PVT Measurements for Mixtures of 1-Octanol with Oligomeric Poly(ethylene glycol) from 298 K to 338 K and Pressures up to 30 MPa

Ming-J er Lee,* Chien-Kuo Lo, and Ho-mu Lin

Department of Chemical Engineering, National Taiwan University of Science and Technology, 43, Keelung Road, Section 4, Taipei 106-07, Taiwan

Abstract

PVT properties were measured for mixtures of 1-octanol with fractionation cuts of poly(ethylene glycol)200 or poly(ethylene glycol)-600 at temperatures from 298 K to 338 K and pressures up to 30 MPa . Excess volumes are positive for these two polymer solution systems. The pressure effect on the liquid densities was represented accurately by the Tait equation, with which the isothermal compressibilities were calculated. Both the Flory-Orwoll-Vrij and the Schotte equations of state were employed to correlate the experimental specific volumes. Accurate results were obtained from these two equations.

Introduction

Volumetric properties of polymer solutions are needed in polymer processing and also useful for development of polymer equations of state. This study was undertaken to investigate the PVT behavior of polymer solutions containing fractionation cuts of oligomeric poly(ethylene glycol) (PEG). Dee et al. (1992) reported the PVT properties for various polymer liquids, including polyethylene, poly(dimethylsiloxane), poly(ethylene glycol) (PEG), and poly(propylene glycol) (PPG) in the temperature range room temperature to $250^{\circ} \mathrm{C}$ and for pressures up to 200 MPa . Their results were presented graphically together with the determined characteristic parameters of the Flory-Or-woll-Vrij (FOV) equation of state for each polymer liquid. The densities (or specific volumes) of aqueous PEGs and of oligomeric propylene glycols were measured by Muller and Rasmussen (1991) and also by Sandell and Goring (1971) at atmospheric pressure. Earlier PVT data of polymers have been extensively compiled by Zoller and Walsh (1995) over wide ranges of temperature and pressure. Recently, Lee et al. (1998) reported the volumetric properties of poly(ethylene glycol methyl ether)-350 (PEGME-350), PEG-200, PEG-600, and blended mixtures of PEGME-350 with PEG-200 or PE G-600 at temperatures from 298.15 K to 338.15 K and pressures up to 30 MPa . In the present study, the PVT data were determined for two "binary" systems composed of 1-octanol with PEG-200 or PEG-600 at temperatures from 298.15 K to 338.15 K and pressures up to 30 MPa . These new experimental results complement information on the volumetric behavior of the oligomeric solutions in response to the effects of temperature, pressure, and composition.

Experimental Section

The fractionation cuts of PEG-200 and PEG-600 were purchased from Aldrich Chemical Co. (Milwaukee, WI) with number-average molecular weights $\left(\mathrm{M}_{\mathrm{n}}\right)$ of approxi-

[^0]mately 200 and 600, respectively. The apparatus used in the present study is the same as that described by Chang et al. (1995). Liquid mixture samples, prepared by mass to an accuracy of ± 0.0001 in mass fraction, were delivered into a high-pressure densimeter (DMA-512, Anton Paar) via a hand pump (model-2426-801, Ruska). The pressure in the measuring cell was manipulated by the hand pump and monitored with a pressure transducer (M odel-PDCR 330, 0-40 M Pa, Druck) with a digital indicator (model-DPI 261, Druck). Pressure measurements were accurate to $\pm 0.1 \%$ at pressures higher than atmospheric. A thermostatic bath with circulating silicon oil maintained the temperature of the measuring cell to within $\pm 0.03 \mathrm{~K}$. A precision digital thermometer (model-1506, Hart Scientific) incorporated with a thermistor probe measured the temperature to an accuracy of $\pm 0.02 \mathrm{~K}$. The oscillation period $\left(\mathrm{t}_{\mathrm{i}}\right)$ of sample i in the vibrating U tube was displayed by a DMA-60 processing unit (Anton Paar) and was converted into density (ρ_{i}) via
\[

$$
\begin{equation*}
\rho_{\mathrm{i}}=\mathrm{A}\left(\mathrm{t}_{\mathrm{i}}^{2}-\mathrm{B}\right) \tag{1}
\end{equation*}
$$

\]

where A and B are apparatus parameters determined by using the literature PVT data of two calibration fluids: pure water (Haar et al., 1984) and dry nitrogen (Vargaftik, 1975). The calibration was made at each temperature of interest over (0.1-30) M Pa. Parameter A decreases linearly with increasing both pressure and temperature. The calibration reproduced water densities with an average absoIute deviation of 0.01% over the entire range of calibrated conditions. The accuracy of density measurements was estimated to be $\pm 0.0001 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$.

Results and Discussion

Table 1 compares the densities (ρ) measured from this work with literature values for PE G-600 and 1-octanol. The agreement is in general within $\pm 0.1 \%$. Table 2 lists the experimental densities and the calculated isothermal compressibilities (κ_{\top}) of 1-octanol, while those of PEG-200 and PE G-600 have been reported by Lee et al. (1998). Tables 3

