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Many VLE data papers are published each year for binary systems at either constant temperature or
constant pressure. This manuscript examines consistency checks via Gibbs-Duhem equations and finds
most powerful a two-step method that (1) uses a combination of the liquid and vapor Gibbs-Duhem
equations to first check the internal consistency of (P, y, x) at constant temperature or (T, y, x) at constant
pressure and (2) then uses the liquid-side Gibbs-Duhem equation to check the liquid-phase activity
coefficients in a test more familiar to most workers. A new graphical method is developed in conjunction
with step 1. The role of the assumed gas-phase model is examined. The common problem of published
data of the activity coefficient of the solvent falling slightly under unity upon approaching the pure solvent
end on the familiar ln γi versus x1 diagram is explained as an artifact of usual data reduction procedures
but corrected by the present procedures.

Introduction

Many research articles are published each year contain-
ing low-pressure, vapor-liquid equilibrium (VLE) data for
binary systems with the composition measured in one or
in both phases. As clearly seen in the compilations of Hala
et al. (1967, 1968) and of Gmehling and Onken (1990),
about half of these data are taken at constant temperature
(P, y, x) and about half at constant pressure (T, y, x), often
near atmospheric pressure. The phase rule of Gibbs
provides for two independent intensive variables so that
when either the pressure P or the temperature T is fixed,
the composition of the liquid x and of the vapor y cannot
be changed without variation of T or P, respectively.
Reviews of the many experimental methods have been
given by Hala et al. (1967), Williamson (1975), Marsh
(1978), Malanowski (1980), and very recently Raal (2000).
Especially detailed reviews have been presented of the
dynamic method (recirculating stills) by Hala et al. (1967)
and of the static method by Marsh (1978).

Because the main objective of these experiments is to
find the liquid-phase activity coefficients γι(x, P, T) or,
equivalently, the liquid-phase excess Gibbs energy, g ≡ (GE/
RT), isothermal measurement of the three variables (P, y,
x) or isobaric measurement of the three variables (T, y, x)
provides the activity coefficients from the equilibrium
relation

where f̂i is the fugacity of component i in the vapor and
liquid mixtures, φ̂i is the vapor-phase fugacity coefficient,
φi

σ is the fugacity coefficient of pure i at its vapor pressure
Pi

σ, and (PC)i is the pure liquid i Poynting Correction,

where 〈Vi
L〉 is the average liquid molar volume of pure i

between the vapor pressure and the system (equilibrium)
pressure P. Because the coefficients φ̂i, φi

σ, and (PC)i can
be evaluated separately, and the vapor pressure of pure i
represents temperature, eq 1 can be viewed as connecting
the measured variables of (P, T, y, x) to the activity
coefficient γι.

Ιn addition to eq 1, an independent Gibbs-Duhem
equation can be written for each of the coexisting phases.
These differential identities can be written in several
alternate forms. Here we use

for the vapor phase and either

or

for the liquid phase. The superscript res denotes a residual
property. These equations are written for a binary system
with y ≡ y1 and x ≡ x1. In eq 4b, VE and HE are the excess
volume and excess enthalpy, respectively. Normally, eqs
1, 3, and 4 would be independent, but in low-pressure VLE
the vapor phase is assumed to be either a perfect gas
mixture (PGM; φ̂i ) 1) or a second virial gas mixture
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f̂i
v ) φ̂iPyi ) f̂i

l ) γiPi
σ
φi

σ(PC)ixi (1)

(PC)i ≡ exp[ ∫Pi
σ

P
(Vi

L/RT) dP] = exp[〈Vi
L〉(P - Pi

σ)/RT] (2)

(y) d ln f̂1 + (1 - y) d ln f̂2 )

[(Vm
v )/RT] dP - [Hm

v,res/RT2] dT (3)

(x) d ln f̂1 + (1 - x) d ln f̂2 )

[(Vm
1 )/RT] dP - [Hm

l,res/RT2] dT (4a)

(x) d ln γ1 + (1 - x) d ln γ2 )

[(VE)/RT] dP - [HE/RT2] dT (4b)
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(SVGM) where

and δ12 ≡ 2B12 - B11 - B22 plus ln φi
σ ) (Pi

σBii/RT).
Experimental values for both Bii and Bij can be found as a
function of temperature for a variety of compounds in
Dymond and Smith (1980). Even at high pressures for
vapor mixtures that approximate an ideal solution, the
fugacity coefficient ratio can be evaluated as (φ̂i) = (φ),
where these pure-component fugacity coefficients may be
estimated from a corresponding states procedure such as
the Lee-Kesler method (see Smith et al., 1996).

As in the case of creditable empirical activity coefficient
models for the liquid phase (Abbott and Prausnitz, 1994),
the vapor model assumption provides automatic compli-
ance with the vapor-phase GD equation, eq 3. With the
more general SVGM assumption, the equilibrium relation
of eq 1 becomes (Van Ness and Abbott, 1982)

It is most important to understand that while eq 3 may be
used in the development of other identities, it no longer
provides a third independent equation (with eqs 4 and 6)
now that a vapor model has been assumed. Indeed, many
VLE experiments measure only the composition of one of
the equilibrium phases and use the above equations to find
the unmeasured composition. In so consuming the liquid-
phase GD equation, their results were made consistent but
without any independent test of the data itself (Van Ness,
1995). While it is more difficult to measure accurately the
vapor-phase composition y compared to the liquid-phase
composition x, it is also more difficult to calculate ac-
curately y from bubble-point measurements of (P, x)
(Sayegh and Vera, 1980) than in the reverse calculation,
as shown in the next section. To provide γι(x, P, T), we must
know accurately x, so past data reduction methods have
centered on the calculation of y, γ, and g from measure-
ments of (P, x); an excellent understanding of these
methods can be obtained by reading Sayegh and Vera
(1980) followed by Van Ness (1995) with consideration for
the articles referenced therein. When both y and x have
been measured, then consistency tests are possible.

