of the data retained for 3-methylpentane and 2,2-dimethylbutane from the final fits (Table 3) are within 0.1%, and the average deviations of the isothermal compressibilities (Table 5) are 0.5 and 1.9%, respectively. The deviation of the isothermal compressibility extrapolated from the fit for 3-methylpentane is 5.1% at 273.15 K (20 K below T_{min} of the fit); much better agreement (1.4%) is observed for T = 283.15 K.

Figure 1. Temperature and pressure coordinates of data points retained in the correlations for the fits in Table 3 where P-T areas of retained data points are not rectangular. The lines represent solid–liquid equilibrium curves; cyclohexane (normal melting temperature 279.6 K): [75-ras/gri] {up to 318 K (70 MPa)}, [82-wis/wue] {up to 338 K (117 MPa)}, [93-yok/ebi] {up to 341 K (122 MPa)}.

Two fits are presented for 2,3-dimethylbutane. The first one, performed in as wide a temperature range as possible, yielded isothermal compressibilities 2.4% higher than the available literature values (Table 5); the second fit, representing data [76-sah/gag, 87-hol/goe, 88-mor/aon] in the range 293.15–313.15 K, is in perfect agreement with experimental data on isothermal compressibilities. Data [90-rie/sch] exhibit large deviations and were rejected in both cases. From the comparison of both fits (Table 4), it, however, follows that the values of Baonza et al. [93-bao/ cac] are in the range 293.15–298.15 K, lower than other data retained for the narrow-temperature-range fit.

Fits of the data of Kuss and Taslimi [70-kus] for 3-ethylpentane and 2,2,3-trimethylbutane yielded similar deviation from available isothermal compressibilities (within 6%). The fit for 2,2-dimethylpentane is the fit of the F-type data of Sahli et al. [76-sah/gag]; the agreement for the isothermal compressibility is very good.

The fit for 2,2,4-trimethylpentane covers a temperature range more than 300 K wide. The experimental data are in good agreement, and few data sets were rejected (Table 4). The average deviation of the isothermal compressibility in the range 233.15-318.15 K is excellent, being 1.2%. Values reported in [96-pad/far-1] for the temperature range 298-348 K represent the same "raw" data as those from [94-pad/far], but they were analyzed by Padua and coworkers using a theoretically improved model of the vibrating-wire densimeter. It was, however, found that the fit of the values of [94-pad/far] gives much better agreement with available isothermal compressibilities at 0.1 MPa than that of the values of [96-pad/far-1] (average deviation -2.5% in the range 233-318 K). Therefore, both sets of density values were retained in the correlations, each with its declared uncertainty (0.1% for [94-pad/far], 0.05% for [96-pad/far-1]).

Fits for other alkanes are mostly fits of a set of data from one source. Except for dodecane, where large deviations from literature values are observed, the data to obtain independent isothermal compressibilities for comparison were not available. The data along the the isotherm 388.15 K for 9-octylheptadecane [58-cut/mcm] were rejected to obtain satisfactory consistency with the data from the same laboratory [59-low/spe]. The data along the isobars 20 MPa of 11-decylheneicosane (negative deviations 3-5 kg·m⁻³) and 180 MPa of 13-dodecylhexacosane (positive deviations 1.8-2.4 kg·m⁻³) were rejected.

Alkenes. The upper temperature limit of the data for 1-pentene is 448.15 K; the authors [51-day/fel] declared

that observable polymerization of the substance occurred at temperatures higher than 473 K. The data for 1-hexene cover the temperature range up to 503 K. No polymerization was mentioned by the authors, but the fit was limited up to 473.15 K, since large deviations were observed for higher temperatures. Agreement of the isothermal compressibilities calculated from the fit for 293.15 and 298.15 K is very good (Table 5).

Similarly the upper temperature limit of the fit for 1-heptene is 353 K while the data covers temperatures up to 523 K. When the temperature range of the correlation was increased, points of inflection and even local extremes appeared on the function B(T). The isothermal compressibilities calculated from the final fit are 19% lower than experimental values. Similar results were reached in the case of the data for 1-nonene from the same laboratory [84-gus/gal]; the temperature range of the final fit was limited up to 398 K; the deviations in isothermal compressibilities are -26%. It is worth mentioning that the values of the Tait parameters c_b and b_i for these two alkenes (Table 3) seem to be rather unusual.

The fit for 1-octene represents the data of Dymond et al. [88-dym/mal] and Naziev et al. [92 naz/gas]. Rather large deviations were observed for the data of Naziev et al. [92-naz/gas]., but the increase of the number of adjustable parameters led to distortion of the B(T) function. The agreement of the isothermal compressibilities calculated from the final fit with literature values is satisfactory.

Cycloalkanes. The fit for cyclopentane represents predominantly of data of Baonza et al. [92-bao/cac]; the temperature range of the fit was extended by retaining the data of Kuss and Taslimi [70-kus/tas] The calculated isothermal compressibilities agree with the literature values within 2% (neglecting the less accurate value of Shinoda and Hildebrand [61-shi/hil]).

The fit for cyclohexane covers the temperature range from a few Kelvins above the normal melting point (279.6 K) up to 30 K below the critical temperature. The deviations of the calculated isothermal compressibility from literature data are very satisfactory, being about 1.5% in the temperature interval 293 to 352 K (see Table 5). Several data sets for cyclohexane present values at higher temperatures. Among them, the data of Grigoriev et al. [75gri/mur, 75-ras/gri] were retained, since much better agreement with other retained data was observed at lower temperatures for these data than for the values of Kerimov et al. [72-ker/apa, 73-ker/apa, 74-apa/ker]. This is in accordance with the results of Penoncello et al. [95-pen/

Table 5.	Comparison of Values of Isothermal	Compressibility , $\beta_{\rm T} =$	$(1/\rho)(\partial \rho/\partial P)_{\rm T}$, at P	= 0.1 MPa Calculate	d from the Fits
in Table	3 (Eq 1) with Literature Data				