Table 1. Comparison of Experimental Densities with Literature Values for PEG-600 and 1-Octanol

substance	T/K	P/MPa	$\rho /\left(\mathrm{g} \cdot \mathrm{cm}^{-3}\right)$		data source
			this work	lit.	
PEG-600	298.15	0.1	1.1212	1.1223	Sandell and Goring (1971)
1-octanol	298.15	0.1	0.8212	0.8211	Rauf and Stewart (1983)
				0.8212	Sastry and Valand (1998)
				0.8218	Wagner and Heintz (1986)
				0.8219	Vijayalakshml and Naidu (1990)
				0.8223	TRC Tables (1993)
				0.8226	Diaz Pena and Tardajos (1979)
1-octanol	328.15	0.1	0.8001	0.8012	Garg et al. (1993)
				$0.8007{ }^{\text {a }}$	TRC Tables (1993)
1-octanol	328.15	5.0	0.8039	0.8045	Garg et al. (1993)
1-octanol	328.15	10.0	0.8076	0.8077	Garg et al. (1993)
1-octanol	338.15	0.1	0.7930	0.7934	Garg et al. (1993)
				$0.7932^{\text {b }}$	TRC Tables (1993)
1-octanol	338.15	5.0	0.7970	0.7969	Garg et al. (1993)
1-octanol	338.15	10.0	0.8008	0.8002	Garg et al. (1993)

${ }^{\mathrm{a}} 0.8007 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$ was obtained by the average of 0.8044 (at 323.15 K) and 0.7970 (at 333.15 K). ${ }^{\mathrm{b}} 0.7932 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$ was obtained by the average of 0.7970 (at 333.15 K) and 0.7893 (at 343.15 K).

Table 2. Experimental Density and Calculated Isothermal Compressibility for 1-Octanol

P/MPa	$\mathrm{T} / \mathrm{K}=298.15$		$\mathrm{T} / \mathrm{K}=318.15$		T/K = 328.15		$\mathrm{T} / \mathrm{K}=338.15$	
	$\rho / \mathrm{g} \cdot \mathrm{cm}^{-3}$	$10^{4} \kappa \mathrm{c} / \mathrm{MPa}^{-1}$	$\rho / \mathrm{g} \cdot \mathrm{cm}^{-3}$	$10^{4} \kappa \mathrm{c} / \mathrm{MPa}^{-1}$	$\rho / \mathrm{g} \cdot \mathrm{cm}^{-3}$	$10^{4} \kappa \mathrm{~T} / \mathrm{MPa}^{-1}$	$\rho / \mathrm{g} \cdot \mathrm{cm}^{-3}$	$10^{4} \kappa \mathrm{c} / \mathrm{MPa}^{-1}$
0.1	0.8212	8.203	0.8073	9.296	0.8001	9.825	0.7930	10.433
5	0.8244	7.833	0.8109	8.847	0.8039	9.322	0.7970	9.847
10	0.8275	7.488	0.8145	8.434	0.8076	8.862	0.8008	9.314
15	0.8306	7.175	0.8178	8.059	0.8110	8.445	0.8044	8.838
20	0.8336	6.889	0.8210	7.717	0.8144	8.069	0.8079	8.411
25	0.8364	6.624	0.8241	7.404	0.8176	7.725	0.8112	8.025
30	0.8391	6.380	0.8271	7.117	0.8206	7.411	0.8144	7.674

and 4 present the results of the experimental ρ and calculated κ_{\top} for PEG-200 + 1-octanol and PEG-600 + 1-octanol, respectively. The isothermal densities at a given composition were correlated with the Tait equation:

$$
\begin{equation*}
\frac{\rho-\rho_{0}}{\rho}=C \ln \left(\frac{\mathrm{D}+\mathrm{P}}{\mathrm{D}+0.1}\right) \tag{2}
\end{equation*}
$$

where ρ_{0} is the density at 0.1 MPa . The optimized values of C and D were obtained by fitting the Tait equation to the density data with the following objective function (π) :

$$
\begin{equation*}
\pi=\left[\sum_{\mathrm{k}=1}^{\mathrm{n}}\left|\rho_{\mathrm{k}, \text { calc }}-\rho_{\mathrm{k}, \text { expt }}\right| / \rho_{\mathrm{k}, \text { expt }}\right] / \mathrm{n} \tag{3}
\end{equation*}
$$

where n is the number of data points. $\rho_{\mathrm{k}, \text { calc }}$ and $\rho_{\mathrm{k}, \text { expt }}$ represent the calculated and experimental densities for the kth point, respectively. Table 5 reports the calculated results, including the values of C, D, and π. The Tait equation correl ates accurately the isothermal densities over the entire pressure range. The tabulated isothermal compressibility was calculated with the following equation:

$$
\begin{equation*}
\kappa_{\mathrm{T}}=\frac{-1}{\mathrm{~V}}\left(\frac{\partial \mathrm{~V}}{\partial \mathrm{P}}\right)_{\mathrm{T}, \mathrm{x}}=\frac{\mathrm{V}_{0}}{\mathrm{~V}}\left(\frac{\mathrm{C}}{\mathrm{D}+\mathrm{P}}\right) \tag{4}
\end{equation*}
$$

where V is the molar volume, V_{0} is the molar volume at 0.1 MPa , and the constants C and D are parameters of the Tait equation.