In recent years most VLE articles include measurement
of both y and x due to (1) pressure from the thermodynam-
ics community to allow consistency tests and (2) improve-
ments in the accuracy of y from better vapor sampling
techniques as well as improved GC analysis. For the static
method, we consider that both y and x have been measured
when the moles of each pure component are mixed to form
the starting liquid and the composition y of the small
amount of vapor formed is measured directly along with
pressure and temperature; from an estimate of the volume
of vapor, the amount of vapor is estimated, and thus x for
the equilibrium liquid can be calculated from material
balances. No GD equations have been used. Such static
procedures starting with synthetic liquid mixtures can
provide data of high accuracy, as demonstrated in the past
30 years by research groups led by H. C. Van Ness, K. N.
Marsh, Buford Smith and J. Gmehling, among others.

These procedures are similar to high-pressure VLE tech-
niques reviewed by Eubank (1980).

Authors and reviewers of such data should be aware of
the consistency tests afforded by the above equations, as
demonstrated in the remainder of this article. Considerable
care must be used in application of abbreviated forms of
GD equations, such as the common integral test for activity
coefficients, so that data are not declared inconsistent
when, in fact, the problem lies with the test and not the
data. The data should be treated as innocent until proven
guilty. However, the reverse side of this comment is that
few authors make all of the consistency tests outlined here,
resulting in truly inconsistent measurements. What follows
is a guide to proper applications of the GD equation with
some familiar equations perhaps repackaged more conve-
niently and all in one place. We do not claim any really
new equations but rather variations in their application
to the data. With the publication of so many VLE data
manuscripts in this journal and others, we hope to remind
both authors and reviewers of GD constraints in the hope
that these checks will be made before publication.

General Methodology

We have found utility in a two-step method that (1) uses
a combination of the liquid and vapor Gibbs-Duhem
equations to first check the internal consistency of (P, y, x)
at constant temperature or (T, y, x) at constant pressure
and (2) then uses the liquid Gibbs-Duhem equation to
check the liquid-phase activity coefficients in a test more
familiar to most workers. Both tests are based on eqs 4
and 6, and so it can be proven theoretically that when one
is satisfied, so must be the other. However, we have found
that, in dealing with real data, one test may be more
sensitive in checking errors in a particular measured
variable. For example, the first test is a more sensitive test
of the correctness of the pressure and temperature mea-
surements, as the bubble curve slopes, (∂P/∂x)T and
(∂T/∂x)P, and dew curve slopes, (∂P/∂y)T and (∂T/∂y)P, have
much higher multipliers on the right side of the GD
equation due to the gas-phase contributions. It is thus a
good idea to perform both tests in the order given.

Test 1sCombined GD Equations

As when developing the Gibbs-Konowalow laws (Row-
linson and Swinton, 1982, p 107), the fugacity form of the
Gibbs-Duhem equation for the liquid phase, eq 4a, is
subtracted from that of the vapor phase, eq 3, to yield

The perfect gas backgrounds of the gas and liquid mixtures
are not at the same composition, and so their enthalpies
do not cancel. Equation 7 can be rearranged in terms of
the equilibrium constant K1 ≡ (y1/x1) and fugacity coef-
ficients φ̂i ≡ (f̂i/Pyi) to provide

Again, the low-pressure vapor will be assumed to be either
a perfect gas mixture (PGM; φ̂i ) 1) or a second virial gas
mixture (SVGM) where

(y - x) d ln f̂1 - (y - x) d ln f̂2 ) [(Vm
v - Vm

l )/RT] dP -

[(Hm
v,res - Hm

l,res)/RT2] dT (7)

(K1 - 1)x[ dy
y(1 - y)

+ d ln(φ̂1/φ̂2)] )

[(Vm
v - Vm

l )/RT] dP - [(Hm
v,res - Hm

l,res)/RT2] dT (8)

ln(φ̂1/φ̂2) ) (P/RT)[(B11 - B22) + (1 - 2y)δ12] (9)

ln(φ̂1) ) (P/RT)[(B11) + (1 - 2y)δ12];

(PVm
v /RT) ≡ Zm

v ) 1 + (BmP/RT);
Bm ) yB11 + (1 - y)B22 + y(1 - y)δ12;

Hm
v,res ) P[Bm - T(dBm/dT)] (5)

ln γi ) ln[yiP/xiPi
σ] + [(Bii - 〈Vi

L〉)(P - Pi
σ)/RT] +

yj
2(δijP/RT) (6)
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The identity of eq 8 together with a gas model provides
calculation of x from measurements of (P, y) at constant
T, provided a reasonable estimate of (Vm

v - Vm
l ) can be

made. Similarly for constant pressure measurements, x can
be found from measurements of (T, y) at constant P,
provided a reasonable estimate of (Hm

v,res - Hm
l,res) can be

made. The reverse problem of calculation of y from x is far
more difficult in practice for several nontrivial reasons; this
asymmetry between the gas and liquid is created by the
fact that we are measuring nonideal liquid solutions at low
pressures where the vapor phase is approaching a PGM, a
very special ideal solution, so that measuring (P, T, y)
provides the fugacities of eq 1 whereas knowing (P, T, x)
does not because at least one of the liquid-phase activity
coefficients is usually much different from unity. This same
feature is seen on the right side of eq 7 at constant T, where
accurate knowledge of Vm

v is far more important than that
of the much smaller Vm

l . Of course these differences
disappear upon approaching a mixture vapor/liquid critical
point but not a noncritical azeotrope.