	$\beta_{\mathrm{T}}/\mathrm{GPa^{-1}}$		$\delta \beta_{T}$			$\beta_{\mathrm{T}}/\mathrm{GPa}^{-1}$		$\delta \beta_T$	
<i>T</i> /K	eq 1 ^a	lit.	% ^b	ref(s)	<i>T</i> /K	eq 1 ^a	lit.	% ^b	ref(s)
				2-Methy	lhutane				
203.00	0.011/	0 803	20	2^{-methy}	233 00	1.198 ± 0.006	1 168	26	92-wal/bar d 96-trc e 96-zab/ruzł
213.00	0.996/	0.000	2.0 1 9	92-wal/bar, 90 tre, 90 zab/ruz ^{f}	243.00	1.100 ± 0.000 1.320 ± 0.006	1 2 9 1	22	92-wal/bar, 90 trc, 90 zab/ruz ^{f}
223.00	1.092 ± 0.007	1 073	1.0	92-wal/bar, 90 -trc, 90 -zab/ruz	243.00	1.520 ± 0.000	1.201	2.2	52-wal/bai, 50-tit, 50-zab/1uz
220.00	1.052 ± 0.007	1.075	1.0						
070 15	1 115 1 0 010	4 4 7 0		2-Methy	Ipentane		1 007		
273.15	1.415 ± 0.012	1.479	-4.3	83-aww/pet, ^{<i>a</i>} 92-trc, ^{<i>e</i>} 96-zab/ruz ^{<i>i</i>}	298.15	1.793 ± 0.007	1.807	-0.8	83-aww/pet, a 92-trc, e 96-zab/ruz ⁴
283.15	1.551 ± 0.009	1.595	-2.7	83-aww/pet, ^{<i>a</i>} 92-trc, ^{<i>e</i>} 96-zab/ruz ^{<i>i</i>}	010.15	0.001 \ 0.000	1.833	-2.2	89-ohn/fuj ^e
298.15	1.793 ± 0.007	1.839	-2.5	83-aic/Kum, ^e 88-tre/ben ^e	313.15	2.091 ± 0.008	2.072	0.9	83-aww/pet," 92-trc," 96-zab/ruz
				3-Methy	lpentane	9			
273.15	1.3921	1.325	5.1	83-aww/pet, ^d 92-trc, ^e 96-zab/ruz ^f	298.15	1.714 ± 0.006	1.719	-0.3	83-aic/kum, ^c 88-tre/ben ^c
283.15	1.508 ⁱ	1.486	1.4	83-aww/pet, ^d 92-trc, ^e 96-zab/ruz ^f			1.699	0.9	83-aww/pet, ^d 92-trc, ^e 96-zab/ruz ^f
293.15	1.641 ± 0.007	1.627	0.9	83-aww/pet, ^d 92-trc, ^e 96-zab/ruz ^f			1.714	0.0	89-ohn/fuj ^c
					313.15	1.966 ± 0.007	1.970	-0.2	83-aww/pet, ^a 92-trc, ^e 96-zab/ruz ^r
				2,2-Dimet	hylbutaı	ne			
298.15	1.967 ± 0.008	2.014	-2.3	82-tre/han ^c	298.15	1.967 ± 0.008	1.997	-1.5	85-cos/bha ^c
		2.010	-2.1	83-aic/kum, ^c 88-tre/ben ^c			2.002	-1.7	89-ohn/fuj ^c
				2,3-Dimet	hylbutaı	ne			
298.15	1.831 ± 0.006	1.790	2.3	83-aic/kum, ^c 88-tre/ben ^c	Ž98.15	1.831 ± 0.006	1.786	2.5	89-ohn/fuj ^c
298.15	1.787 ± 0.006^{g}	1.790	-0.2	83-aic/kum, ^c 88-tre/ben ^c	298.15	1.787 ± 0.006^{g}	1.786	0.05	89-ohn/fuj ^c
				3-Ethyl	pentane				
318.15	1.606 ± 0.007	1.701	-5.6	29-fre/hub, ^d 91-trc-1, ^e 96-zab/ruz ^f	•				
				2.2-Dimet	nvlpenta	ne			
293.15	1.569 ± 0.004	1.604	-2.2	29-fre/hub, ^d 91-trc-1, ^e 96-zab/ruz ^f	298.15	1.667 ± 0.004	1.660	0.4	84-aww/pet, ^d 91-trc-1, ^e 96-zab/ruz ^f
				2 9 2 Trim	thylbut	200			1
298 15	1.482 ± 0.006	1 566	-5.4	88-tre/hen ^c	318 15	1.781 ± 0.007	1 7 1 7	37	29-fre/hub d 91-trc-1 e 96-zab/ruz f
200.10	1.102 ± 0.000	1.000	0.1			1.701 ± 0.007	1., 1,	0.7	
999 15	0.042 ± 0.006	0.024	1.0	2,2,4-1 rime	thylpent	ane 1.525 ± 0.002	1 5 4 6	-0.7	01 pop/zie d 00 tre f 06 zeh/muzt
253.15	1.089 ± 0.000	1 068	2.0	83-aww/pet d 90-trc e 96-zab/ruz ^f	230.15	1.555 ± 0.002	1.540	-0.4	94-ami/ara d 90-trc e 96-zab/ruz ^f
263.15	1.000 ± 0.004 1.172 ± 0.003	1.157	1.3	83-aww/pet, d 90-trc, e 96-zab/ruz ^f			1.563	-1.8	95-mie/osw ^c
273.15	1.264 ± 0.002	1.259	0.4	83-aww/pet, ^{<i>d</i>} 90-trc, ^{<i>e</i>} 96-zab/ruz ^{<i>f</i>}			1.550	-1.0	$95\text{-ami/gop},^d 90\text{-trc},^e 96\text{-zab/ruz}^f$
293.15	1.475 ± 0.002	1.471	0.3	83-aww/pet, ^d 90-trc, ^e 96-zab/ruz ^f	308.15	1.664 ± 0.003	1.678	-0.8	94-ami/ara, ^d 90-trc, ^e 96-zab/ruz ^f
298.15	1.535 ± 0.002	1.56	-1.6	61-shi/hil ^c	313.15	1.734 ± 0.003	1.774	-2.3	95-mie/osw ^c
		1.542	-0.5	82-tre/han, ^c 88-tre/ben, ^c 85-cos/bha ^c	318.15	1.808 ± 0.003	1.844	-2.0	29-fre/hub, ^{<i>d</i>} 90-trc, ^{<i>e</i>} 96-zab/ruz ^{<i>f</i>}
		1.543	-0.5	83-aww/pet, ^a 90-trc, ^e 96-zab/ruz ^a			1.834	-1.4	94-ami/ara, ^{<i>a</i>} 90-trc, ^{<i>e</i>} 96-zab/ruz ^{<i>i</i>}
				Doce	sane				
323.15	1.02 ± 0.07	0.900	13.3	82-bro/lop ⁿ	353.15	1.36 ± 0.10	1.066	27.2	82-bro/lop ⁿ
333.15	1.14 ± 0.07	0.950	19.7	82-bro/lop ⁿ	363.15	1.45 ± 0.11	1.130	27.6	82-bro/lop ⁿ
343.13	1.20 ± 0.08	1.000	23.2	82-010/100					
000 15	1 5 90 1 0 005	1 704	0.0	1-He	exene	1 000 1 0 005	1 000	1.4	90 to/di-0
293.15	1.589 ± 0.005 1.666 ± 0.005	1.584	0.3	58-par/pan," 95-trc," 96-zab/ruz	298.15	1.666 ± 0.005	1.689	-1.4	86-tar/dia
230.15	1.000 ± 0.003	1.014	3.2	75-bui/fic					
000 15	1.00/	1 000	17.0	1-He	ptene	1.07 0.07	1 5 7 7	10.5	
283.15	1.06^{4} 1.16 \pm 0.06	1.289	-17.8	$48 \log/mcm, d 95 - trc - 1, e 96 - zab/ruz4$	303.15	1.27 ± 0.07	1.577	-19.5	48-lag/mcm, ^{<i>a</i>} 95-trc-1, ^{<i>e</i>} 96-zab/ruz ^{<i>i</i>}
293.15	1.10 ± 0.00	1.437	-19.5	48-lag/iiiciii, 93-uic-1, 90-zab/iuz					
000 15	1.015	1 1 0 0		1-00	tene	1.0051	1 0 1 0		50 / 0
283.15	1.215	1.162	4.6	48-lag/mcm, d 86-trc, e 96-zab/ruz ^r	293.15	1.285^{1}	1.243	3.4	58-par/pan ^c $48 \log d \approx d \approx t \approx t = 0.6 \cosh m \pi f$
293.15	1.285	1.259	2.1	48-1ag/mcm, ^a 86-trc, ^e 96-zab/ruz ^a	303.15	1.361 ± 0.010	1.334	0.5	48-1ag/mcm, ^a 86-trc, ^c 96-zab/ruz ⁴
				1-No	nene				
283.15	0.79 ± 0.02	1.067	-26.0	48-lag/mcm, ^{<i>a</i>} 86-trc, ^{<i>e</i>} 96-zab/ruz ^{<i>f</i>}	298.15	0.88 ± 0.02	1.182	-25.5	48-lag/mcm, ^{<i>a</i>} 86-trc, ^{<i>e</i>} 96-zab/ruz ^{<i>t</i>}
293.15	0.85 ± 0.02	1.145	-25.8	48-lag/mcm, ^{<i>a</i>} 86-trc, ^{<i>e</i>} 96-zab/ruz ^{<i>i</i>}	303.15	0.91 ± 0.03	1.229	-26.0	48-lag/mcm, ^{<i>a</i>} 86-trc, ^{<i>e</i>} 96-zab/ruz ^{<i>i</i>}
				Cyclop	entane				
298.15	1.308 ± 0.006	1.35	-3.1	61-shi/hil ^c	298.15	1.308 ± 0.006	1.332	-1.8	86-tar/dia ^c
		1.331	-1.7	/4-ewi/mar, ^c //-ewi/mar ^c	303.15	1.369 ± 0.006	1.379	-0.7	49-wei," 95-trc-3," 96-zab/ruz
				Cyclol	nexane				
292.85	1.086 ± 0.002	1.051	3.3	85-lav/jak, ^d 91-trc, ^e 96-zab/ruz ^t	298.15	1.135 ± 0.002	1.113	2.0	95-ami/gop, ^{d,e} 96-zab/ruz ^t
293.15	1.089 ± 0.002	1.038	4.9	52-jac ^c	303.15	1.184 ± 0.002	1.145	3.4	85-lav/jak, ^a 91-trc, ^e 96-zab/ruz ^r
		1.080	0.8 -0.6	71-fic/fog ^c 75-bur/ric ^c			1.174	0.9	90-sek/ven ^c
		1.069	1.9	85-mar/bha, ^{d} 91-trc. ^{e} 96-zab/ruz ^{f}			1.220	-3.0	95-osw/pat ^c
		1.076	1.2	85-tam/mur, ^{<i>d</i>} 91-trc, ^{<i>e</i>} 96-zab/ruz ^{<i>f</i>}	308.15	1.236 ± 0.001	1.219	1.4	80-aic/tar, ^c 81-aic/tar, ^c 81-aic/tar-1 ^c
298.15	1.135 ± 0.002	1.130	0.4	61-shi/hil, ^c 72-ewi/mar, ^c 78-kiy/hal ^c			1.218	1.5	83-nat/tri, ^d 91-trc, ^e 96-zab/ruz ^f
		1.155	-1.7	74-jai/nor, ^d 91-trc, ^e 96-zab/ruz ^f	313.15	1.291 ± 0.001	1.301	-0.8	63-brz/har ^c
		1.142	-0.6	75-bur/ric ^c	318.15	1.348 ± 0.001	1.331	1.3	80-aic/tar, ^c 81-aic/tar, ^c 81-aic/tar-1 ^c
		1.126	U.8 1 2	/ð-gr0/Wll ^c 80-aic/tar (81 aic/tar (91 aic/tar 1 (318.35	1.351 ± 0.001 1.410 ± 0.001	1.335	1.2 _0 2	δɔ-ıav/jak," 91-trc," 96-zab/ruz ^r 63-brz/bar ^c
		1.120	1.0	83-nat/tri d 85-tam/mur d	333 15	1.410 ± 0.001 1.543 ± 0.001	1.540	-0.3	63-brz/har ^c
		w-I	1.0	95-fuj/tam, ^d 91-trc. ^e 96-zab/ruz ^f	555.10	10 ± 0.001	1.520	1.5	80-aic/tar, ^c 81-aic/tar. ^c 81-aic/tar-1 ^c
		1.128	0.6	85-cos/bha ^c	337.95	1.613 ± 0.002	1.573	2.5	85-lav/jak, ^d 91-trc, ^e 96-zab/ruz ^f
		1.120	1.3	85-mar/bha, ^d 91-trc, ^e 96-zab/ruz ^f	343.15	1.693 ± 0.002	1.679	0.8	63-brz/har ^c
		1.129	0.5	87-oho/tam, ^c 83-tam/oho, ^c 97-oho/tam ^c	352.05	1.844 ± 0.002	1.885	-2.2	δ 5-lav/jak, ^a 91-trc, ^e 96-zab/ruz ^t
				0 / -0110/ Latti					

Table	5. (Continued)							
	$\beta_{\rm T}/{\rm GPa^{-1}}$	1	$\delta \beta_{\rm T}$			$\beta_{\rm T}/{\rm GPa^{-1}}$	1	$\delta \beta_{\rm T}$	
<i>T</i> /K	eq 1 ^a	lit.	% ^b	ref(s)	<i>T</i> /K	eq 1 ^a	lit.	% ^b	ref(s)
				Methylcy	clohexan	e			
293.15	1.082 ± 0.005	1.108	-2.3	85-tam/mur, ^d 91-trc, ^e 96-zab/ruz ^f	298.15	1.126 ± 0.005	1.181	-4.6	97-oho/tam ^c
298.15	1.126 ± 0.005	1.16	-2.9	61-shi/hil ^c	303.15	1.172 ± 0.005	1.198	-2.2	74-rao/nai, ^d 91-trc, ^e 96-zab/ruz ^f
		1.152	-2.3	85-tam/mur, ^d 91-trc, ^e 96-zab/ruz ^f			1.197	-2.1	85-tam/mur, d 91-trc, e 96-zab/ruzd
		1.175	-4.2	87-oho/tam ^c					
				Cyclo	octane				
298.15	0.798 ^{<i>i</i>}	0.803	-0.6	74-ewi/mar, ^c 77-ewi/mar ^c	303.00	0.822^{i}	0.829	-0.8	74-jai/nor, ^d 70-ewi/lev, ^e 74-ewi/mar, ^e 96-zab/ruz ^f
				trans-Bicyclo	[4.4.0]de	cane			
298.15	0.735 ± 0.001	0.724	1.5	85-let/bax ^c	298.15	0.735 ± 0.001	0.764	-3.8	89-ohn/fuj ^c
				Bicvcl	ohexvl				
298.15	0.65 ± 0.02	0.674	-3.6	86-tar/dia ^c	5				
				1,3-Cyclo	hexadien	e			
293.15	0.962 ± 0.002	0.968	-0.6	75-bur/ric ^c	298.15	1.007 ± 0.002	0.962	4.6	86-tar/dia ^c
298.15	1.007 ± 0.002	1.012	-0.5	75-bur/ric ^c					
				1,4-Cyclo	hexadien	e			
293.15	0.853 ± 0.002	0.862	-1.0	75-bur/ric ^c	298.15	0.908 ± 0.002	0.944	-3.8	86-tar/dia ^c
298.15	0.908 ± 0.002	0.917	-1.0	75-bur/ric ^c					
				Cyclob	nexene				
293.15	0.993 ± 0.016	1.010	-1.7	44-sch, ^d 72-ker/apa, ^e 96-zab/ruz ^f	298.15	1.043 ± 0.016	1.036	-0.7	86-tar/dia ^c
		0.983	-1.0	75-bur/ric ^c	303.15	1.096 ± 0.018	1.096	-0.0	49-wei, ^d 72-ker/apa, ^e 96-zab/ruz ^f
298.15	1.043 ± 0.016	1.041	-0.2	75-bur/ric ^c			1.077	-1.8	90-sek/ven ^{d,e} 96-zab/ruz ^f

^{*a*} Uncertainty is estimated as $\pm 2s$, where *s* is a standard deviation derived from a covariance matrix of each fit. ^{*b*} [$\beta_T(eq 1) - \beta_T(lit)$]·100/ $\beta_{\rm T}$ (lit). ^{*e*} Isothermal compressibility, $\beta_{\rm T} = -(1/V)(\partial V/\partial P)_{\rm T}$. ^{*d*} Sound speed. ^{*e*} Density and thermal expansivity, $\alpha_P = (1/V)(\partial V/\partial T)_P$. ^{*f*} Isobaric heat capacity. ^g Narrow temperature range fit (see Table 4). ^h Literature values calculated from smoothing equation representing data [67-orw/flo]. ⁱ Extrapolated beyond the temperature range of the fit (Table 3).

jac], who selected the $P-\rho-T$ data measured by Grigoriev's group [75-gri/mur, 75-ras/gri] in deriving the fundamental equation (Helmholz energy) for cyclohexane based on various experimental property data.