The volume change of mixing, or excess volume V^{E}, is related to the molecular interactions in a mixture. The excess volume can be calculated from experimental density data via

$$
\begin{equation*}
\mathrm{V}^{\mathrm{E}}=\mathrm{V}_{\mathrm{m}}-\mathrm{x}_{1} \mathrm{~V}_{1}^{\circ}-\mathrm{x}_{2} \mathrm{~V}_{2}^{\circ} \tag{5}
\end{equation*}
$$

with

$$
\begin{equation*}
V_{m}=\frac{x_{1} M_{1}+x_{2} M_{2}}{\rho} \tag{6}
\end{equation*}
$$

where V_{m} is the molar volume of a mixture. $\mathrm{x}_{\mathrm{i}}, \mathrm{V}_{\mathrm{i}}{ }^{\circ}$, and M_{i} are the molefraction, the molar volume, and the mol ecular weight, respectively, for component i. The uncertainty of the calculated excess volumes was estimated to be about $\pm 0.05 \mathrm{~cm}^{3} \cdot \mathrm{~mol}^{-1}$. Positive excess volumes were obtained for these two polymer solution systems, implying that volume expansion occurs upon blending 1-octanol with these oligomeric substances. It is suggested that the interactions between the hydroxyl group of 1-octanol and the etheric group of PEG are so weak that the heat of mixing could be positive and, thus, the whole mixing process is governed by a positive entropy of mixing. Figure 1 shows the effects of both temperature and pressure on V^{E} for PEG-600 + 1-octanol. The excess volumes appear to increase with a decrease of temperature and with an increase of pressure. Similar behavior is also found in PEG-$200+1$-octanol. The excess volumes at constant temperature and pressure were correlated with a Redlich-Kister type equation:

$$
\begin{equation*}
\mathrm{V}^{\mathrm{E}} / \mathrm{x}_{1} \mathrm{x}_{2}=\sum_{\mathrm{k}=1}^{3} \mathrm{E}_{\mathrm{k}}\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)^{\mathrm{k}-1} \tag{7}
\end{equation*}
$$

The optimized values of E_{k} as determined by a leastsquares algorithm are tabulated in Table 6, and the calculated results are represented by the dashed curves in Figure 1.

PVT Data Correlation with Equations of State

PVT data of polymers are useful for development of correlation methods needed in polymer processing. The

Table 3. Experimental Density and Calculated Isothermal Compressibility for PEG-200 (1) + 1-Octanol (2)