Because a binary VLE data set cannot be both isothermal
and isobaric, both the liquid-side and vapor-side forms of
the Gibbs-Duhem equation contain a nonzero term involv-
ing a bubble-point or a dew-point slope. This is due to the
phase rule which provides only a single datum, fixed x and
y, when both temperature and pressure are set. Except at
an azeotrope, the right-hand side of the GD equation should
never be ignored or declared negligible without at least
estimation of its magnitude. Because this assumption has
been made for so long in most undergraduate texts,
generations of practicing engineers believe a number of
data sets to be inconsistent when they are not. An example
involving activity coefficients and the liquid Gibb-Duhem
equation will be given later.

Test 1sApplications to VLE Data

Isothermal Measurements (Test 1T). Using eqs 8 and
9 for a SVGM in the vapor,

Unlike a similar equation used by McGlashan (1979), eq
10 is exact when the vapor is a SVGM. McGlashan (1979)
used a liquid-side GD equation with both right-side terms
set to zero, as discussed in the previous section; that is,
the excess volume of the liquid mixture was ignored. A very
complete discussion of this derivation and this assumption
is found in McGlashan (1979). When the vapor phase is
near an ideal solution, as for many hydrocarbon mixtures,
δ12 ) 0. For a PGM, eq 10 reduces to the more familiar
result

In most cases Zm
l can be ignored compared to Zm

v . The
real value of the SVGM model is that the effect of the
second virial coefficients can be used to find the difference
between x(eq 10) and x(eq 11). When this difference is less
than roughly 0.01, then major discrepancies between x(exp)
and x from either eq 10 or eq 11 cannot be attributed to
gas-phase imperfections. Because x has been calculated
from experimental values of (P, y), disagreement of x(exp)
with x(cal) by 0.05 or more is usually caused by (1) failure
to measure x and/or y accurately and/or (2) failure to

measure P accurately, so that (∂ ln P/∂y)T is not accurately
found from the data. This second problem is often acute at
dilution, where eq 10 as y f 0 becomes (Eubank et al.,
1987)

In such a case the pressure derivative should be evaluated
from a numerical forward or backward difference formula
such as that of Newton (CRC Handbook of Mathematical
Tables, 1964).

Experimental variations in T should not be a problem
for modern measurements using platinum resistance ther-
mometers easily capable of measurement to (1 mK.
However, impurities remain a frequent major error source
with their error propagation often being many times the
impurity fraction itself (Eubank et al., 1987).

Simple Example. We first present some simple ex-
amples that both authors and reviewers can perform in
minutes with hand calculators. Later, we provide a more
detailed analysis using a digital computer to study the
effect of the assumed gas model.

Consider, for example, the data of Udovenko and Fat-
kulina (1952) for ethanol (1) + water (2) at 40 °C. They
report the data at y ) 0.3160, x ) 0.0580, and P ) 10.61
kPa. From this datum and neighboring data, we find that
(∂P/∂y)T ) 14.41 kPa or (∂ ln P/∂y)T ) 1.358. Also, Zm

l )
8.25 × 10-5, so eq 11 yields x ) 0.0225, whereas eq 10 yields
x ) 0.0236. If the experimental values of y are correct, then
(∂ ln P/∂y)T ) 1.194 or (∂P/∂y)T ) 12.7 kPasa 13.8%
difference, whereas the difference in x is of the order of
90%. Different numerical methods for evaluation of this
slope provide essentially the same results; rough error
analysis shows that errors of (0.01 in x and in y plus (1%
in pressure can cause errors as high as 20% in (∂P/∂y)Ts
this is likely the problem with these data.

Isobaric Measurements (Test 1P). Here the lack of
mixture enthalpy data generally forces more restrictive
assumptions onto the right side of eq 8. When the enthalpy
of both pure liquids is set to zero at say their NBP (where
the pressure P° is atmospheric), the enthalpy of a liquid
mixture of these two may differ from zero by the excess
enthalpy due to the liquid solution being nonideal. The
complete result for the SVGM is that in eq 8

and

where λi is the enthalpy of vaporization of pure component
i, the prime superscript denotes a total derivative with
respect to temperature, P° is the standard-state pressure
of 1 bar (100 kPa), ∆ ≡ y - x, and 〈CPi

/ 〉 is the average
perfect-gas isobaric heat capacity of pure component i.
Numerical tests with very nonideal liquid mixtures and
with the highest values of δ12, such as from acetonitrile +
acetaldehyde and methanol + benzene, have shown that
the second, fourth, and fifth terms on the RHS of eq 13

x ) y -

{ (∂P/∂y)T(RT/P)(Zm
v - Zm

l )

(RT/y(1 - y)) - 2δ12P + (∂P/∂y)T[(B11 - B22) + (1 - 2y)δ12]}
(10)

x ) y[1 - (1 - y)(∂ ln P/∂y)T(1 - Zm
l )] (11)

x ) y[1 - (∂ ln P/∂y)T
∞(1 + (B22P2

σ/RT))] (12)

(Hm
v,res - Hm

l,res) ) -HE + P°[(B11 - B22) - T(B′11 -

B′22)]∆ + P°[δ12 - Tδ′12]y(1 - y) + 〈CP1
/ 〉(T - T1

σ)x +

〈CP2
/ 〉(T - T2

σ)(1 - x) + λ1x + λ2(1 - x) (13)