The data available for methylcyclohexane are not in good mutual agreement. The selection of the data sets retained for the final fit and setting statistical weights was influenced by comparisons of isothermal compressibilities calculated from repeated fits with literature data. The final fit gives compressibilities on average 2.9% lower than available values in the range 293-303 K.

One or two data sets were available for other cycloalkanes. For some of them isothermal compressibility data were available for comparison (cyclooctane, trans-bicyclo-[4.4.0]decane, bicyclohexyl) and deviations below 4% were observed (Table 5). It should be mentioned that the accuracy of the density data presented by Voss and Sloan [89-vos/slo] (cyclohexane, ethylcyclohexane, cis-1,2-dimethylcyclohexane) is declared by the authors to be unusually low, being 2%.

Cycloalkenes. The fits for 1,3-cyclohexadiene and 1,4cyclohexadiene are recorrelations of F-type data calculated from equations presented by Burkat and Richard [75-bur/ ric]. Naturally, the agreement of calculated isothermal compressibilities with values from the same source is within 1%. Larger deviations are observed for the literature values of Tardajos et al. [86-tar/dia].

The data of Melikhov et al. [91-mel/mel] for cyclohexene agree with those of Burkat and Richard [75-bur/ric] slightly better than the rejected data of Kerimov and Apaev [72ker/apa] (see also cyclohexane); however, the average deviation of the data of Melikhov et al. [91-mel/mel] from the fit is over 0.3% (Table 4). The average deviation in the isothermal compressibility in the range 293-303 K is 0.9%.

Acknowledgment

Thanks are expressed to Dr. M. Frenkel and Dr. R. C. Wilhoit (Thermodynamics Research Center, A & M University, College Station, TX) for extracting some speed-ofsound data from the TRC Source Database.

Appendix: Representation of Reference Density Data $\rho[T, P_{ref}(T)] = \rho(T)$

The functions of temperature selected to represent reference density data $\rho[T, P_{ref} = 0.101325 \text{ MPa or } P_{ref} =$ $P_{\text{sat}}(T) = \rho(T)$ are as follows

$$\rho(T/K)/(kg \cdot m^{-3}) = \rho_c \{1 + \sum_{i=0}^5 a_i (1 - T_r)^{(i+1)/3}\},$$

 $T_r = T/T_c$ (A1)

$$\rho(T/K)/(kg \cdot m^{-3}) = \sum_{i=0}^{2} a_i (T/100)^i$$
 (A2)

The values of the adjustable parameters a_i obtained by fitting to selected data using a weighted least-squares method are recorded in Table 6 along with some characteristics of the fits. The results in Table 6 are mostly the fits of recommended values available in Thermodynamics Research Center Thermodynamic Tables-Hydrocarbons (TRC Tables) combined in several cases with data either presented by authors of density data at elevated pressures or obtained by extrapolation to the reference pressure. The statistical weights of density values taken from TRC Tables were related to the number of significant digits presented in the TRC Tables; in other cases the weights were estimated from information in original papers or related to the average deviations of the extrapolations. The absence of extremes and inflection points on the function $\rho(T)$ was checked for all fits. Equation A1 was preferably used in those cases where respective critical parameters (ρ_c , T_c) were available and the data covered a wide temperature range to enlarge the use of the fits beyond the temperature range of the data, particularly in the region between T_{max} and T_c . Therefore, the fits by eq A1 with $a_0 > 0$ were

Table 6. Parameters a_i of Smoothing Functions A1 or A2 Fitted to Selected Density Values, $\rho[T,P=0.1 \text{ MPa or } P_{\text{sat}}(T)]$, Critical Densities^{*a*} (ρ_c), Critical Temperatures^{*a*} (T_c), Temperature Ranges of Density Data (T_{\min} and T_{\max}), and RMSD of the Fits

eq	a_0	a_1	a_2	a_3	a_4	a_5	$p_{c}/kg\cdot m^{-3}$	$T_{\rm c}/{ m K}$	T _{min} /K	T _{max} /K	RMSD/ kg·m ⁻³	ref
A1	2.019558	-1.592068	6.829264	-8.866790	2-Me 4.405885	thylbutar	ie 235.785	460.43	113.26	443.15	0.322	96-trc
A1	1.146314	3.273773	-4.781257	3.136329	2,2-Dim	nethylprop	ane 238.120	433.78	256.58	413.15	0.123	96-trc
A1	5.722272	-28.29310	78.058688	-90.89560	2-Met 39.000958	thylpenta	ne 234.815	497.50	273.15	473.15	0.425	92-trc
A1	4.031489	-11.82482	24.255863	-18.32954	3-Met 4.334045	thylpenta	ne 234.815	504.50	293.15	473.15	0.703	92-trc
A1	1.514059	2.294405	-3.185144	2.087656	2,2-Din	nethylbut	ane 240.048	488.78	263.15	473.15	0.655	92-trc
A1	1.515081	2.028384	-2.293512	1.430761	2,3-Din	nethylbuta	ane ^b 240.718	499.98	207.93	463.15	0.273	93-bao/cac, 92-tro
A1	34.474530	-176.7741	359.19912	-321.2713	3-Etl 107.54832	hylpentan	e 240.875	540.64	273.15	413.15	0.168	91-trc-1
A1	2.111867	1.260332	-3.513467	3.029976	2,2-Dim	iethylpent	tane 240.875	520.50	273.15	353.15	0.011	91-trc-1
A1	5.668622	-9.498036	6.609025		2,2,3-Tri	imethylbu	tane 251.769	531.17	298.15	353.15	0.686	91-trc-1
A1	1.983676	-1.937998	10.308726	-17.09974	2,2,4-Tri 12.135390	methylper -2.5519	ntane 244.083	543.96	173.15	541.15	0.254	90-trc
A1	0.973342	3.647183	-4.409424	2.744414	Heı	otadecane	246.134	735.00	293.15	613.15	0.165	73-trc
A1	16.746836	-88.91311	201.73131	-201.5217	Oc 75.498293	tadecane	246.848	746.00	301.32	573.15	0.096	73-trc
A2	986.90051	-67.95142			7-Hex	cyltrideca	ne		310.93	408.15	0.066	59-low/spe
A1 A1	229.21878 0.564648	-844.2745 3.006777	$1044.9267 \\ -0.800313$	-429.8758	E	icosane ^c	247.420 247.420	768.00 768.00	309.75 373.15	423.15 573.15	0.181 0.450	73-trc 64-doo
A2	984.53036	-67.26151			D	ocosane			323.08	368.26	0.712	88-pet/spi ^d
A2	985.79012	-64.68799			Tet	tracosane			333.52	371.22	0.279	87-pet/van ^d
A2	993.03187	-65.12813			9-Octy	lheptadec	ane		310.93	408.15	0.036	58-cut/mcm, 59-low/spe
A1	0.668899	2.176314			Tri	acontane	249.747	857.00	373.15	573.15	0.548	64-doo
A2	991.66650	-62.70545		2,6,1	10,15,19,23-H	lexameth	yltetracos	ane	298.15	353.15	0.022	70-kus/tas
A2	998.52323	-63.70262			11-Decy	ylheneicos	ane		310.93	408.15	0.067	59-low/spe
A2	1000.9301	-62.17320			13-Dode	cylhexaco	sane		310.93	408.15	0.068	59-low/spe
A2	969.12134	-46.83596	-1.614357		Tet	racontane			423.15	573.15	0.062	64-doo
A2	926.32880	-66.12200	-6.000000		2-Methy	l-1,3-buta	diene		273.15	323.15	0.000	95-trc-2
A1	2.685307	-6.022579	18.874341	-23.26466	1-] 10.842690	Pentene ^e	237.744	464.78	183.15	448.15	0.435	86-trc-1, 51 -day/fel ^d
Δ2	865 37793	-43 70657	-9 310863		2-Met	hyl-2-bute	ene		203 15	353 15	0 402	86_trc_1
A2	993 20963	-100 020	5.510005		(<i>E</i>)-1,4	4-Hexadie	ne		293 15	298 15	0.402	75-bur/ric
Δ2	989 29900	-92 000			(2 <i>Z</i> ,4 <i>E</i>)-	2,4-Hexad	liene		203 15	208 15	0.000 <i>f</i>	75-bur/ric
A9	007 60110	-67 020			1,5-1	Hexadiene	e		202.15	200.15	0.000	75 hur/ric
H2	001.02113	-07.020	07 050071	10 500 11	10 500044	Hexene	940 401	E04.00	293.13	470.15	0.000	7 J-DUI/ITC
AI	3.99/552	-14.24428	37.259271	-40.50644	16.509841 1-I	Heptene ^g	240.461	504.03	153.15	473.15	0.322	95-trc
A1	4.694761	-10.48309	14.073957	-5.554842			243.040	537.29	223.15	523.15	0.741	95-trc-1, 81-gus/naz ^d