	T/K = 298.15		$\mathrm{T} / \mathrm{K}=318.15$		$\mathrm{T} / \mathrm{K}=328.15$		$\mathrm{T} / \mathrm{K}=338.15$	
P/MPa	$\rho / \mathrm{g} \cdot \mathrm{cm}^{-3}$	$10^{4} \kappa \mathrm{k} / \mathrm{MPa}^{-1}$	$\overline{\rho / \mathrm{g} \cdot \mathrm{cm}^{-3}}$	$10^{4} \kappa \mathrm{~T} / \mathrm{MPa}^{-1}$	$\rho / \mathrm{g} \cdot \mathrm{cm}^{-3}$	$10^{4} \mathrm{KT} / \mathrm{MPa}^{-1}$	$\rho / \mathrm{g} \cdot \mathrm{cm}^{-3}$	$10^{4} \mathrm{KT} / \mathrm{MPa}^{-1}$
$\mathrm{w}_{1}=0.1458{ }^{\text {a }}\left(\mathrm{x}_{1}=0.100\right)^{\text {b }}$								
0.1	0.8534	7.840	0.8394	8.533	0.8320	9.131	0.8248	9.650
5	0.8566	7.453	0.8428	8.168	0.8356	8.666	0.8286	9.137
10	0.8597	7.098	0.8462	7.828	0.8392	8.240	0.8323	8.669
15	0.8627	6.776	0.8495	7.516	0.8427	7.857	0.8358	8.248
20	0.8656	6.483	0.8526	7.229	0.8458	7.507	0.8392	7.868
25	0.8683	6.215	0.8556	6.964	0.8489	7.189	0.8425	7.524
30	0.8710	5.969	0.8586	6.720	0.8519	6.898	0.8455	7.208
$\mathrm{w}_{1}=0.2774\left(\mathrm{x}_{1}=0.200\right)$								
0.1	0.8849	7.320	0.8707	7.856	0.8630	8.500	0.8558	9.110
5	0.8880	6.970	0.8740	7.585	0.8665	8.094	0.8596	8.617
10	0.8910	6.646	0.8773	7.329	0.8700	7.721	0.8632	8.167
15	0.8939	6.352	0.8805	7.090	0.8732	7.380	0.8666	7.763
20	0.8967	6.084	0.8835	6.866	0.8764	7.071	0.8699	7.399
25	0.8997	5.839	0.8865	6.658	0.8794	6.787	0.8730	7.069
30	0.9020	5.613	0.8894	6.462	0.8824	6.526	0.8760	6.768
$\mathrm{w}_{1}=0.3969\left(\mathrm{x}_{1}=0.300\right)$								
0.1	0.9159	6.769	0.9015	7.465	0.8936	7.941	0.8863	8.425
5	0.9189	6.479	0.9047	7.138	0.8970	7.569	0.8899	7.994
10	0.9218	6.208	0.9079	6.834	0.9003	7.225	0.8934	7.598
15	0.9246	5.960	0.9109	6.556	0.9035	6.913	0.8967	7.241
20	0.9273	5.731	0.9138	6.300	0.9066	6.627	0.8998	6.917
25	0.9299	5.520	0.9167	6.065	0.9095	6.365	0.9029	6.623
30	0.9325	5.325	0.9195	5.847	0.9124	6.124	0.9058	6.353
$\mathrm{w}_{1}=0.5059\left(\mathrm{x}_{1}=0.400\right)$								
0.1	0.9466	6.399	0.9321	6.859	0.8241	7.350	0.9167	7.869
5	0.9495	6.126	0.9351	6.610	0.8273	7.023	0.9201	7.458
10	0.9523	5.871	0.9382	6.375	0.9305	6.719	0.9235	7.084
15	0.9551	5.638	0.9411	6.157	0.9336	6.442	0.9267	6.746
20	0.9577	5.423	0.9440	5.954	0.9366	6.188	0.9297	6.440
25	0.9603	5.224	0.9468	5.765	0.9394	5.954	0.9327	6.162
30	0.9628	5.040	0.9495	5.588	0.9422	5.737	0.9355	5.907
$0.10 .076{ }_{1}=0.6056\left(x_{1}=0.500\right)$								
5	0.9793	5.724	0.9648	6.234	0.9569	6.563	0.9495	6.959
10	0.9821	5.490	0.9677	6.017	0.9599	6.294	0.9528	6.630
15	0.9847	5.275	0.9705	5.815	0.9629	6.047	0.9558	6.331
20	0.9872	5.077	0.9733	5.626	0.9667	5.820	0.9588	6.059
25	0.9897	4.894	0.9761	5.451	0.9685	5.610	0.9616	5.810
30	0.9921	4.724	0.9786	5.286	0.9712	5.415	0.9644	5.581
5	1.0088	5.328	0.9929	5.823	0.9860	6.091	0.9788	6.469
10	1.0114	5.100	0.9967	5.602	0.9890	5.860	0.9818	6.161
15	1.0139	4.891	0.9994	5.397	0.9918	5.645	0.9848	5.883
20	1.0164	4.700	1.0021	5.208	0.9945	5.447	0.9876	5.629
25	1.0187	4.523	1.0047	5.032	0.9972	5.263	0.9904	5.398
30	1.0210	4.359	1.0072	4.868	0.9998	5.091	0.9931	5.185
$\mathrm{w}_{1}=0.7818\left(\mathrm{x}_{1}=0.700\right)$								
0.1	1.0351	5.232	1.0199	5.582	1.0118	5.944	1.0043	6.257
5	1.0376	4.985	1.0226	5.368	1.0146	5.680	1.0072	5.952
10	1.0402	4.757	1.0253	5.167	1.0175	5.436	1.0102	5.671
15	1.0426	4.549	1.0279	4.981	1.0202	5.211	1.0130	5.471
20	1.0450	4.360	1.0304	4.808	1.0228	5.005	1.0157	5.185
25	1.0472	4.185	1.0329	4.648	1.0254	4.816	1.0184	4.973
30	1.0494	4.025	1.0354	4.498	1.0279	4.641	1.0209	4.778
$\mathrm{w}_{1}=0.8600\left(\mathrm{x}_{1}=0.800\right)$								
0.1	1.0634	4.921	1.0480	5.195	1.0399	5.518	1.0322	5.790
5	1.0659	4.683	1.0506	5.009	1.0426	5.295	1.0350	5.522
10	1.0683	4.462	1.0532	4.833	1.0453	5.086	1.0378	5.274
15	1.0706	4.262	1.0557	4.670	1.0480	4.894	1.0405	5.048
20	1.0729	4.080	1.0581	4.517	1.0505	4.716	1.0431	4.841
25	1.0751	3.914	1.0605	4.375	1.0529	4.551	1.0456	4.650
30	1.0772	3.760	1.0629	4.241	1.0553	4.397	1.0481	4.475
$\mathrm{w}_{1}=0.9325$ ($\mathrm{x}_{1}=0.900$)								
0.1	1.0916	4.596	1.0760	4.832	1.0680	5.180	1.0603	5.313
5	1.0940	4.379	1.0785	4.651	1.0706	4.942	1.0630	5.099
10	1.0963	4.178	1.0809	4.480	1.0732	4.721	1.0656	4.898
15	1.0986	3.995	1.0833	4.322	1.0757	4.520	1.0682	4.713
20	1.1007	3.828	1.0856	4.175	1.0781	4.335	1.0707	4.542
25	1.1028	3.674	1.0879	4.038	1.0804	4.166	1.0731	4.383
30	1.1049	3.533	1.0901	3.910	1.0827	4.010	1.0755	4.235

${ }^{a} W_{1}$: mass fraction of component $1 .{ }^{b} x_{1}$: mole fraction of component 1 ; calculated with the molecular weights of 200 and 130.232 for PEG-200 and 1-octanol, respectively.

1382 J ournal of Chemical and Engineering Data, Vol. 44, No. 6, 1999
Table 4. Experimental Density and Calculated Isothermal Compressibility for PEG-600 (1) + 1-Octanol (2)