[∂ ln(φ̂1/φ̂2)/∂y]P ) (P°/R)[d(B11/T)
dT

-
d(B22/T)

dT
+

(1 - 2y)
d(δ12/T)

dT ](∂T
∂y)

P
- (2δ12P°/RT)[1 - (y/T)(∂T

∂y)P]
(14)
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are negligible, as are all the terms on the RHS of eq 14
except for [-(2δ12Pï/RΤ)] alone. Equation 8 then simplifies
to

Now we move on to the PGM assumption for the vapor and
also ignore the liquid excess enthalpy in eq 15 in compari-
son to the higher enthalpies of vaporization. Excess en-
thalpies are usually <1 kJ/mol, whereas enthalpies of
vaporization are typically of the order of (25-35) kJ/mol.
A particularly simple and useful equation results:

While eq 16 is by no means exact, it has been found, like
eq 11, to provide values of x usually within the experimen-
tal error of x itself when the (T, x, y) measurements are
consistent with GD. Equations 15 and 16 have not been
solved explicitly for x, as they can be applied most easily
by using x(exp) on the right side to calculate x(cal) on the
left side for comparison to x(exp). Equation 16 is sufficiently
simple that it can be apply to the approximately 50% of
existing isobaric data where the pure enthalpies of vapor-
ization are known independently. Otherwise, these enthal-
pies of vaporization can be estimated, usually to about
(2%, from the NBP temperature and critical properties
by methods reviewed in Reid et al. (1986). When experi-
mental excess enthalpy measurements are available, the
mixture second virial coefficients of eq 15 can be estimated
by the method of Tsonopoulos (1974); then x(eq 15) can be
compared to x(eq 16) and to x(exp) to see the effect of the
gas model and whether the data are consistent.

Simple Example. An example is the recent measure-
ments of Loras et al. (1999) for 3-methylpentane (1) +
diisopropyl ether (2) at 101.3 kPa; a total of 22 data points
were taken for different values of x with temperatures
ranging monotonically from 336.3 K (x ) 1) to 341.4 K (x
) 0). The pure-component enthalpies of vaporization are
λ1 ) 28.1 kJ/mol and λ2 ) 29.1 kJ/mol (Majer and Svoboda,
1985). For the datum y ) 0.089, x ) 0.069, and T ) 340.6
K, neighboring data provide (∂T/∂y)P ) -7.42 K, so eq 16
yields x ) 0.071, in close agreement with experiment.
Experimental excess enthalpies for the liquid were not
found.

Test 1sNew Graphical Method

Most experimentalists are rightfully reluctant to use
models in conjunction with their dataseven numerical
differentiation formulas such as Newton forward, Newton
backward, and Stirling central difference for the derivatives
appearing in eqs 10, 11, 15, and 16. We present here a new
graphical method for test 1 that can be used regardless of
the assumed gas model. Nevertheless, for simplicity, we
first illustrate the graphical method for a PGM. Let ∆ ≡ y
- x; P* ≡ ln(P/P2

σ); and T* ≡ -ln(T/T2
σ). For isothermal

data, plot P* versus y, as shown in Figure 1. Note that P*
is zero at y ) 0, whereas, at y ) 1, P* ) ln(P1

σ/P2
σ) and

azeotropes must appear as extrema similar to P versus y.
Further, (∂P*/∂y)T ) (∂ ln P/∂y)T, so that eq 11 with 1 . Zm

l

becomes

but y(∂P*/∂y)T ) P* - I, where I is the intercept of the
tangent line drawn to the data at (y, P*), as shown in

Figure 1. Thus, ∆ï ) (1 - y)(P* - I), the area of the
rectangle of Figure 1. This area assumes the sign of (P* -
I), which can be positive or negative. The superscript °
above ∆ denotes the PGM assumption.

When using eq 10 for the SVGM, the procedure is similar
using the same graph, except

where the area (or ∆°) is the same as that of Figure 1.
Equation 18 should yield ∆ to (0.001 for pressures below
2 bar, subject, of course, to errors in the separate quantities
on the right side of the equation. This equation reduces to
eq 17 for a PGM with 1 . Zm

l .
For isobaric data with eq 16, the procedure is again

similar, except T* is graphed against y. Because

the area corresponding to Figure 1 must be multiplied by
(xλ1 + (1 - x)λ2)/RT to provide ∆°. As an alternate
procedure, T** ≡ (T2

σ/T) can be graphed against y with
the area corresponding to Figure 1 multiplied by (xλ1 + (1
- x)λ2)/RT2

σ to provide ∆°. In any case, the x in the
multiplier is taken from experiment, as described following
eq 16. For the SVGM, eq 15 leads to

Lamonte (1999) has selected several isothermal and
several isobaric data sets from Ohe (1989) for use with
these graphical procedures. These data sets are (a) chloro-
form (1) + ethanol (2) at 45 °C, (b) carbon tetrachloride (1)
+ acetonitrile (2) at 45 °C, (c) bromopentafluoride (1) +
bromotrifluoride (2) 74.9 °C, (d) methyl acetate (1) +
methanol (2) at 30 °C, (e) chloroform (1) + 2,3-dimethylbu-
tane (2) at 1.10325 bar, (f) chloroform (1) + benzene (2) at
1.10325 bar, (g) ethanol (1) + aniline (2) at 1.10325 bar,
and (h) methanol (1) + carbon tetrachloride (2) at 1.10325
bar.

x = {λ1x + λ2(1 - x) + P°y(1 - y)[δ12 - Tδ′12] - HE} ×
[RTy-1(1 - y)-1 - 2δ12P°]-1(∂ ln T/∂y)P + y (15)

x ) y[1 + (1 - y)(xλ1 + (1 - x)λ2)(∂T/∂y)P/RT2] (16)

∆° ) y(1 - y)(∂P*/∂y)T (17)

Figure 1. New graphical procedure for checking the consistency
of VLE data via test 1. Here P* ≡ ln(P/P2

σ) and I is the intercept
on the ordinate of the tangent line drawn from the known value
of y. The area shown equals y - x.