Table 6. Continued

eq	a_0	a_1	a_2	a_3	a_4	a_5	$ ho_{c}/$ kg·m ⁻³	$T_{\rm c}/{ m K}$	$T_{\rm min}/{ m K}$	T _{max} /K	RMSD/ kg·m ⁻³	ref
					1	-Octene	0				0	
A1	7.845432	-20.70510	24.728860	-9.030274	1	Nononoh	243.946	566.70	273.15	393.15	0.061	86-trc
A2	960.14191	-78.76730	-0.002380			-inomenie			198.00	393.15	0.659	84-gus/gal, 86-trc
A2	1050.7355	-66.74182	2,6,	10,15,19,23-	Hexamethy	1-2,6,10,1	4,18,22-t	etracosa	hexaene 298.15	353.15	0.062	70-kus/tas
A1	8.142771	-24.21655	31.749720	-13.20848	Сус	lopentan	e ⁱ 275.037	511.70	188.63	353.15	0.174	92-bao/cac, 95-trc-3
A1	10.138970	-51.57038	121.91233	-125.5587	Methy 48.396848	lcyclopen	tane 263.829	532.73	253.15	393.15	0.081	95-trc-3
A1	1.626418	0.995043	-0.255766	-0.087998	Cy 0.474534	clohexan	e 273.251	553.50	273.15	553.15	0.179	91-trc
A2	1182.0050	-87.63877	-3.786667		Cycle	ohexane-	d_{12}		288.15	313.15	0.000 ^j	84-mat/van
A1	1.626075	1.195703	-0.691798	1.908529	Methy -4.062831	lcyclohex 2.9225	kane 266.816	572.20	143.15	568.15	0.168	91-trc
A2	1062.0709	-85.68000			Сус	cloheptan	ie		298.15	353.15	0.024	70-kus/tas
A1	4.074781	-5.478427	4.241512		Ethyl	lcyclohexa	ane 269.101	602.40	263.15	383.15	0.236	92-trc-1
A1	2.085256	-0.339364	0.991098		1- <i>cis</i> -2-Din	nethylcyc	lohexane 269.101	601.00	263.15	343.15	0.159	91-trc
A1	1.258428	1.535662			Cy	clooctane	^k 273.696	647.20	293.15	393.85	0.314	55-kus, 78-gou ^d
A1	1.523238	1.203265			trans-Bicy	yclo[4.4.0	decane 280.432	687.10	298.15	353.15	0.197	70-kus/tas
A2	1050.0535	-96.32193	3.666554		Butyl	cyclohexa	ane		253.15	393.15	0.086	92-trc-1
					Bio	cyclohexy	'l					
A2	1059.0066	-77.32000	5.000000		Octadeca	ahydroch	rysene		298.20	338.20	0.000/	88-sid/tej
A2	1159.4907	-61.15625				5	5		310.93	408.15	0.081	59-low/spe
A2	1079.22782	-64.84824		1,7-Dicyc	lopentyl-4-(3	3-cyclope	ntylpropy	l)heptai	ne 310.95	408.15	0.147	58-cut/mcm
A2	1014.2506	-40.66359	-3.233775	1-(1	-Decahydro	naphthyl)pentade	cane	333.15	408.15	0.132	58-cut/mcm
A2	1065.4843	-73.66552	1.091535	1-Cyclop	pentyl-4-(3-c	yclopenty	ylpropyl)o	lodecane	310.95	408.15	0.123	58-cut/mcm
A2	1053.1538	-63.79427		1-Cycle	ohexyl-3-(2-	cyclohexy	/lethyl)un	decane	310.95	408.15	0.122	58-cut/mcm
A2	1026.5511	-65.87219		9-	(2-Cyclohex	ylethyl)h	eptadeca	ne	310.95	408.15	0.301	58-cut/mcm
A2	1021.2846	-65.50544		9-(3-Cyclopent	ylpropyl)	heptadec	ane	310.95	408.15	0.150	58-cut/mcm
A2	1111.3631	-61.42616		1,1-E	Bis(decahydr	ro-1-naph	thyl)und	ecane	310.93	408.15	0.033	59-low/spe
A2	1623.1509	-266.9800			1,3-Cy	clohexad	iene		293.15	298.15	0.000 ^f	75-bur/ric
A2	2270.3436	-482.0200			1,4-Cy	clohexad	iene		293.15	298.15	0.000 ^f	75-bur/ric
A1	1.328770	1.273155			Су	clohexen	e 288.028	560.48	293.15	373.15	0.073	91-mel/mel ^d

^{*a*} From database 93-cda. Critical densities are given with three decimal points, since they were calculated from rounded values of critical molar volumes recorded in the database 93-cda. ^{*b*} Combination of data in temperature ranges: 207.93–298.17 K [93-bao/cac]; 283.15–463.15 K [92-trc]. ^{*c*} Average deviation between two fits in the interval 373–423 K is about 1.1 kg·m⁻³. ^{*d*} Fit of values obtained by extrapolation along an isotherm of elevated-pressure data to atmospheric or saturation pressure (*P*_{ref}) using the Tait equation. ^{*e*} Combination of data in temperature ranges: 183.15–323.15 K [86-trc-1]; 353.15–448.15 K [51-day/fel]. ^{*f*} Two density values available. ^{*g*} Combination of data in temperature ranges: 223.15–363.15 K [95-trc-1]; 373.15–523.15 K [81-gus/naz]. ^{*h*} Combination of data in temperature ranges: 188.63–302.08 K [92-bao/cac]; 263.15–353.15 K [95-trc-3]. ^{*j*} Polynomial interpolation. ^{*k*} Combination of data in temperature ranges: 293.15–353.15 K [55-kus]; 373.75–393.85 K [78-gou].

selected to get the correct derivative of the liquid–vapor saturation line at the critical point, $(d\rho/dT) \rightarrow -\infty$ for $T \rightarrow T_c$.

In the cases of the $P-\rho-T$ data sets for 1-octene and cyclohexane (denoted by the letter e in the last column of Table 4) where the reference density values $\rho(T, P_{ref}(T))$ (see

eq 1) were not available (nor original values, nor extrapolated ones), the reference density values calculated from the fits presented in Table 6 were employed in fitting the $P-\rho-T$ data by the Tait equation. The fits for other substances are presented in Table 6 as auxiliary information here, which may be useful particularly for less common substances. The functions can be used to calculate smoothed reference density values for evaluation of compressed liquid densities $\rho(T,P)$ from eq 1. Except for the fits of the values taken from the TRC Tables, the fits in Table 6 do not represent critically selected experimental data.

The densities [92-trc] for 2,3-dimethylbutane at low temperatures do not agree with the data of Baonza et al. [93-bao/cac] and Riembauer et al. [90-rie/sch]. Besides that, the fit of the values of the TRC Tables [92-trc] required seven parameters in eq A1 to get a satisfactory result. Replacement of the low-to-ambient-temperature densities [92-trc] by the values reported by Baonza et al. [93-bao/ cac] led to the fit with four parameters. Two fits are presented in Table 6 for eicosane; the deviations of the first fit from the second one in the overlapping temperature range are rather large (from $-1.1 \text{ kg} \cdot \text{m}^{-3}$ to 2.6 kg $\cdot \text{m}^{-3}$). The densities of 1-heptene at saturation pressure [83-mcg] obtained by the extrapolation of data [81-gus/naz] are consistent with the values of the TRC Tables [95-trc-1]; the fit of the combined data in Table 6 exhibits, however, the point of inflection at T = 517 K. The fit for cyclopentane does not cover the entire range of data [95-trc-3], since large deviations were observed for T > 363 K (up to the highest temperature 393.15 K); the fit could be improved by enlargement of the number of parameters in eq A1, but the fits with $a_0 < 0$ and two points of inflection resulted. Extrapolated values [78-gou] for cycloheptane are by about 1.5 kg·m⁻³ lower than the direct data of Kuss and Taslimi [70-kus/tas]; therefore, the two data sets were not combined for the fit. The data for cyclooctane from the same laboratory [55-kus] were combined with extrapolated values [78gou] for $T \ge 373.15$ K; the values for lower temperatures were rejected, since they differ from the data of Kuss [55kus] by -1.5 kg·m⁻³.

Literature Cited

29-fre/hub	Fryer, E. B.; Hubbard, J. C.; Andrews, D. H. Sonic Studies of the Physical Properties of Liquids. I. The Sonic Interferometer. The Velocity of Sound in Some Organic Liquids and their Compressibilities. <i>J. Am. Chem. Soc.</i> 1929 , <i>51</i> , 759–770.
31-bri	Bridgman, P. W. The Volume of Eighteen Liquids as a Function of Pressure and Temperature. <i>Proc.</i> <i>Am. Acad. Arts Sci.</i> 1931 , <i>66</i> , 185–233.
32-bri	Bridgman, P. W. Volume–Temperature–Pressure Relations for Several Nonvolatile Liquids. <i>Proc. Am.</i> <i>Acad. Arts Sci.</i> 1932 , <i>67</i> , 1–27.
34-rot/nag	Rotinjanz, L.; Nagornow, N. Die Zustandsflächen des Cyclohexans. (Phase Surfaces of Cyclohexane). <i>Z. Phys. Chem., Abt. A</i> 1934 , <i>169</i> , 20–30.
40-kel/fel	Kelso, E. A.; Felsing, W. A. The Pressure-Volume- Temperature Relations of <i>n</i> -Hexane and of 2-Me- thylpentane. <i>J. Am. Chem. Soc.</i> 1940 , <i>62</i> , 3132- 3134.
40-sch/hof	Schoch, E. P.; Hoffmann, A. E.; Mayfield, F. D. Solubility of Methane in Cyclohexane. <i>Ind. Eng. Chem.</i> 1940 , <i>32</i> , 1351–1353.
42-kel/fel	Kelso, E. A.; Felsing, W. A. P-V-T Relations and Derived Quantities for Hexanes. <i>Ind. Eng. Chem.</i> 1942 , <i>34</i> , 161–163.
43-fel/wat	Felsing, W. A.; Watson, G. M. The Pressure– Volume–Temperature Relations of 2,2-Dimethylbu- tane. <i>J. Am. Chem. Soc.</i> 1943 , <i>65</i> , 1889–1891.