P/MPa	T/K = 298.15		T/K = 318.15		$\mathrm{T} / \mathrm{K}=328.15$		$\mathrm{T} / \mathrm{K}=338.15$	
	$\overline{\rho / \mathrm{g} \cdot \mathrm{cm}^{-3}}$	$10^{4} \kappa \mathrm{~T} / \mathrm{MPa}^{-1}$	$\overline{\rho / \mathrm{g} \cdot \mathrm{cm}^{-3}}$	$10^{4} \kappa \mathrm{~T} / \mathrm{MPa}^{-1}$	$\overline{\rho / \mathrm{g} \cdot \mathrm{cm}^{-3}}$	$10^{4} \mathrm{KT} / \mathrm{MPa}^{-1}$	$\overline{\rho / \mathrm{g} \cdot \mathrm{cm}^{-3}}$	$10^{4} \mathrm{\kappa} / \mathrm{MPa}^{-1}$
$\mathrm{w}_{1}=0.3386^{\mathrm{a}}\left(\mathrm{x}_{1}=0.100\right)^{\mathrm{b}}$								
0.1	0.9019	7.023	0.8875	7.676	0.8797	8.224	0.8724	8.636
5	0.9049	6.697	0.8907	7.362	0.8832	7.833	0.8760	8.206
10	0.9079	6.396	0.8939	7.069	0.8866	7.472	0.8795	7.811
15	0.9107	6.122	0.8971	6.800	0.8898	7.144	0.8829	7.454
20	0.9135	5.871	0.9001	6.551	0.8929	6.844	0.8861	7.129
25	0.9161	5.640	0.9030	6.320	0.8959	6.570	0.8892	6.833
30	0.9187	5.428	0.9058	6.106	0.8988	6.318	0.8922	6.561
$\mathrm{w}_{1}=0.5353\left(\mathrm{x}_{1}=0.200\right)$								
0.1	0.9567	6.250	0.9418	6.873	0.9340	7.261	0.9265	7.633
5	0.9596	5.988	0.9449	6.590	0.9372	6.933	0.9299	7.278
10	0.9624	5.742	0.9480	6.326	0.9404	6.629	0.9332	6.950
15	0.9651	5.517	0.9509	6.083	0.9435	6.352	0.9364	6.651
20	0.9677	5.309	0.9537	5.858	0.9464	6.097	0.9394	6.377
25	0.9702	5.116	0.9565	5.651	0.9493	5.864	0.9424	6.126
30	0.9727	4.938	0.9592	5.458	0.9520	5.647	0.9452	5.895
$\mathrm{w}_{1}=0.6638\left(\mathrm{x}_{1}=0.300\right)$								
0.1	0.9968	5.749	0.9813	6.265	0.9734	6.579	0.9657	7.031
5	0.9995	5.493	0.9843	6.038	0.9764	6.314	0.9690	6.699
10	1.0022	5.254	0.9872	5.823	0.9795	6.067	0.9721	6.391
15	1.0048	5.037	0.9900	5.624	0.9824	5.838	0.9752	6.112
20	1.0073	4.837	0.9928	5.439	0.9852	5.627	0.9781	5.857
25	1.0097	4.653	0.9954	5.265	0.9880	5.432	0.9809	5.622
30	1.0120	4.482	0.9980	5.103	0.9907	5.250	0.9836	5.407
$7.4010{ }_{1}=0.7544\left(x_{1}=0.400\right)$								
5	1.0297	5.200	1.0144	5.589	1.0065	5.964	0.9989	6.218
10	1.0322	4.953	1.0172	5.403	1.0094	5.701	1.0020	5.953
15	1.0348	4.729	1.0199	5.228	1.0122	5.461	1.0049	5.711
20	1.0372	4.525	1.0226	5.066	1.0150	5.241	1.0080	5.490
25	1.0395	4.338	1.0251	4.913	1.0176	5.039	1.0104	5.282
30	1.0418	4.167	1.0277	4.770	1.0201	4.852	1.0130	5.092
5	1.0534	4.884	1.0378	5.345	1.0297	5.687	1.0222	5.800
10	1.0559	4.652	1.0406	5.135	1.0326	5.453	1.0252	5.604
15	1.0584	4.442	1.0432	4.942	1.0353	5.237	1.0280	5.420
20	1.0607	4.251	1.0457	4.763	1.0380	5.039	1.0308	5.248
25	1.0629	4.076	1.0482	4.597	1.0406	4.856	1.0334	5.087
30	1.0652	3.915	1.0507	4.443	1.0431	4.686	1.0360	4.937
$\mathrm{w}_{1}=0.8736\left(\mathrm{x}_{1}=0.600\right)$								
0.1	1.0704	4.985	1.0546	5.345	1.0462	5.618	1.0384	5.825
5	1.0729	4.727	1.0573	5.107	1.0490	5.381	1.0413	5.599
10	1.0753	4.490	1.0599	4.885	1.0518	5.160	1.0442	5.387
15	1.0777	4.276	1.0624	4.682	1.0544	4.956	1.0470	5.191
20	1.0800	4.082	1.0649	4.496	1.0570	4.769	1.0496	5.008
25	1.0822	3.906	1.0673	4.324	1.0595	4.596	1.0522	4.839
30	1.0843	3.744	1.0696	4.166	1.0619	4.435	1.0547	4.681
$\mathrm{w}_{1}=0.9146\left(\mathrm{x}_{1}=0.699\right)$								
0.1	1.0861	4.708	1.0702	5.086	1.0617	5.334	1.0539	5.511
5	1.0885	4.491	1.0728	4.903	1.0644	5.133	1.0567	5.337
10	1.0909	4.290	1.0754	4.729	1.0671	4.945	1.0595	5.170
15	1.0932	4.106	1.0779	4.568	1.0697	4.770	1.0622	5.014
20	1.0954	3.938	1.0803	4.418	1.0723	4.608	1.0648	4.868
25	1.0976	3.784	1.0827	4.278	1.0746	4.456	1.0674	4.730
30	1.0997	3.641	1.0850	4.147	1.0771	4.315	1.0698	4.600
$\mathrm{w}_{1}=0.9485\left(\mathrm{x}_{1}=0.800\right)$								
0.1	1.0999	4.595	1.0838	4.854	1.0752	5.293	1.0673	5.383
5	1.1023	4.380	1.0863	4.657	1.0779	5.059	1.0701	5.193
10	1.1046	4.181	1.0888	4.472	1.0806	4.842	1.0728	5.013
15	1.1069	4.001	1.0912	4.302	1.0832	4.643	1.0755	4.846
20	1.1091	3.835	1.0936	4.145	1.0856	4.460	1.0781	4.690
25	1.1112	3.683	1.0960	4.000	1.0880	4.291	1.0805	4.543
30	1.1133	3.543	1.0973	3.863	1.0904	4.136	1.0829	4.407
$\mathrm{w}_{1}=0.9765$ ($\mathrm{x}_{1}=0.900$)								
0.1	1.1113	4.393	1.0949	4.708	1.0865	5.151	1.0786	5.197
5	1.1136	4.217	1.0974	4.581	1.0892	4.924	1.0813	5.033
10	1.1159	4.052	1.0999	4.458	1.0918	4.714 4.520	1.0840	4.876
15	1.1181 1.1203	3.900 3.759	1.1023	4.342	1.0943	4.520 4343	1.0866	4.730
20 25	1.1203 1.1224	3.759 3.629	1.1045	4.231 4	1.0967	4.343 4.180	1.0891	4.592
25 30	1.12244 1.1244	3.629 3.507	1.1092	4.028	1.1014	4.180 4.028	1.0940	4.340