∆ ) (Zm
v - Zm

1 )(area)[1 -
2δ12y(1 - y)P

RT
+ [B11 - B22 +

(1 - 2y)δ12](P/RT)(area)]-1

(18)

∆° ) -(xλ1 + (1 - x)λ2)y(1 - y)(∂T/∂y)P/RT2 (19)

∆ ) {[HE - P°y(1 - y)(δ12 - Tδ′12)](∂ ln T/∂y)P +

RTy-1(1 - y)-1∆°}[RTy-1(1 - y)-1 - 2δ12P°]-1 (20)
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Generally, good agreement was found between the
calculated and experimental values of x; here good agree-
ment is when the difference is no more than 0.01. One
seeks agreement to 0.001, but this is not realistic consider-
ing the sensitivity to dew and bubble curve slopes discussed
at the end of the next section. As an example of this
agreement, Figure 2 is P* versus y for set (a), where, at y
) 0.794, x (exp) ) 0.600, P ) 57.95 kPa, P1

σ ) 57.36, P2
σ )

23.05, and x(graph) ) 0.606 without virial coefficient
correction. Conversely, Figure 3 is T* versus y for set (e),
where, at y ) 0.765, x(exp) ) 0.850, T ) 57.5 °C, T1

σ ) 61.7
°C, T2

σ ) 57.9 °C, λ1 ) 29.2 kJ/mol, λ2 ) 27.3 kJ/mol, and
x(graph) ) 1.24!, without virial coefficient correction.
However, corrections with the SVGM, as detailed in the
next section, and an estimate of the excess enthalpy for
the liquid are too small to change this result.

Test 1sEffect of the Assumed Gas Model

Alvarado (1999) has performed a study of the effect of
the assumed gas model, whether PGM or SVGM, on the
values of x calculated under test 1 for both the isothermal
and the isobaric cases. Alvarado used the Tsonopoulos
correlation (1974) for Bii and Bij but also found no signifi-
cant changes in his results with the somewhat simpler
correlations found in Smith et al. (1996). Further, Alvarado
took critical constants, acentric factors, and so forth from
Reid et al. (1986). Alvarado’s results are now summarized.

Isothermal Measurements (Test 1T). Six literature
systems were studied: (a) acetone (1) + methanol (2) at

373.15 K from Griswold and Wong (1952), (b) 2-butanone
(1) + n-heptane (2) at 318.15 K from Takeo et al. (1979),
(c) n-heptane (1) + 2-methyl-1-butanol (2) at 368.15 K from
Wolfova et al. (1991), (d) ethanol (1) + water (2) at 313.15
K from Udovenko and Fatkulina (1952), (e) methanol (1)
+ methyl methacrylate (2) at 323.15 K from Ishikawa and
Lu (1979), and (f) methanol (1) + tert-amyl methyl ether
(2) at 333.15 K from Toghiani et al. (1996). Here the
difference between the PGM (eq 11) and SVGM (eq 10) can
be significant especially when δ12 differs significantly from
zero. Comparison of the first two terms in the denominator
of the last quantity of eq 10 shows that when y ) 0.5, so
that the dominant term [y(1 - y)]-1 is 4, the term [2δ12P/
RT] is 1% of 4 or 0.04 when δ12 ) (540 cm3/mol for P ) 1
bar and T ) 325 K. Considering that absolute values of
δ12 can range from zero to as much as 10 times this value,
significant differences between PGM and SVGM results
can occur in the middle of the P versus y diagram but not
approaching either end, as [y(1 - y)]-1 is divergent.

The results of Alvarado (1999) show significant differ-
ences for all six systems except (b), where the differences
in the calculated x are less than 0.02 but the SVGM does
improve the agreement between x(exp) and x(cal) to be less
than 0.01 for 18 data points. In all cases but (d), x(cal)
agrees significantly better with x(exp) when the SVGM is
used; a good example is case (e) shown by Figure 4. Figure
5 shows that the data of case (d) suffer problems for y in
the range 0.1-0.6 that cannot be reconciled by either gas
model.

Isobaric Measurements (Test 1P). Alvarado studied
10 isobaric VLE data sets: (a) 1-propanol (1) + water (2)
at 26.7 and 80.0 kPa from Smirnova (1959), (b) 1-propanol
(1) + n-octane (2) at 101.3 kPa from Hiaki et al. (1995), (c)
2-propanol (1) + acetonitrile (2), 2-propanol (1) + 1-chloro-
butane (2), and 1-chlorobutane (1) + acetonitrile (2) at
101.3 kPa from Tu and Ou (1998), (d) acetone (1) + benzene
(2) at 101.3 kPa from Canjar et al. (1956), (e) acetone (1)
+ chloroform (2) at 101.3 kPa from Reinders and de Minjer

Figure 2. New graphical procedure of Figure 1 applied to
chloroform (1) + ethanol (2) at 45 °C from Ohe (1989). P* ≡ ln(P/
P2

σ) is plotted versus y. The line fitted to the separate data points
is P* ) (-17.048)y6 + (39.738)y5 - (35.949)y4 + (15.906)y3 -
(2.977)y2 + (1.0784)y - (0.0004).