43-fel/wat-1	Felsing, W. A.; Watson, G. M. The Pressure– Volume–Temperature Relations of 2,2,4-Trimeth- ylpentane. J. Am. Chem. Soc. 1943 , 65, 780–781.
44-sch	Schaaffs, W. Unterschungen über Schallgeschwin- digkeit und Konstitution. I. Teil: Die Schallge- schwindigkeit in organischen Flüssigkeiten. (A Study of Speed of Sound and Constitution. I. Speed of Sound in Organic Liquids.) Z. Phys. Chem. (Leipzig) 1944 , <i>194</i> , 28–38.
48-lag/mcm	Lagemann, R.; McMillan, D.; Woolsey, M. Ultra- sonic Velocity in Series of 1-Olefins. <i>J. Chem. Phys.</i> 1948 , <i>16</i> , 247–249.
49-bri	Bridgman, P. W. Further Rough Compressions to 40,000 kg/cm ² , Especially Certain Liquids. <i>Proc.</i> <i>Am. Acad. Arts Sci.</i> 1949 , <i>77</i> , 129–146.
49-wei	Weissler, A. Ultrasonic Investigation of Molecular Properties of Liquids. IV. Cyclic Compounds. J. Am. Chem. Soc. 1949 , 71, 419–421.
51-day/fel	Day, H. O.; Felsing, W. A. The Compressibility of Pentene-1. J. Am. Chem. Soc. 1951 , 73, 4839–4840.
52-day/fel	Day, H. O.; Felsing, W. A. The Pressure–Volume– Temperature Relations of 3-Methylpentane. J. Am. Chem. Soc. 1952 , 74, 1951–1953.
52-jac	Jacobson, B. Intermolecular Free Lengths in the Liquid State. I. Adiabatic and Isothermal Com- pressibilities. <i>Acta Chem. Scand.</i> 1952 , <i>6</i> , 1485– 1498.
54-isa/li	Isaac, R.; Li, K.; Canjar, L. N. Volumetric Behavior of Isopentane. <i>Ind. Eng. Chem.</i> 1954 , <i>46</i> , 199–201.
55-kus	Kuss, E. Hochdruckunterschungen III: Die Visko- sität von komprimierten Flüssigkeiten. (High-Pres- sure Investigation III: Viscosity of Compressed Liquids). Z. Angew. Phys. 1955 , 7, 372–378.
57-rea/sag	Reamer, H. H.; Sage, B. H. Phase Equilibria in Hydrocarbon Systems. Volumetric Behavior of Cy- clohexane. <i>Chem. Eng. Data Ser.</i> 1957 , <i>2</i> , 9–12.
58-cut/mcm	Cutler, W. G.; McMickle, R. H.; Webb, W.; Schiessler, R. W. Study of the Compressions of Several High Molecular Weight Hydrocarbons. <i>J. Chem. Phys.</i> 1958 , <i>29</i> , 727–740.
58-par/pan	Parthasarathy, S.; Pancholy, M.; Chhapgar, A. F. Ultrasonic Absorption in Some Homologous Series of Organic Liquids. Part II. Hydrocarbons. <i>Nuovo</i> <i>Cimento</i> 1958 , <i>10</i> , 118–131.
59-gol/vag	Golubev, I. F.; Vagina, E. N. Specific Mass of Benzene, Cyclohexane, and their Mixtures at High Pressures and Various Temperatures. <i>Tr. GIAF</i> 1959 , <i>9</i> , 95–107 (in Russian).
59-low/spe	Lowitz, D. A.; Spencer, J. W.; Webb, W.; Schiessler, R. W. Temperature–Pressure-Structure Effects on the Viscosity of Several Higher Hydrocarbons. J. Chem. Phys. 1959 , <i>30</i> , 73–83.
61-shi/hil	Shinoda, K.; Hildebrand, J. H. Compressibilities and Isochores of $(C_3H_7COOCH_2)_4C$, c-Si ₄ O ₄ (CH ₃) ₈ , n-C ₅ H ₁₂ , n -C ₈ H ₁₈ , 2,2,4-C ₅ H ₉ (CH ₃) ₃ , c-C ₅ H ₁₀ , c-C ₆ H ₁₂ , c-C ₆ H ₁₁ CH ₃ , C ₆ H ₅ CH ₃ , p-C ₆ H ₄ (CH ₃) ₂ , s-C ₆ H ₃ (CH ₃) ₃ , CH ₂ Cl ₂ . J. Chem. Phys. 1961 , 65, 183–183.
62-hol/wha	Holder, G. A.; Whalley, E. Compressibility of Liquids. Part 1. Experimental Methods, and Compressibility of Carbon Tetrachloride, Benzene and Cyclohexane. <i>Trans. Faraday Soc.</i> 1962 , <i>58</i> , 2095–2107.
63-brz/har	Brzostowski, W.; Hardman, T. M. Thermodynamics of Cyclohexane–Propanol Mixtures. I. Volume Prop- erties. <i>Bull. Acad. Pol. Sci., Ser. Sci. Chim.</i> 1963 , <i>11</i> , 447–452.
64-doo	Doolittle, A. K. Specific Volumes of <i>n</i> -Alkanes. J. Chem. Eng. Data 1964 , 9, 275–279.
67-orw/flo	Orwoll, R. A.; Flory, P. J. Equation-of-State Param- eters for Normal Alkanes. Correlation with Chain Length. J. Am. Chem. Soc. 1967 , <i>89</i> , 6814–6822.
68-gon/lee	Gonzales, M. H.; Lee, A. L. Viscosity of 2,2-Dim- ethylpropane. J. Chem. Eng. Data 1968 , 13, 66– 69.
69-bra/fre	Brazier, D. W.; Freeman, G. R. The Effect of Pressure on the Density, Dielectric Constant, and Viscosity of Several Hydrocarbons and Other Or- ganic Liquids. <i>Can. J. Chem.</i> 1969 , <i>47</i> , 893–899.

69-mop	Mopsik, F. I. Dielectric Properties of Slightly Polar Organic Liquids as a Function of Pressure, Volume, and Temperature. <i>J. Chem. Phys.</i> 1969 , <i>50</i> , 2559– 2569.
70-aba/ker	Abas-Zade, A. K.; Kerimov, A. M.; Agaev, N. A.; Apaev, T. A. Experimental Determination of Den- sity of Hydrocarbons. <i>Teplofiz. Svoistva Zhidk.,</i> <i>Nauka, Moskva</i> 1970 , 34–38 (in Russian).
70-ewi/lev	Ewing, M. B.; Levien, B. J.; Marsh, K. N.; Stokes, R. H. Excess Enthalpies, Excess Volumes, and Excess Gibbs Free Energies for Mixtures of Cyclo- octane + Cyclopentane at 288.15, 298.15, and 308.15 K. <i>J. Chem. Thermodyn.</i> 1970 , <i>2</i> , 689–695.
70-kus/tas	Kuss, E.; Taslimi, M. p. V, T-Messungen an Zwan- zig Organischen Flussigkeiten (p. V, T Measure- ment of Twenty Organic Liquids). <i>ChemIng</i> <i>Technol.</i> 1970 , <i>42</i> , 1073–1081.
71-hou/hey	Houck, J. C.; Heydemann, P. L. M. Combined Low- Pressure and High-Pressure Measurements of Den- sity and Bulk Modulus of Aviation Instrument Oil and 2-Methylbutane and their Mixtures. <i>J. Res.</i> <i>Natl. Bur. Stand., Sect. A</i> 1971 , <i>75</i> , 121–127.
71-ric/rog	Richard, A. J.; Rogers, K. S. The Isothermal Com- pressibility of Organic Liquids by Ultracentrifuga- tion. Correlation with Surface Tension. <i>Can. J.</i> <i>Chem.</i> 1971 , <i>49</i> , 3956–3959.
72-ewi/mar	Ewing, M. B.; Marsh, K. N.; Stokes, R. H. A Dilution Piezometer for Isothermal Compressibilities of Mix- tures. Excess Compressibilities of Benzene + Cy- clohexane at 298.15 K. <i>J. Chem. Thermodyn.</i> 1972 , <i>4</i> , 637–646.
72-gol/ada	Golik, A. Z.; Adamenko, I. I.; Borovik, V. V. Observation of $P-V-T$ Relation for n-Paraffins in the Interval of Pressure up to 2500 atm and Temperatures up to 120 degrees Centigrade. <i>Ukr. Fiz. Zh.</i> (<i>Ukr. Ed.</i>) 1972 , <i>17</i> , 2075–2078 (in Russian).
72-ker/apa	Kerimov, A. M.; Apaev, T. A. Experimental Values of Density of Hexene-1, Octene-1, Cyclohexene, Cyclohexane, and Methylcyclohexane in Depen- dence on Temperature and Pressure. <i>Teplofiz. Svoist-</i> <i>va Veshchestv Mater.</i> 1972 , <i>5</i> , 26–46 (in Russian).
72-lys	Lysne, P. C. Nonlinear U(u) Hugoniots of Liquids at Low Pressures. <i>J. Chem. Phys.</i> 1972 , <i>57</i> , 492– 949.
73-daw/sil	Dawson, P. P.; Silberberg, I. H.; McKetta. J. J. Volumetric Behavior, Vapor Pressures, and Critical Properties of Neopentane. <i>J. Chem. Eng. Data</i> 1973 , <i>18</i> , 7–51.
73-ker/apa	Kerimov, A. M.; Apaev, T. A. Experimental Observation of P–V–T Dependence of Cyclohexane in a Wide Range of Temperatures and Pressures. <i>Teplofiz. Svoistva Zhidk., Nauka, Moskva</i> 1973 , 84–88 (in Russian).
73-koh/luk	Kohn, J. P.; Luks, K. D. Isothermal Compressibility of Liquids at Low Pressures. <i>Chem. Eng. Commun.</i> 1973 , <i>1</i> , 107–109.
73-rog/bur	Rogers, K. S.; Burkat, R.; Richard, A. J. The Ultracentrifuge as a Pressure-Densitometer. <i>Can.</i> <i>J. Chem.</i> 1973 , <i>51</i> , 1183–1186.
73-trc	TRC Tables 23-2-(1.101)-d. C–H. Normal Alkanes (Paraffins), C ₁ to C ₂₀ . <i>TRC Thermodynamic Tables–</i> <i>Hydrocarbons</i> ; Thermodynamics Research Center, The Texas A&M University System: College Sta- tion, TX, 1973; pp 1010–1015.
74-apa/ker	Apaev, T. A.; Kerimov, A. M. Experimental Observation of Density of Cyclohexane at High Pressures and Various Temperatures. <i>Izv. Vyssh. Uchebn. Zaved., Neft Gaz</i> 1974 , <i>17</i> (4), 78–106 (in Russian).
74-ewi/mar	Ewing, M. B.; Marsh, K. N. Excess Functions for Cyclopentane + Cyclohexane, Cyclopentane + Cy- cloheptane, and Cyclohexane + Cyclo-octane. <i>J.</i> <i>Chem. Thermodyn.</i> 1974 , <i>6</i> , 395–406.
74-hou	Houck, J. C. High-Pressure Measurements of Den- sity, Velocity of Sound, and Bulk Moduli of Pentane and 2-Methylbutane and their Mixtures. <i>J. Res.</i> <i>Natl. Bur. Stand., Sect. A</i> 1974 , <i>78</i> , 617–622.
74-jai/nor	Jain, D. V. S.; North, A. M.; Pethrick, R. A. Adiabatic Compressibility of Binary Liquid Mix- tures. <i>J. Chem. Soc., Faraday Trans. 1</i> 1974 , <i>70</i> , 1292–1298.