${ }^{a} W_{1}$: mass fraction of component $1 .{ }^{b} x_{1}$: mole fraction of component 1 ; calculated with the molecular weights of 600 and 130.232 for PEG-600 and 1-octanol, respectively.

Table 5. Results of Density Correlation with the Tait Equation

${ }^{\mathrm{a}} \pi=$ defined as in eq $3 .{ }^{\mathrm{b}} \mathrm{x}_{1}=0.699$ for PEG-600 +1 -octanol.

Figure 1. Variations of excess volume with composition for PEG600 (1) + 1-octanol (2) at 298.15 K and 0.1 MPa (0); 338.15 K and $0.1 \mathrm{MPa}(\Delta)$; 298.15 K and $30 \mathrm{MPa}(*)$; Redlich-Kister equation (---).
specific volumes obtained in the present work were correlated by two polymer equations of state (EOSs): the Flory-Orwoll-Vrij (FOV) equation (1964) and the Schotte equation (1982). These E OSs were expressed as follows.

TheFOV EOS:

$$
\begin{equation*}
\frac{\overline{\mathrm{P}} \overline{\mathrm{~V}}}{\overline{\mathrm{~T}}}=\frac{\overline{\mathrm{V}}^{1 / 3}}{\overline{\mathrm{~V}}^{1 / 3}-1}-\frac{1}{\overline{\mathrm{~T}} \overline{\mathrm{~V}}} \tag{8}
\end{equation*}
$$

The Schotte EOS:

$$
\begin{equation*}
\frac{\overline{\mathrm{P}} \overline{\mathrm{~V}}}{\overline{\mathrm{~T}}}=\frac{\mathrm{RT}^{*}}{\mathrm{P}^{*} \mathrm{MV}^{*}}\left(1-\frac{1}{\overline{\mathrm{~V}}^{1 / 3}}\right)+\frac{1}{\overline{\mathrm{~V}}^{1 / 3}-1}-\frac{2}{\overline{\mathrm{~T}} \overline{\mathrm{~V}}} \tag{9}
\end{equation*}
$$

where M is the molecular weight, $\overline{\mathrm{P}}=\mathrm{P} / \mathrm{P}^{*}, \overline{\mathrm{~V}}=\mathrm{V} N^{*}$, and $\overline{\mathrm{T}}=\mathrm{T} / \mathrm{T}^{*}$. The model parameters $\mathrm{P}^{*}, \mathrm{~V}^{*}$, and T^{*} are characteristic pressure, specific volume, and temperature, respectively, which were determined by fitting the EOS to experimental PVT data. Table 7 lists the calculated results for PEG-200, PEG-600, and 1-octanol. These tabulated values of characteristic properties were also employed to calculate the specific volumes of the polymer solutions via the following mixing rules (Schotte, 1982):

$$
\begin{gather*}
\mathrm{V}_{\mathrm{m}}^{*}=\left[\mathrm{M}_{\mathrm{m}}\left(\frac{\Psi_{1}}{\mathrm{M}_{1} \mathrm{~V}_{1}^{*}}+\frac{\Psi_{2}}{\mathrm{M}_{2} \mathrm{~V}_{2}^{*}}\right)\right]^{-1} \tag{10}\\
\mathrm{~T}_{\mathrm{m}}^{*}=\frac{\mathrm{P}_{\mathrm{m}}^{*}}{\frac{\Psi_{1} \mathrm{P}_{1}^{*}}{\mathrm{~T}_{1}^{*}}+\frac{\Psi_{2} \mathrm{P}_{2}^{*}}{\mathrm{~T}_{2}^{*}}} \tag{11}
\end{gather*}
$$