Figure 3. New graphical procedure of Figure 1 applied to
chloroform (1) + 2,3-dimethylbutane (2) at 101.3 kPa from Ohe
(1989). T* ≡ -ln(T/T2

σ) is plotted versus y.

Figure 4. New graphical procedure of Figure 1 applied to
methanol (1) + methyl methacrylate (2) at 323.15 K from Ishikawa
and Lu (1979). Here values of x are calculated from eq 11 assuming
the vapor to be a perfect gas mixture (O) or from eq 10 assuming
the vapor to be a SVGM (b). The calculated values of x are graphed
against the experimental values of x. The correction of the vapor
with a SVGM is seen to significantly improve the agreement.
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(1940), and (f) methanol (1) + benzene (2) at 101.3 kPa
from Fritzweiler and Dietrich (1933) and also later by
Kurihara et al. (1998). He found the difference between
x(eq 15) and x(eq 16) to be <0.01 although >0.001 in most
cases. Most of these data sets provide good agreement
between x(calc) and x(exp), as seen in Figure 6 for 2-pro-
panol (1) + 1-chlorobutane (2) at 101.3 kPa of Tu and Ou

(1998). Of the three systems measured by these investiga-
tors, case (c), this system shows the highest scatter about
x(calc) in the plot against x(exp). Alvarado estimated (∂T/
∂y)P from a cubic spline fit; he also provided a graph of (∂T/
∂y)P versus y for each system. However, in some cases there
is scatter on these graphs that carries over to the final
results of x(calc) versus x(exp). Once the (∂T/∂y)P versus y
graph is smoothed for use in eq 15 or 16, then most of the
scatter is eliminated from the final results.

It is thus one of the pitfalls of test 1 that one cannot
take (∂T/∂y)P or (∂P/∂y)T by differencing the experimental
data from one datum to the next. Rather one must try to
smooth the data so that the derivatives appearing in eq
15 or 10 are themselves smooth. Otherwise the final graph
of x(calc) versus x(exp) will show high scatter but no
systematic bias for x(calc) - x(exp). For example, the
acetone (1) + benzene (2) data at 101.3 kPa from Canjar
et al. (1956) show a small bias, as seen in Figure 7, while
our curve of (∂T/∂y)P is well smoothed. This is also true of
our curve of (∂P/∂y)T for the data in Figure 5.

Test 2sActivity Coefficients

Equation 6 provides for calculation of the activity coef-
ficients from (P, T, y, x) data, hopefully after passing test
1. The activity coefficients are particularly sensitive to the
vapor model, so the SVGM should be used here even
though it was found earlier that there was no difference
between eqs 10 and 11 for isothermal data or between eqs
15 and 16 for isobaric data. Equation 4b should be written
with x as the independent variable, so that for isothermal
data

Figure 5. New graphical procedure of Figure 1 applied to ethanol
(1) + water (2) at 313.15 K from Udovenko and Fatkulina (1952).
Here values of x are calculated from eq 11 assuming the vapor to
be a perfect gas mixture (O) or from eq 10 assuming the vapor to
be a SVGM (b). The calculated values of x are graphed against
the experimental values of x. Serious problems are seen to exist
with these data although the experimental P versus y curve is
smooth.

Figure 6. New graphical procedure of Figure 1 applied to
2-propanol (1) + 1-chlorobutane (2) at 101.3 kPa of Tu and Ou
(1998). Here values of x are calculated from eq 16 assuming the
vapor to be a perfect gas mixture (O) or from eq 15 assuming the
vapor to be a SVGM (b). The calculated values of x are graphed
against the experimental values of x. The agreement is generally
good excepting two outliers near x ) 0.15.

Figure 7. New graphical procedure of Figure 1 applied to acetone
(1) + benzene (2) data at 101.3 kPa from Canjar et al. (1956). Here
values of x are calculated from eq 16 assuming the vapor to be a
perfect gas mixture (O) or from eq 15 assuming the vapor to be a
SVGM (b). The calculated values of x are graphed against the
experimental values of x. A small systematic bias is seen in the
difference between the calculated and experimental values of x
as x increases.

x(∂ ln γ1/∂x)T + (1 - x)(∂ ln γ2/∂x)T )

(Vl
E/RT)(∂P/∂x)T (21)
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and for isobaric data

The resultant values of the activity coefficients, whether
from isothermal or isobaric data, should further be tested
(test 2) with these well-known GD forms for only the liquid
phase. While test 2 and test 1 are theoretically equivalent,
as discussed earlier, a number of data sets can be shown
to obey eq 10 (or eq 15) but fail eq 21 (or eq 22). The reason
for this paradox is that test 1 is a vapor-GD minus liquid-
GD test that drowns out the RHS of the liquid-GD
equation; VE and HE for the liquid are too small to be of
importance in eqs 10 and 15, respectively, but they are very
important in eqs 21 and 22, respectively. These equations
do not use the vapor-GD equation, which is automatically
satisfied by the assumption of a vapor model, and so test
2 is sensitive to deviations from an ideal liquid solution.

While these equations are among the most important in
solution thermodynamics, evaluation of the right side is
often difficult due to uncertainties both in the excess
function and in the slope term. However, if the tests of the
previous sections have been successfulsthat is, if (x, y, P)
are consistent by eq 10 (or eq 11 at low pressures) for
isothermal datasthen the slope in eq 10 is correct and one
need only be concerned about the excess function when
examining the familiar graphs of (ln γi) versus x as
illustrated by Figure 8. There it is obvious from eqs 21 and
22 that as xi f 1, both yi f 1 and (∂ ln γi/∂xi) f 0 (solvent
limits).