74-rao/nai	Rao, M. V. P.; Naidu, P. R. Isentropic Compress- ibilities of Mixtures of an Alcohol + Methylcyclo- hexane. J. Chem. Thermodyn. 1974, 6, 1195–1196.
75-bur/ric	Burkat, R. K.; Richard, A. J. Low-pressure Studies of the Isothermal Compressibilities and Specific Volumes of Organic Liquids. <i>J. Chem. Thermodyn.</i> 1975 , <i>7</i> , 271–277.
75-gri/mur	Grigoriev, B. A.; Murdaev, R. M.; Rastorguev, Yu. L. Experimental Observation of P–V–T Dependence of Cyclohexane at High Temperatures and Pressures. <i>Izv. Vyssh. Uchebn. Zaved., Neft Gaz</i> 1975 , <i>18</i> (3), 61–63 (in Russian).
75-luk/dav	Luks, K. D.; Davis, H. T.; Kohn, J. P. The Isother- mal Compressibility of the Liquid Mixtures Neo- pentane + <i>n</i> -Hexane and <i>n</i> -Hexane + <i>n</i> -Decane at Low Pressures and 298.15 K: Experiment and Theory. <i>J. Chem. Thermodyn.</i> 1975 , <i>7</i> , 311–318.
75-ras/gri	Rastorguev, Yu. L.; Grigoriev, B. A.; Murdaev, R. M. Experimental Observation of P-V-T Dependence of Cyclohexane in Liquid Phase. <i>Izv. Vyssh. Uchebn. Zaved., Neft Gaz</i> 1975 , <i>18</i> (1), 66–70 (in Russian).
75-zor/hen	Zordan, T. A.; Henry, R. M. Volumetric Properties of Liquid Propylene <i>J. Chem. Eng. Data</i> 1975 , <i>20</i> , 343–347.
76-sah/gag	Sahli, B. P.; Gager, H.; Richard, A. J. Ultracentrifu- gal Studies of the Isothermal Compressibilities of Organic Alcohols and Alkanes. Correlation with Surface Tension. <i>J. Chem. Thermodyn.</i> 1976 , <i>8</i> , 179–188.
77-ewi/mar	Ewing, M. B.; Marsh, K. N. Isothermal Compress- ibilities of Cyclopentane + Cyclo-octane and + Octamethylcyclotetrasiloxane at 298.15 K. <i>J. Chem.</i> <i>Thermodyn.</i> 1977 , <i>9</i> , 371–374.
78-gou	Gouel, P. Density of Alkanes (C ₆ to C ₁₆), Cycloal- kanes, and Alkylbenzenes. <i>Bull. Cent. Rech. Ex-</i> <i>plorProd. Elf-Aquitaine</i> 1978 , <i>2</i> , 211–225 (in French).
78-gro/wil	Grolier, JP. E.; Wilhelm, E.; Hamedi, M. H. Molar Heat Capacity and Isothermal Compressibility of Binary Liquid Mixtures: Carbon Tetrachloride + Benzene, Carbon Tetrachloride + Cyclohexane, and Benzene + Cyclohexane. <i>Ber. Bunsen-Ges. Phys.</i> <i>Chem.</i> 1978 , <i>82</i> , 1282–1290.
78-kiy/hal	Kiyohara, O.; Halpin, C. J.; Benson, G. C. Ultra- sonic Velocities, Compressibilities, and Heat Ca- pacities for Binary Mixtures of Benzene, Cyclohex- ane and Tetrachloromethane at 298.15 K. <i>J. Chem.</i> <i>Thermodyn.</i> 1978 , <i>10</i> , 721–730.
79-dic	Dick, R. D. Shock Compression Data for Liquids. I. Six Hydrocarbon Compounds. <i>J. Chem. Phys.</i> 1979 , <i>71</i> , 3203–3212.
79-dyk/rep	Dykyj, J.; Repáš, M. <i>Vapour Pressure of Organic Compounds</i> , Veda: Bratislava, 1979 (in Czech).
79-isd/dym	Isdale, J. D.; Dymond, J. H.; Brawn, T. A. Viscosity and Density of <i>n</i> -Hexane–Cyclohexane Mixtures Between 25 and 100 °C up to 500 MPa. <i>High</i> <i>Temp.</i> — <i>High Pressures</i> 1979 , <i>11</i> , 571–580.
79-jon/has	Jonas, J.; Hasha, D.; Huang, S. G. Self-diffusion and Viscosity of Methylcyclohexane in the Dense Liquid Region. <i>J. Chem. Phys.</i> 1979 , <i>71</i> , 3996–4000.
79-kas/fuk	Kashiwagi, H.; Fukunaga, T.; Tanaka, Y.; Kubota, H.; Makita, T. Dielectric Constant and Density of Cyclohexane–Benzene Mixture under High Pres- sure. <i>Rev. Phys. Chem. Jpn.</i> 1979 , <i>49</i> , 70–84.
80-aic/tar	Aicart, E.; Tardajos, G.; Diaz Pena, M. Isothermal Compressibility of Cyclohexane $+$ <i>n</i> -Hexane, Cy- clohexane $+$ <i>n</i> -Heptane, Cyclohexane $+$ <i>n</i> -Octane, and Cyclohexane $+$ <i>n</i> -Nonane. <i>J. Chem. Eng. Data</i> 1980 , <i>25</i> , 140–145.
80-jon/has	Jonas, J.; Hasha, D.; Huang, S. G. Density Effects on Transport Properties in Liquid Cyclohexane. <i>J.</i> <i>Phys. Chem.</i> 1980 , <i>84</i> , 109–112.
80-oza/ooy	Ozawa, S.; Ooyatsu, N.; Yamabe, M.; Honmo, S.; Ogino, Y. Specific Volumes of Binary Liquid Mix- tures at High Pressures. 1. Experimental Results for (Ethanol + Methylcyclopentane), (<i>n</i> -Heptane + Ethanol), and (Methylcyclopentane + <i>n</i> -Heptane). <i>J. Chem. Thermodyn.</i> 1980 , <i>12</i> , 229–242.

81-aic/tar	Aicart, E.; Tardajos, G.; Diaz Pena, M. Isothermal Compressibility of Cyclohexane + <i>n</i> -Tridecane and + <i>n</i> -Pentadecane at 298.15, 308.15, 318.15, and 333.15 K. <i>J. Chem. Thermodyn.</i> 1981 , <i>13</i> , 783–788.	84-mat/van	Matsuo, S.; Van Hook, A. Isothermal Compress- ibility of C_6H_6 , C_6D_6 , $c-C_6H_{12}$, $c-C_6D_{12}$, and their Mixtures from 0.1 to 35 MPa at 288, 298, and 313 K. J. Phys. Chem. 1984 , 88, 1032–1040.
81-aic/tar-1	Aicart, E.; Tardajos, G.; Diaz Pena, M. Isothermal Compressibility of Cyclohexane + <i>n</i> -Decane, Cyclo- hexane + <i>n</i> -Dodecane, and Cyclohexane + <i>n</i> -Tet- radecane. <i>J. Chem. Eng. Data</i> 1981 , <i>26</i> , 22–26.	85-cos/bha	Costas, M.; Bhattacharyya, S. N.; Patterson, D. Liquid Structure and the Thermal Pressure Coef- ficients of Cyclohexane + Normal- and Branched- Alkane Mixtures. J. Chem. Soc., Faraday Trans. 1 1985, 81, 387–395.
81-bue/mau	Buehner, K.; Maurer, G.; Bender, E. Pressure- Enthalpy Diagrams for Methane, Ethane, Propane, Ethylene, and Propylene. <i>Cryogenics</i> 1981 , 157– 164.	85-dym/isd	Dymond, J. H.; Isdale, J. D.; Glen, N. F. Density Measurement at High Pressure. <i>Fluid Phase Equilib.</i> 1985 , <i>20</i> , 305–314.
81-gus/naz	Guseinov, S. O.; Naziev, Ya. M.; Shakhverdiev, A. N. Thermodynamic Properties of Heptene-1 at High Pressures. <i>Izv. Vyssh. Uchebn. Zaved., Neft Gaz</i> 1981 , <i>24</i> (7), 62–64 (in Russian).	85-lav/jak	Lavrentjev, I. P.; Jakovlev, V. F. Speed of Ultra- sound and Viscosity in Cyclohexane along the Saturation Line. <i>Zh. Fiz. Khim.</i> 1985 , <i>59</i> , 2893– 2894 (in Russian).
82-bro/lop	Brostow, W.; Lopez, D. M. M.; Maynadier, P. Isothermal Compressibility of Liquids: New Results on Temperature Dependence. <i>Proc. 8th Symp. Ther-</i> <i>mophys. Prop. Vol. 1: Thermophysical Properties</i>	85-let/bax	Letcher, T. M.; Baxter, R. C. Excess Volumes and Enthalpies of Mixing Benzene with Various Bicyclic Compounds. <i>J. Solution Chem.</i> 1985 , <i>14</i> , 35–40.
82-gus/gal	of Fluids 1982 , 122–127. Guseinov, S. O.; Galandarov, Z. S. Observation of	85-mar/bha	Marwein, B. L.; Bhat, S. N. Ultrasonic Study of Molecular Interactions in Ternary Liquid Systems. <i>Acustica</i> 1985 , <i>58</i> , 243–247.
	Density of Hexene-1 at Low Temperatures and Various Pressures. <i>Izv. Vyssh. Uchebn. Zaved., Neft Gaz</i> 1982 , <i>25</i> (8), 66–68 (in Russian).	85-tam/mur	Tamura, K.; Murakami, S.; Doi, S. Speeds of Sound, Densities, and Isentropic Compressibilities of $\{xc-C_6H_{12} + (1-x)C_6H_5CH_3\}, \{xc-C_6H_{11}CH_3 + (1-x)-(1$
82-tre/han	Treszczanowicz, A. J.; Handa, Y. P.; Benson, G. C. Excess Volumes and Isentropic Compressibilities of Decan-1-ol + 2,2-DirectlyDutane and + 2,2,4-		C_6H_6 , and {xc- $C_6H_{11}CH_3$ + (1-x) $C_6H_5CH_3$ }, from 293.15 to 303.15 K. <i>J. Chem. Thermodyn.</i> 1985 , <i>17</i> , 325–333.
82-wis/wue	Wisotzki, K. D.; Wuerflinger, A. PVT Data for	85-tek/cib	Tekáč, V.; Cibulka, I.; Holub, R. PVT Properties of Liquids and Liquid Mixtures: A Review of the Experimental Methods and the Literature Data.
	Cyclopentanol up to 3000 bar. <i>J. Phys. Chem. Solids</i> 1982 , <i>43</i> , 13–20.	86-hol/goe	Holzapfel, K.; Goetze, G.; Kohler, F. Volume and Isothermal Compressibility of Some Normal Al-
83-aic/kum	Aicart, E.; Kumaran, M. K.; Halpin, C. J.; Benson, G. C. Ultrasonic Speeds and Isentropic Compress- ibilities of 2-Methylpentan-1-ol with Hexane Iso- mers at 298.15 K. <i>J. Chem. Thermodyn.</i> 1983 , <i>15</i> ,		kanes (C_5-C_{16}) + 2,2,4-Trimethylpentane, + Cy- cloalkanes (C_5 , C_6 , C_8), or Methylcyclohexane. <i>Int.</i> <i>Data Ser., Sel. Data Mixtures, Ser. A</i> 1986 , <i>1</i> , 39– 39.
83-aww/pet	1189–1197. Awwad, A. M.; Pethrick, R. A. Adiabatic Compress- ibility of Branched Chain Hydrocarbons—Pentanes and Hexanes. <i>J. Mol. Lig.</i> 1983 , <i>25</i> , 115–127.	86-jah/jac	Jahangiri, M.; Jacobsen, R. T.; Stewart, R. B. Thermodynamic Properties of Ethylene from the Freezing Line to 450 K at Pressures to 260 MPa. <i>J. Phys. Chem. Ref. Data</i> 1986 , <i>15</i> , 593–734.
83-gus/sha	Guseinov, S. O.; Shakhverdiev, A. N.; Naziev, Ya. M. Experimental Observation of Density of Ethyl- cyclohexane at Various Parameters of State. <i>Izv.</i> <i>Vvssh. Uchehn. Zaved Neft Gaz</i> 1983 . <i>26</i> (3), 50–	86-tar/dia	Tardajos, G.; Diaz Pena, M.; Lainez, A.; Aicart, E. Speed of Sound in and Isothermal Compressibility and Isobaric Expansivity of Pure Liquids at 298.15 K. <i>J. Chem. Eng. Data</i> 1986 , <i>31</i> , 492–493.
83-mcg	52 (in Russian). McGarry, J. Correlation and Prediction of the Vapor Pressures of Pure Liquids over Large Pressure Ranges. <i>Ind. Eng. Chem., Process Des. Dev.</i> 1983 , 22 312–332	86-trc	TRC Tables 23-2-(5.1101)-d. C–H. 1-Alkenes (Nor- mal Monoolefins), C ₂ to C ₂₀ . <i>TRC Thermodynamic</i> <i>Tables–Hydrocarbons</i> ; Thermodynamics Research Center, The Texas A&M University System: Col- lege Station, TX, 1986; pp 2500–2502.
83-nat/tri	Nath, J.; Tripathi, A. D. Binary Systems of 1,1,2,2- Tetrachloroethane with Benzene, Toluene, <i>p</i> -Xy- lene, Acetone, and Cyclohexane. 1. Excess Volumes, Ultrasonic Velocities, and Adiabatic Compressibili-	86-trc-1	TRC Tables 23-2-(5.1200)-d. C–H. Alkenes (Mo- noolefins), C ₂ to C ₅ . <i>TRC Thermodynamic Tables—</i> <i>Hydrocarbons</i> ; Thermodynamics Research Center, The Texas A&M University System: College Sta- tion, TX, 1986; pp 2600–2602.
00 / / 1	1983 , 28, 263–266.	87-hol/goe	Holzapfel, K.; Goetze, G.; Demiriz, A. M.; Kohler, F. Volume and Isothermal Compressibility of Some
83-tam/0n0	Sound, Isentropic and Isothermal Compressibilities, and Isochoric Heat Capacities of $\{xc-C_6H_{12} + (1-x)-C_6H_6\}, \{xCCI_4 + (1-x)C_6H_6\}, and \{xC_7H_{16} + (1-x)-C_6H_6\}$ at 298.15 K. J. Chem. Thermodyn. 1983 , <i>15</i> , 859–868.		Normal Alkanes $(C5-C16) + 2,3$ -Dimethylbutane, + Methylcyclopentane, + Butylcyclohexane, + Ben- zene, + 2-Propanone, or + Tetrachloromethane. <i>Int.</i> <i>Data Ser., Sel. Data Mixtures, Ser. A</i> 1987 , <i>1</i> , 30– 56.
83-wax/gal	Waxman, M.; Gallagher, J. S. Thermodynamic Properties of Isobutane from 250 to 600 K and Pressures from 0.1 to 40 MPa. <i>J. Chem. Eng. Data</i> 1983 , <i>28</i> , 224–241.	87-led	Lederer, T. Molvolumina von reinen flussigen Stof- fen und der binaren Mischung BUTAN-1-OL/N- HEXAN bei hohem Druck und verschiedenen Tem- peraturen. Thesis, Heidelberg University, Germany, 1987, pp 1–94.
84-aww/pet	Awwad, A. M.; Pethrick, R. A. Isentropic Compress- ibilities of Hydrocarbons and their Mixtures. Mix- tures of Linear and Branched-chain Alkanes. <i>J.</i> <i>Chem. Thermodyn.</i> 1984 , <i>16</i> , 131–136.	87-man/cri	Mansker, L. D.; Criser, A. C.; Jangkamolkulchai, A.; Luks, K. D. The Isothermal Compressibility of n-Paraffin Liquids at Low Pressures. <i>Chem. Eng.</i> <i>Commun</i> 1987 , <i>57</i> , 87–93
84-bou/fri	Boublík, T.; Fried, V.; Hála, E. <i>Vapour Pressure of Pure Substances</i> ; Elsevier: Amsterdam, 1984.	87-oho/tam	Ohomuro, K.; Tamura, K.; Murakami, S. Speeds of Sound, Excess Molar Volumes, and Isentronic Com-
84-gus/gal	Guseinov, S. O.; Galandarov, Z. S. Observation of Density and Dynamic Viscosity of Nonene-1 at Various Temperatures and Pressures. <i>Izv. Vyssh.</i> <i>Uchebn. Zaved., Neft Gaz</i> 1984 , <i>27</i> (4), 50–55 (in Russian)		pressibilities of $\{xCH_3COC_2H_5 + (1-x)C_7H_{16}\}, \{xCH_3COC_2H_5 + (1-x)C_7H_{16}\}, \{xCH_3COC_2H_5 + (1-x)C_7H_{16}\}, \{xCH_3COC_2H_5 + (1-x)C_7H_{16}\}, and \{xC_2H_5COC_2H_5 + (1-x)C_7H_{16}\}, at 298.15 K. J. Chem Thermodyn 1987 [9] 163–169$