Table 6. Results of Excess Volume Correlation with the Redlich-Kister Equation

P/MPa	PEG-200 (1)+1-octanol (2)				PEG-600 (1)+1-octanol (2)			
	E_{1}	E_{2}	E_{3}	$10^{2} \mathrm{AAD}^{\text {a }}$	E_{1}	E_{2}	E_{3}	$10^{2} \mathrm{AAD}^{\text {a }}$
$\mathrm{T} / \mathrm{K}=298.15$								
0.1	2.010	0.294	0.880	2.0	2.198	-0.678	-0.056	2.1
5.0	2.007	0.237	0.578	1.7	2.157	-0.862	-0.168	2.4
10.0	2.036	0.359	0.615	2.1	2.279	-0.741	-0.227	2.1
15.0	2.097	0.291	0.514	1.8	2.265	-0.834	0.202	2.2
20.0	2.120	0.233	0.545	2.0	2.376	-1.018	-0.052	2.6
25.0	2.130	0.222	0.599	1.6	2.435	-0.984	0.123	3.0
30.0	2.128	0.215	0.433	1.6	2.479	-0.970	0.128	2.0
$\mathrm{T} / \mathrm{K}=318.15$								
0.1	1.771	0.221	0.515	1.7	1.914	-0.490	0.167	3.8
5.0	1.856	0.144	0.681	1.4	1.936	-0.693	0.186	3.1
10.0	1.956	0.142	0.909	1.3	2.092	-0.776	0.558	2.5
15.0	2.037	0.227	0.725	1.6	2.163	-0.853	0.207	2.3
20.0	2.076	0.282	0.913	1.7	2.220	-0.470	1.067	4.2
25.0	2.071	0.280	1.006	1.6	2.447	-0.717	0.447	2.2
30.0	2.097	0.309	0.859	1.9	2.512	-0.386	0.950	4.5
$\mathrm{T} / \mathrm{K}=328.15$								
0.1	2.059	0.211	0.469	2.2	1.853	-0.660	-0.127	2.3
5.0	2.159	0.170	0.617	1.9	2.061	-0.912	-0.324	2.7
10.0	2.232	0.117	0.480	2.0	2.170	-0.973	-0.082	2.4
15.0	2.284	0.240	0.228	2.7	2.278	-0.952	-0.053	2.5
20.0	2.324	0.120	0.534	1.6	2.307	-1.017	0.409	1.9
25.0	2.366	0.156	0.714	1.8	2.392	-1.119	0.177	2.7
30.0	2.344	0.239	0.657	1.8	2.420	-1.124	0.210	1.8
$\mathrm{T} / \mathrm{K}=338.15$								
0.1	1.874	-0.022	0.229	2.3	1.740	-0.522	-0.010	1.3
5.0	1.967	-0.001	0.370	1.9	1.922	-0.608	0.258	1.5
10.0	2.004	0.108	0.568	1.8	1.962	-0.833	0.306	1.9
15.0	2.046	0.052	0.489	1.9	2.073	-0.808	0.358	1.8
20.0	2.144	0.053	0.453	1.8	2.099	-0.879	0.781	2.8
25.0	2.167	0.112	0.396	2.4	2.289	-1.036	0.399	1.6
30.0	2.187	-0.068	0.471	1.8	2.374	-1.231	0.207	2.0

${ }^{\text {a }} \mathrm{ADD} /\left(\mathrm{cm}^{3} \cdot \mathrm{~mol}^{-1}\right)=1 / n \sum_{i=1}^{n} \mid \mathrm{VE}_{\mathrm{i}, \text { calc }}-\mathrm{VE}_{\mathrm{i}, \text { expt }}$, where n is the number of data points.
Table 7. Results of Specific Volume Correlation with the Equations of State for "Pure" Compounds

	FOV EOS					Schotte EOS			
compound	$\mathrm{P} / \mathrm{MPa}$	$\mathrm{T} * / \mathrm{K}$	$\mathrm{V}^{*} / \mathrm{cm}^{3} \cdot \mathrm{~g}^{-1}$	$\mathrm{AAD}^{\mathrm{a}} / \mathrm{cm}^{3} \cdot \mathrm{~g}^{-1}$		$\mathrm{P} * / \mathrm{MPa}$	$\mathrm{T} * / \mathrm{K}$	$\mathrm{V}^{*} / \mathrm{cm}^{3} \cdot \mathrm{~g}^{-1}$	$\mathrm{AAD}^{2} / \mathrm{cm}^{3} \cdot \mathrm{~g}^{-1}$
1-octanol	456.0	5775	1.0026	0.00023		471.7	5079	0.9873	0.00016
PEG-200	738.2	6541	0.7566	0.00021		783.3	5728	0.7434	0.00007
PEG-600	752.4	7549	0.7524	0.00020		813.4	5490	0.7363	0.00030

$$
{ }^{\mathrm{a}} \mathrm{AAD}=1 / \mathrm{n} \sum_{\mathrm{k}=1}^{\mathrm{n}} \mid \mathrm{V}_{\mathrm{k}, \text { calc }}-\mathrm{V}_{\mathrm{k}, \text { expt }} .
$$

and

$$
\begin{equation*}
\mathrm{P}_{\mathrm{m}}^{*}=\Psi_{1}{ }^{2} \mathrm{P}_{1}{ }^{*}+\Psi_{2}{ }^{2} \mathrm{P}_{2}^{*}+2 \Psi_{1} \Psi_{2} \mathrm{P}_{12}{ }^{*} \tag{12}
\end{equation*}
$$

with

$$
\begin{equation*}
\Psi_{\mathrm{i}}=\frac{\mathrm{w}_{\mathrm{i}} \mathrm{~V}_{\mathrm{i}}^{*}}{\mathrm{w}_{1} \mathrm{~V}_{1}^{*}+\mathrm{w}_{2} \mathrm{~V}_{2}^{*}} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{P}_{12} *=\left(1-\Delta_{12}\right)\left(\mathrm{P}_{1} * \mathrm{P}_{2} *\right)^{0.5} \tag{14}
\end{equation*}
$$

where Ψ_{i}, M_{i}, and w_{i} stand for the segment vol umefraction, the number-average molecular weight, and the weight fraction of component i, respectively. Δ_{12} in eq 14 is a binary interaction constant that was determined from the PVT data for each binary system. The calculated results are reported in Table 8. Both the FOV and the Schotte EOSs represent quantitatively the PVT behavior of PEG-200 + 1-octanol and PEG-600 + 1-octanol with reasonable accuracy over the entire experimental conditions.