A general order-of-magnitude analysis shows that, be-
cause VE is seldom >1 cm3/mol and HE is seldom >1 kJ/
mol in absolute value (Rowlinson and Swinton, 1982,
Chapter 5), the quantities (VE/RT) and (HE/RT2) are seldom
>4 × 10-5 bar-1 and 1.3 × 10-3 K-1, respectively. Similarly,
it is unusual for the absolute values of the bubble-point
curve slopes (∂P/∂x)T and (∂T/∂x)P to exceed 1 bar and 100
K, respectively, for low-pressure VLE measurements. Thus,
the right hand sides of eqs 21 and 22 seldom exceed 4 ×
10-5 and 0.13, respectively. To approximate the terms on
the left hand sides of eqs 21 and 22, imagine that γ1

followed Porter’s symmetric model

where ln γ1
∞ ) A and γ1

∞ is generally greater than 1.1, so
A > 0.0953. The first term on the LHS of either eq 21 or

eq 22 is -2Ax1x2, which reaches its maximum absolute
value of 0.0477 for the equimolar liquid but drops to 4/9 of
that value or 0.0172 when x is 0.1 or 0.9. If the second term
on the LHS of either eq 21 or eq 22 were zero at x ) 0.1,
then we see that the RHS of eq 21 is not likely to
compensate whereas the RHS of eq 22 may compensate,
remembering that the maximum value of 0.13 above likely
is near equimolar and will drop considerably at x ) 0.1.
The result here for test 2 is that isothermal data at any x
showing the same sign for the slopes (∂ ln γ1/∂x1)T and (∂ ln
γ2/∂x1)T are very unlikely to obey eq 21, as the RHS is far
too small to compensate. For isobaric data, compensation
from the RHS of eq 22 is a possibility to be checked by first
examination of the sign of HE; nevertheless, the occurrence
of the same signs for the two terms on the LHS of either
eq 21 or eq 22 should be a warning signal for careful testing
of the data. This occurrence usually arises on approaching
dilution with the activity coefficient of the solvent dropping
below unity, dropping through a minimum, and then
returning to unity with zero slope, as shown with some
exaggeration in Figure 9. Even for isobaric data, such
behavior is usually not real but rather the result of one or
both of the following two reasons: (a) the virial coefficients

Figure 8. Common graph of the natural logarithm of the activity coefficient of component 1 and also component 2 versus the liquid-
phase mole fraction x.

x(∂ ln γ1/∂x)P + (1 - x)(∂ ln γ2/∂x)P )

-(Hl
E/RT2)(∂T/∂x)P (22)

ln γ1 ) Ax2
2 (23)

Figure 9. Figure 8, but showing qualitatively data where the ln
γ2 upon approaching the pure 2 endpoint falls below zero (γ2 falls
below unity). The inflection shown in the curve of ln γ2 on the
right side of the diagram does not violate the GD eq and is forecast
by the two-constant Margules equation (see Smith et al., 1996, p
376).
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have not been used in the equilibrium equation (eq 6) and/
or (b) test 1 via eq 10 or 15 is not obeyed by the data,
causing an inconsistency between the measured x and y
as used in eq 6. The first reason is easily understood from
eq 6 for ln γ1: as x approaches unity, the δ12 term is
effectively eliminated while the B11 term is positive, as both
B11 and (P - P1

σ) are negative. The reverse is true for the
heavy solvent, as pictured in Figure 9, so the second reason
is more likely behind the problem.

An example among many is the recent isobaric data of
Martinez-Soria et al. (1999), who have corrected their data
with virial coefficients but, like most experimentalists, have
not used test 1. Table 1 shows that when our new graphical
method is used to calculate x consistent with the experi-
mental values of y, significant differences are found with
x(exp) for values of x extending to near 0.8. Use of our x(cal)
in eq 6 results in values of γ2 for toluene, the solvent, that
no longer dip below unity at dilution of the solute, tert-
butyl alcohol. Values of γ1 are also lowered significantly
for low values of x. Our infinite dilution activity coefficients
in Table 1 were calculated from combination of eqs 6, 8,
and 9, which provide

for γ1
∞, and a similar equation for γ2

∞ results when the
subscripts 1 and 2 are interchanged. All of the other
calculated activity coefficients in Table 1 are the result of
using the same virial coefficient corrections and pure-
component vapor pressures as used by Martinez-Soria et
al. (1999), so that

It is easily seen from Table 1 that making x consistent with
the (T, y) measurements via test 1 has other benefits
besides removing the solvent activity coefficient problem
of Figure 9. The solute activity coefficients are strongly
affected and now brought into line with the infinite dilution
values of eq 24. The calculated activity coefficients of Table

1 agree with test 2, allowing for experimental scatter which
is not removed when test 1 is used to make x consistent
with the (T, y) measurements. That is, application of test
1 does not result in a data smoothing procedure.

Experimentalists who feel that their measured values
of x are superior to their measured y can adjust y instead
by using eq 10 or 15 or the graphical method after some
trial/error. Then values of y(cal) can be checked against
y(exp) to see if y(cal) falls within the experimental error
bands.