- bles 23-2-(5.1101)-d. C-H. 1-Alkenes (Nornoolefins), C₂ to C₂₀. TRC Thermodynamic Hydrocarbons, Thermodynamics Research The Texas A&M University System: Coltion, TX, 1986; pp 2500–2502.
- bles 23-2-(5.1200)-d. C-H. Alkenes (Mos), C₂ to C₅. TRC Thermodynamic Tablesarbons; Thermodynamics Research Center, as A&M University System: College Sta-1986; pp 2600-2602
- el, K.; Goetze, G.; Demiriz, A. M.; Kohler, ne and Isothermal Compressibility of Some Alkanes (C5-C16) + 2,3-Dimethylbutane, Alkanes (c_{3}^{-} c_{10}^{-}) + 2,5-Dimetrybutane, vlcyclopentane, + Butylcyclohexane, + Ben-2-Propanone, or + Tetrachloromethane. *Int.* r., Sel. Data Mixtures, Ser. A 1987, 1, 30-
- T. Molvolumina von reinen flussigen Stofder binaren Mischung BUTAN-I-OL/Nbei hohem Druck und verschiedenen Temen. Thesis, Heidelberg University, Germany, 1 - 94.
- r, L. D.; Criser, A. C.; Jangkamolkulchai, s, K. D. The Isothermal Compressibility of in Liquids at Low Pressures. Chem. Eng. n. **1987**, *57*, 87–93.
- o, K.; Tamura, K.; Murakami, S. Speeds of Excess Molar Volumes, and Isentropic Com-Excess field volumes, and isensity of con-ities of $\{xCH_3COc_2H_5 + (1-x)C_7H_{16}\}, \{xCH_3 + (1-x)c-C_6H_{12}\}, \{xCH_3COc_2H_5 + (1-x)c H_3\}, \{xC_2H_5COC_2H_5 + (1-x)C_7H_{16}\}, and$ $COC_2H_5 + (1-x)c-C_6H_{12}\}$ at 298.15 K. J. *Thermodyn.* **1987**, *19*, 163–169. Chem

87-pet/van	Peters, C. J.; van der Kooi, H. J.; de Swan Arons, J. Measurements and Calculations of Phase Equilibria for (Ethane + Tetracosane) and (p, Vm, T) of Liquid Tetracosane. <i>J. Chem. Thermodyn.</i> 1987 , <i>19</i> , 395–405.	91- _]
87-sun/kor	Sun, T. F.; Kortbeek, P. J.; Trappeniers, N. J.; Biswas, S. N. Acoustic and Thermodynamic Proper- ties of Benzene and Cyclohexane as a Function of Pressure and Temperature. <i>Phys. Chem. Liq.</i> 1987 , <i>16</i> , 163–178.	91-9
87-you/ely	Younglove, B. A.; Ely, J. F. J. Thermophysical Properties of Fluids. II. Methane, Ethane, Propane, Isobutane, and Normal Butane. <i>J. Phys. Chem. Ref.</i> <i>Data</i> 1987 , <i>16</i> , 577–789.	91-t
88-dym/mal	Dymond, J. H.; Malhotra, R.; Isdale, J. D.; Glen, N. F. (p, ρ , T) of <i>n</i> -Heptane, Toluene, and Oct-1-ene in the Range 298 to 373 K and 0.1 to 400 MPa and Representation by the Tait Equation. <i>J. Chem. Thermodyn.</i> 1988 , <i>20</i> , 603–614.	91-1
88-mor/aon	Moriyoshi, T.; Aono, T. Compressions of C6 Hydro- carbons from 298.15 to 313.15 K at Pressures to 145 MPa. <i>J. Chem. Thermodyn.</i> 1988 , <i>20</i> , 185–191.	91-1
88-pet/spi	Peters, C. J.; Spiegelaar, J.; de Swaan Arons, J. Phase Equlibria in Binary Mixtures of Ethane + Docosane and Molar Volumes of Liquid Docosane. <i>Fluid Phase Equilib.</i> 1988 , <i>41</i> , 245–256.	92-1
88-sid/tej	Siddiqi, S. A.; Teja, A. S. High-Pressure Densities of Mixtures of Coal Chemicals. <i>Chem. Eng. Com-</i> <i>mun.</i> 1988 , <i>72</i> , 159–169.	021
88-tre/ben	Treszczanowicz, A. J.; Benson, G. C. Prediction of Excess Volumes of 1-Alkanols + Branched Aliphatic Hydrocarbon Binary Systems in Terms of an As- sociation Model with a Flory Contribution Term. <i>Fluid Phase Equilib.</i> 1988 , <i>41</i> , 31–42.	92-]
89-fri/ely	Friend, D. G.; Ely, J. F.; Ingham, H. Thermophysi- cal Properties of Methane. <i>J. Phys. Chem. Ref. Data</i> 1989 , <i>18</i> , 583–638.	92-1
89-ohn/fuj	Ohnishi, K.; Fujihara, I.; Murakami, S. Thermody- namic Properties of Decalins Mixed with Hexane Isomers at 298.15 K. II. Excess Volumes and Isentropic Compressibilities. <i>Fluid Phase Equilib.</i> 1989 , <i>46</i> , 73–84.	92-t
89-vos/slo	Voss, S. F.; Sloan, E. D. Thermal Conductivity and Heat Capacity of Synthetic Fuel Components. <i>Int.</i> <i>J. Thermophys.</i> 1989 , <i>10</i> , 1029–1040.	92-t
90-mal/woo	Malhotra, R.; Woolf, L. A. Thermodynamic Proper- ties of 2,2,4-Trimethylpentane. <i>Int. J. Thermophys.</i> 1990 , <i>11</i> , 1059–1072.	
90-pol/wei	Polzin, B.; Weiss, A. Transport Properties of Liq- uids. VIII. Molar Volume and Selfdiffusion of Or- ganic Liquids at Pressures up to 200 MPa. <i>Ber.</i> <i>Bunsen-Ges. Phys. Chem.</i> 1990 , <i>94</i> , 746–758.	92-
90-rie/sch	Riembauer, M.; Schulte, L.; Wuerflinger, A. PVT Data of Liquid and Solid Phases of Methanol, Cyclohexanol, and 2,3-Dimethylbutane up to 300 MPa. <i>Z. Phys. Chem. (Munich)</i> 1990 , <i>166</i> , 53-61.	93-l
90-sek/ven	Sekar, P. R.; Venkateswarlu, R.; Reddy, K. S. Excess Volumes, Isentropic Compressibilities, and Viscosities of Binary Mixtures Containing Cyclo- hexene. <i>Can. J. Chem.</i> 1990 , <i>68</i> , 363–368.	93-0
90-tos/fig	Toscani, S.; Figuiere, P.; Szwarc, H. Measurements of (p, ρ , T on c-C ₆ H ₁₂ and on 0.501 c-C ₆ H ₁₂ + 0.499 <i>n</i> -C ₇ H ₁₆) at Pressures up to 100 MPa. <i>J. Chem. Thermodyn.</i> 1990 , <i>22</i> , 293–300.	93-1
90-trc	TRC Tables 23-2-(1.203)-d. C–H. Alkanes (Paraffins), C ₈ . <i>TRC Thermodynamic Tables–Hydro-carbons</i> ; Thermodynamics Research Center, The Texas A&M University System: College Station, TX, 1990; pp 1490–1497.	93-y
91-fri/ing	Friend, D. G.; Ingham, H.; Ely, J. F. Thermophysi- cal Properties of Ethane. <i>J. Phys. Chem. Ref. Data</i> 1991 , <i>20</i> , 275–347.	94-a
91-mel/mel	Melikhov, Yu. F.; Mel'nikov, G. A.; Tutov, V. M.; Verveiko, V. N. Acoustic and Thermophysical Prop- erties of Some Derivatives of Hexane at High Parameters of State. <i>Izv. Vyssh. Uchebn. Zaved.,</i> <i>Energ.</i> 1991 , <i>34</i> (11), 73–78 (in Russian).	

oap/zia	Papaioannou, D.; Ziakas, D.; Panayiotou, G. Volu
•	metric Properties of Binary Mixtures. 1. 2-Pro-
	panone $+$ 2,2,4-Trimethylpentane and <i>n</i> -Heptane
	+ Ethanol Mixtures. J. Chem. Eng. Data 1991, 36
	35-39.