Conclusions

PVT data have been measured for PE G-200 + 1-octanol and PEG-600 + 1-octanol at temperatures from 298 K to

Table 8. Results of Specific Volume Correlation with the Equations of State for Polymer Blends

mixture (1) + (2)	FOV EOS		Schotte EOS	
	Δ_{12}	AAD\% ${ }^{\text {a }}$	Δ_{12}	AAD\% ${ }^{\text {a }}$
PEG-200 + 1-octanol	0.0251	0.04	0.0208	0.04
PEG-600 + 1-octanol	0.0094	0.03	-0.0032	0.04

338 K and pressures up to 30 MPa . Volume expansion (positive excess volume) was found upon mixing 1-octanol with PEG-200 and PEG-600. The pressure effect on the isothermal densities was represented accurately by theTait equation, which was then used to calculate isothermal compressibilities. Both the FOV and the Schotte EOSs correlated well the PVT data of the polymer solutions.

Literature Cited

Chang, J. S.; Lee, M. J. Densities of m-Cresol + m-Xylene and m-Cresol + Tetralin Mixtures at 298-348 K and up to 30 MPa . J. Chem. Eng. Data 1995, 40, 1115-1118.
Dee, G. T.; Ougizawa, T.; Walsh, D. J. The Pressure-VolumeTemperature Properties of Polyethylene, Poly(Dimethyl Siloxane), Poly(Ethylene Glycol) and Poly(Propylene Glycol) as a Function of Molecular Weight. Polymer 1992, 33, 3462-3469.

Diaz Pena, M.; Tardajos, G. J. Isothermal Compressibilities of n-1Alcohols from Methanol to 1-Dodecanol at $298.15 \mathrm{~K}, 308.15 \mathrm{~K}$, 318.15 K, and 333.15 K. J. Chem. Thermodyn. 1979, 11, 441-445.

Flory, P. J .; Orwoll, R. A.; Vrij, A. Statistical Thermodynamics of Chain Molecule Liquids. I. An Equation of State for Normal Paraffin Hydrocarbons. J. Am. Chem. Soc. 1964, 86, 3507-3514.
Garg, S. K.; Banipal, T. S.; Ahluwalia, J. C. Densities, Molar Volumes, Cubic Expansion Coefficients, and I sothermal Compressibilities of 1-Alkanols from 323.15 to 373.15 K and at Pressures up to 10 MPa . J. Chem. Eng. Data 1993, 38, 227-230.

Haar, L.; Gallagher, J. S.; Kell, G. S. NBS/ NRC Steam Tables: Thermodynamic and Transport Properties and Computer Programs for Vapor and Liquid States of Water in SI Units; Hemisphere: New York, 1984.
Lee, M. J.; Lo, C. K.; Lin, H. M. PVT Measurements for Mixtures of Poly(ethylene glycol methyl ether) with Poly(ethylene glycol) from 298 K to 338 K and Pressures up to 30 MPa . J. Chem. Eng. Data 1998, 43, 1076-1081.
Muller, E. A.; Rasmussen, P. Densities and Excess Volumes in Aqueous Poly(ethylene glycol) Solutions. J . Chem. Eng. Data 1991, 36, 214217.

Rauf, M. A.; Stewart, G. H. Viscosities and Densities of Binary Mixtures of 1-Alkanols from 15 to $55^{\circ} \mathrm{C}$. J. Chem. Eng. Data 1983, 28, 324-328.
Sandell, L. S.; Goring, D. A. I. Correlation between the Temperature Dependence of Apparent Specific Volume and the Conformation of

Oligomeric Propylene Glycols in Aqueous Solution. J. Polym. Sci.: Part A-2 1971, 9, 115-126.
Sastry, N. V.; Valand, M. K. Densities, Viscosities, and Relative Permittivities for Pentane + 1-Alcohols (C_{1} to C_{12}) at 298 K . J . Chem. Eng. Data 1998, 43, 152-157.
Schotte, W. Vapor-Liquid Equilibrium Calculations for Polymer Solutions. Ind. Eng. Chem. Process Des. Dev. 1982, 21, 289-296.
TRC Thermodynamic Tables, Hydrocarbons; Thermodynamics Research Center, The Texas A\&M University System: College Station, TX, 1993; bf 1968, d-5110.
Vargaftik, N. B. Tables on theThermodynamical Properties of Liquids and Gases, 2nd ed.; Hemisphere: Washington, DC, 1975.
Wagner, D.; Heintz, A. Excess Volumes of Binary 1-Alkanol/Nonane Mixtures at Temperatures between 293.15 and 333.15 K. J . Chem. Eng. Data 1986, 31, 483-487.
Zoller, P.; Walsh, D. J. Standard Pressure-Volume-TemperatureData for Polymers; Technomic Pub. Co.: Lancaster, PA, 1995.

Received for review J une 15, 1999. Accepted August 17, 1999. The financial support from the National Science Council, ROC, through Grant No. NSC87-2214-E011-002 is gratefully acknowledged.
J E990159V

[^0]: * To whom correspondence should be addressed. Fax: 886-2-2737-6644. E-mail: mjl@ch.ntust.edu.tw.