Conclusions

The use of GD equations as applied to binary VLE has
been demonstrated. The double GD form of vapor minus
liquid is especially advantageous because the vapor phase
is inherently simpler and thus the basic consistency of (P,
x, y) data at constant T or of (T, x, y) data at constant P
can be checked without consideration of liquid-phase
activity coefficients. Later, the liquid GD equation can be
used with the activity coefficients in a conventional test.
While the two tests are not independent in theory, they
become so in application due to large differences in the
magnitude of the terms involved. There are good reasons
to apply first the double GD equation. Integral tests have
not been considered because, while useful when all the RHS
terms are included, they form necessary but not sufficient
conditionssthat is, the process of integration over x can
cancel out errors that are apparent in the differential tests
considered here.

Temperature and pressure can be measured easily to (1
mK and (0.02%, respectively, but such high accuracy is
seldom attained in VLE experiments. The only weakness
of test 1 is in the evaluation of the pressure and temper-
ature derivatives with respect to y. Better measurements
of temperature and pressures in future VLE experiments
will allow test 1 to better check the internal consistency of
the less accurate phase compositions.

Notation

A ) single constant in Porter’s symmetric model (also
known as single-constant Margules)

Table 1. Correction of Data of Martinez-Soria et al. (1999) for tert-Butyl Alcohol (1) + Toluene (2) at 101.3 kPa via
Graphical Method of Test 1 at Low Values of x

T/K T* x(exp) x(cal) y(exp) γ1(exp) γ1(cal) γ2(exp) γ2(cal)

383.8 0 0 0 0 1.963 1 1
379.3 0.01179 0.0236 0.0330 0.1504 2.814 2.012 0.983 0.993
375.7 0.02133 0.0464 0.0599 0.2440 2.602 2.016 0.992 1.006
371.4 0.03284 0.0821 0.1014 0.3621 2.512 2.034 0.986 1.007
370.4 0.03554 0.0878 0.1163 0.3769 2.528 1.908 0.998 1.030
368.6 0.04041 0.1090 0.1390 0.4156 2.386 1.871 1.011 1.046
366.2 0.04694 0.1529 0.1891 0.4842 2.151 1.739 1.010 1.055
363.5 0.05434 0.2083 0.2561 0.5518 1.978 1.609 1.021 1.087
361.7 0.05931 0.2503 0.2932 0.5807 1.847 1.577 1.067 1.132
360.4 0.06291 0.3140 0.3445 0.6189 1.645 1.499 1.105 1.156
359.5 0.06541 0.3846 0.4298 0.6547 1.468 1.314 1.149 1.240
358.3 0.06875 0.4802 0.5138 0.6928 1.300 1.215 1.258 1.345
357.8 0.07015 0.5213 0.5489 0.7072 1.245 1.182 1.323 1.404
357.2 0.07183 0.5787 0.6100 0.7281 1.181 1.120 1.423 1.537
357.0 0.07239 0.6108 0.6504 0.7464 1.155 1.085 1.447 1.611
356.8 0.07295 0.6398 0.6821 0.7620 1.134 1.064 1.477 1.673
356.5 0.07379 0.6891 0.7155 0.7828 1.094 1.054 1.577 1.723
356.1 0.07491 0.7397 0.7629 0.8124 1.074 1.041 1.649 1.810
355.7 0.07603 0.8083 0.8305 0.8509 1.045 1.017 1.803 2.039
355.6 0.07632 0.8414 0.8593 0.8703 1.030 1.009 1.902 2.144
355.5 0.07660 0.9005 0.9026 0.9082 1.008 1.005 2.154 2.200
355.5 0.07660 0.9178 0.9160 0.9200 1.002 1.004 2.272 2.223
355.4 0.07688 0.9343 0.9362 0.9362 1.006 1.004 2.275 2.343
355.5 0.07660 0.9578 0.9593 0.9565 0.998 0.997 2.407 2.496
355.6 0.07632 0.9719 0.9736 0.9712 0.995 0.993 2.386 2.540
355.7 0.07603 1 1 1 1 1 2.698

γ1
∞ ) (P2

σ/P1
σ)[1 + (∂T/∂y)P

∞(d ln P2
σ/dT)]-1 exp{[(B11 -

〈V1
L〉)(P2

σ - P1
σ) + δ12P2

σ]/RT2
σ} (24)

γi(cal) ) γi(exp)‚xi(exp)/xi(cal) (25)
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Bii ) second virial coefficient of pure component i
Bij ) cross second virial coefficient of components i and

j in a mixture
Bm ) mixture second virial coefficient
Cp,i

* ) perfect-gas-state heat capacity of pure component
i

f̂i ) fugacity of component i in a mixture
G ) Gibbs energy
g ) dimensionless Gibbs energy (G/RT)
H ) specific enthalpy
Ki ) equilibrium constant (yi/xi)
LHS ) left-hand-side
P ) pressure
PC ) dimensionless Poynting correction
R ) universal gas constant
RHS ) right-hand-side
T ) temperature, absolute
V ) specific volume
x ) liquid-phase mole fraction (composition)
y ) vapor-phase mole fraction (composition)
Z ) compressibility factor (PV/RT)

Greek Symbols

γι ) activity coefficient of component i in the liquid
solution

∆ ) the difference (y - x)
δ12 ) mixture second virial coefficient parameter show-

ing deviation from ideal solution in the vapor,
2Bij - Bii - Bjj

λι ) heat of vaporization of pure component i
φι ) fugacity coefficient of component i

Subscripts

i ) component i
m ) mixture

Superscripts

E ) excess property
L, l ) liquid phase
° ) property at standard pressure of 1 bar
res ) residual property, real property less perfect gas

property at same (P, T, x)
v ) vapor phase
σ ) property at saturation
∞ ) mixture property at infinite dilution of subscript i
* ) perfect gas property
Å ) prime indicates temperature derivative
ˆ ) carat indicates a property in the mixture
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