- 91-set/wag Setzman, U.; Wagner, W. A New Equation of State and Tables of Thermodynamic Properties for Methane Covering the Range from the Melting Line to 625 K at Pressures up to 1000 MPa. J. Phys. Chem. Ref. Data **1991**, 20, 1061–1155.
- 91-tan/hos Tanaka, Y.; Hosokawa, H.; Makita, T. Viscosity and Density of Binary Mixtures of Cyclohexane with *n*-Octane, n-Dodecane, and n-Hexadecane under High Pressures. Int. J. Thermophys. 1991, 12, 245– 264.
- 91-trc TRC Tables 23-2-(3.1112)-d. C-H. Alkylcyclohexanes, C₆ to C₈. TRC Thermodynamic Tables-Hydrocarbons; Thermodynamics Research Center, The Texas A&M University System: College Station, TX, 1991; pp 2100-2101.
- 91-trc-1 TRC Tables 23-2-(1.202)-d. C-H. Alkanes (Paraffins), C7. TRC Thermodynamic Tables-Hydrocarbons; Thermodynamics Research Center, The Texas A&M University System: College Station, TX, 1991; pp 1460-1461.
- 92-bao/cac Baonza, V. G.; Caceres, M.; Nunez Delgado, J. Study of the Equation of State of Cyclopentane from 193 to 298 K and Pressures up to 104 MPa. *Ber. Bunsen-Ges. Phys. Chem.* **1992**, *96*, 1859–1868.
- 92-lag/bon Lagourette, B.; Boned, C.; Saint-Guirons, H.; Xans, P.; Zhou, H. Densimeter Calibration Method Versus Temperature and Pressure. *Meas. Sci. Technol.* **1992**, *3*, 669–703.
- 92-naz/gas Naziev, Ya. M.; Gasanov, V. G.; Naziev, D. Ya.; Allakhverdiev, A. M. Observation of P-V-T Dependence of isooctane and Octene-1 at Various Temperatures and Pressures. Izv. Vyssh. Uchebn. Zaved., Neft Gaz 1992, (5), 54-56 (in Russian).
- 92-trc TRC Tables 23-2-(1.201)-d. C–H. Alkanes, C₆. *TRC Thermodynamic Tables—Hydrocarbons*, Thermodynamics Research Center, The Texas A&M University System: College Station, TX, 1992; pp 1440– 1441.
- 92-trc-1 TRC Tables 23-2-(3.1110)-d. C-H. n-Alkylcyclohexanes, C₆ to C₂₂. TRC Thermodynamic Tables-Hydrocarbons; Thermodynamics Research Center, The Texas A&M University System: College Station, TX, 1992; pp 2050-2051.
- 92-wal/bar Walter, T.; Bardelmeier, U.; Wuerflinger, A. Ultrasonic Studies of Rotational Isomerism and P, V, T Data of 2-Methylbutane at Elevated Pressures. *Ber. Bunsen-Ges. Phys. Chem.* **1992**, *96*, 717–721.
- 93-bao/cac
 Baonza, V. G.; Caceres Alonso, M.; Nunez Delgado, J. Study of the Equation of State of Liquid 2,3-Dimethylbutane at High Pressures. J. Phys. Chem. 1993, 97, 2002–2008.
- 93-cda CDATA, Database of Physical and Transport Properties of Pure Fluids. Department of Physical Chemistry, Institute of Chemical Technology: Prague; FIZ CHEMIE GmbH: Berlin, 1993.
- 93-mal/woo Malhotra, R.; Woolf, L. A. Volumetric Measurements under Pressure for 2,2,4-Trimethylpentane at Temperatures up to 353.15 K and for Benzene and Three of their Mixtures at Temperatures up to 348.15 K. Int. J. Thermophys. **1993**, *14*, 1153–1172.
- 93-yok/ebi Yokoyama, C.; Ebina, T.; Takahashi, S. Melting Temperatures of Several Polycyclic Aromatic Compounds under High Pressures. *Fluid Phase Equilib.* **1993**, *84*, 207–223.
- 94-ami/ara
 Aminabhavi, T. M.; Aralaguppi, M. I.; Gopalakrishna, B.; Khinnavar, R. S. Densities, Shear Viscosities, Refractive Indices, and Speed of Sound of Bis(2-methoxyethyl) Ether with Hexane, Heptane, Octane, and 2,2,4-Trimethylpentane in the Temperature Interval 298.15–318.15 K. J. Chem. Eng. Data 1994, 39, 522–528.

94-pad/far	Padua, A. A. H.; Fareleira, J. M. N. A.; Calado, J. C. G.; Wakeham, W. A. A Vibrating-wire Densim- eter for Liquids at High Pressures: The Density of 2,2,4-Trimethylpentane from 298.15 to 348.15 K and up to 100 MPa. <i>Int. J. Thermophys.</i> 1994 , <i>15</i> , 229–243.	96-cib/hne 96-hah/ulc
95-ami/gop	Aminabhavi, T. M.; Gopalakrishna, B. J. Density, Viscosity, Refractive Index, and Speed of Sound in Binary Mixtures of 2-Ethoxyethanol with <i>n</i> -Alkanes (C_6 to C_{12}), 2,2,4-Trimethylpentane, and Cyclohex- ane in the Temperature Interval 298.15–313.15 K. <i>J. Chem. Eng. Data</i> 1995 , 40, 632–641.	96-pad/far
95-fuj/tam	Fujii, S.; Tamura, K.; Murakami, S. Thermody- namic Properties of (an Alkylbenzene + Cyclohex- ane) at the Temperature 298.15 K. <i>J. Chem. Ther-</i> <i>modyn.</i> 1995 . <i>27</i> , 1319–1328.	2.2. 1/0
95-mie/osw	Mier, W.; Oswald, G.; Tusel-Langer, E.; Lichtentha- ler, R. N. Excess Enthalpy H ^E of Binary Mixtures Containing Alkanes, Ethanol and Ethyl- <i>tert</i> -Butyl Ether (ETBE). <i>Ber. Bunsen-Ges. Phys. Chem.</i> 1995 , <i>99</i> , 1123–1130.	96-pad/tar
95-osw/pat	Oswal, S.; Patel, A. T. Speeds of Sound, Isentropic Compressibilities, and Excess Volumes of Binary Mixtures. 2. Mono- <i>n</i> -alkylamines with Cyclohexane and Benzene. <i>J. Chem. Eng. Data</i> 1995 , <i>40</i> , 194– 198.	90-urc
95-pen/jac	Penoncello, S. G.; Jacobsen, R. T.; Goodwin, A. R. H. A Thermodynamic Property Formulation for Cyclohexane. <i>Int. J. Thermophys.</i> 1995 , <i>16</i> , 519– 531.	96-zad/ruz
95-trc	TRC Tables 23-2-(5.12010)-d. C–H. <i>n</i> -Alkenes (Mo- noolefins), C ₆ . <i>TRC Thermodynamic Tables–Hydro-</i> <i>carbons</i> ; Thermodynamics Research Center, The Texas A&M University System: College Station, TX, 1995; pp 2630–2631.	97-bay/bon
95-trc-1	TRC Tables 23-2-(5.12020)-d. C–H. <i>n</i> -Alkenes (Mo- noolefins), C ₇ . <i>TRC Thermodynamic Tables–Hydro-</i> <i>carbons</i> ; Thermodynamics Research Center, The Texas A&M University System: College Station, TX, 1995; pp 2650–2651.	97-oho/tan
95-trc-2	TRC Tables 23-2-(5.22020)-d. C–H. Alkadienes, C_3 to C_5 . <i>TRC Thermodynamic Tables–Hydrocarbons</i> ; Thermodynamics Research Center, The Texas A&M University System: College Station, TX, 1995; pp 2750–2751.	99-cib/tak
95-trc-3	TRC Tables 23-2-(3.10300)-d. C–H. <i>n</i> -Alkylcyclopentanes, C_5 to C_{21} . <i>TRC Thermodynamic Tables</i> – <i>Hydrocarbons</i> ; Thermodynamics Research Center, The Towne A 9 M University Systems, College 5 to	Received for
	tion, TX, 1995; pp 1990–1990.	JE99014(

1,2-Dichloroethene + n-Alkanes or 2,2,4-Trimethylpentane in the Pressure Range (0.1 to 10MPa) and at 293.15K. J. Chem. Eng. Data 1996, 41, 319-323. d/far Padua, A. A. H.; Fareleira, J. M. N. A.; Calado, J. C. G.; Wakeham, W. A. Validation of an Acurate Vibrating-Wire Densimeter: Density and Viscosity of Liquids over Wide Ranges of Temperature and Pressure. Int. J. Thermophys. 1996, 17, 781-802. d/far-1 Padua, A. A. H.; Fareleira, J. M. N. A.; Calado, J. C. G.; Wakeham, W. A. Density and Viscosity Measurements of 2,2,4-Trimethylpentane (Isooctane) from 198 K to 348 K and up to 100 MPa. J. Chem. Eng. Data 1996, 41, 1488-1494. TRC Tables 23-2-(1.20000)-d. C-H. Alkanes (Paraffins), C1 to C5. TRC Thermodynamic Tables-Hydrocarbons; Thermodynamics Research Center, The Texas A&M University System: College Station, TX, 1996; pp 1350-1353 Zábranský, M.; Růžička, V.; Majer, V.; Domalski, E. S. Heat Capacities of Liquids. Review and Recommended Values. J. Phys. Chem. Ref. Data; b/ruz Monograph No. 6; American Chemical Society: Washington, DC, 1996. y/bon Baylaucq, A.; Boned, C.; Dague, P.; Lagourette, B. Measurements of the Viscosity and Density of Three Hydrocarbons and the Three Associated Binary Mixtures Versus Pressure and Temperature. Int. J. Thermophys. 1997, 18, 3-23. Ohomuro, K.; Tamura, K.; Murakami, S. Excess Volumes and Isentropic Compressibilities of the Binary Mixtures of Cyclohexanone with Globular Species at T = 298.15 K. J. Chem. Thermodyn. **1997**, 29, 287–294. o/tam Cibulka, I.; Takagi, T. $P-\rho-T$ Data of Liquids: Summarization and Evaluation. 5. Aromatic Hyo/tak

Cibulka, I.; Hnědkovský, L. Liquid Densities at Elevated Pressures of *n*-Alkanes from C₅ to C₁₆: A Critical Evaluation of Experimental Data. J. Chem.

Hahn, G.; Ulcay, K.; Svejda, P.; Siddiqi, M. A. Isothermal Compressibilities of Binary Liquid Mixtures of 1,2-Dichloroethane and of trans- and cis-

Eng. Data 1996, 41, 657-668.

ved for review May 19, 1999. Accepted July 23, 1999.

drocarbons. J. Chem. Eng. Data 1999, 44, 411-429.

JE990140S