Densities, Refractive Indices, and Derived Excess Properties of the Binary Systems Toluene + Isooctane and Methylcyclohexane + Isooctane and the Ternary Systems *tert*-Butyl Alcohol + Toluene + Isooctane and *tert*-Butyl Alcohol + Methylcyclohexane + Isooctane at 298.15 K

Juan B. Montón,* M. Pilar Peña, and V. Martínez-Soria

Departamento de Ingenieria Quimica, Facultad de Quimica, Universitat de Valencia, 46100 Burjassot, Valencia, Spain

This paper reports mesurements of the densities and refractive indices of the binary systems toluene + isooctane and methylcyclohexane + isooctane and the ternary systems *tert*-butyl alcohol (TBA) + toluene + isooctane and *tert*-butyl alcohol (TBA) + methylcyclohexane + isooctane over the entire range of composition at 298.15 K. Excess molar volumes and changes of refractive indices were evaluated from the experimental data obtained. These derived properties were fitted to variable-degree polynomials. The experimental values of physical properties were compared with the values estimated by different methods.

1. Introduction

The present work is part of our systematic studies on thermodynamic properties for mixtures of great interest in industry. Knowledge of these mixing properties has relevance in both theoretical and applied areas of research because such results are useful in design and simulation processes. In this sense, there has been an increasing interest in the thermodynamic behavior of liquid mixtures of the oxygenated compounds included in reformulated gasoline: methyl *tert*-butyl ether (MTBE), *tert*-amyl methyl ether (TAME), and alcohols—methanol, ethanol, *tert*-butyl alcohol (TBA), and isobutyl alcohol (IBA).

In a previous paper (Peña et al., 1999), we have studied the densities and refractive indices for the binary systems TBA + isooctane, TBA + toluene, TBA + methylcyclohexane, and methylcyclohexane + toluene and the ternary system TBA + toluene + methylcyclohexane. The present work is the continuation of this work and reports densities and refractive indices for the toluene + isooctane and methylcyclohexane + isooctane binary system and for the TBA + toluene + isooctane and TBA + methylcyclohexane + isooctane ternary systems at 298.15 K, and the corresponding excess molar volumes and changes of refractive indices. Comparison has been made between the measured values and those predicted by different methods.

2. Experimental Section

The chemicals *tert*-butyl alcohol (2-methyl-2-propanol) (>99.5%), methylcyclohexane (>99%), toluene (>99.8%), and isooctane (2,2,4-trimethylpentane) (>99.7%) were supplied by Aldrich. The purity of all chemicals was checked by gas chromatography (GC), and the results of these analyses showed that the impurities did not exceed 0.2 mass %. The pure components were degassed ultrasoni-

* To whom correspondence should be addressed. E-mail: Juan.B.Monton@uv.es. Telephone: 346 3864325. Fax: 346 3864898.

cally. These reagents were used without further purification. The *tert*-butyl alcohol was dehydrated using zeolite A (4 Å).

The samples were prepared using a Mettler AE 200 balance with an accuracy of ± 0.0001 g, covering the whole composition range of the binary and ternary mixtures. Precautions were taken such as using freshly prepared samples and reducing the vapor space in the vessels to a minimum, to avoid preferential evaporation during manipulation and subsequent composition errors. The estimated uncertainity in the mole fraction of the samples used was ± 0.0001 .

The densities of pure components and their mixtures were measured with an Anton Paar DMA 55 densimeter, and the refractive indices with an Abbe refractometer (Type 3T), with reproducibilities of ± 0.01 kg·m⁻³ and ± 0.0002 , respectively. Each apparatus was matched to a Julabo circulator with proportional temperature control and an automatic drift correction system that kept the samples at 298.15 K with an uncertainity of ± 0.01 K. The densimeter was calibrated with air-dried and distilled water.

3. Results and Discussion

Densities, ρ , refractive indices, n_D , excess molar volumes, V^E , and changes in refractive indices, δn_D , of binary and ternary mixtures are shown in Tables 1–4. In these tables, x_i is the molar fraction of component *i* in the mixture. No values of the entitled mixtures have been published, as far as we known, in the open literature. The density and refractive index for each component were measured at 298.15 K and compiled in a previous work (Martínez-Soria et al., 1999). Measurements of density and refractive index for pure components were realized by ascertaining the constancies of the values of these mentioned properties for every component at 298.15 K, which were reasonably in accordance with values found in the literature (*TRC Thermodynamic Tables*, 1996).

Table 1. Densities, ρ , Refractive Indices, n_D , Excess Molar Volumes, V^E , and Changes of Refractive Indices on Mixing, δn_D , for the Binary System Toluene (2) + Isooctane (4) at 298.15 K

<i>X</i> ₂	$ ho/{ m kg}{ m \cdot}{ m m}^{-3}$	n _D	$V^{E}/cm^{3}\cdot mol^{-1}$	$\delta n_{\rm D}$
0.0000	687.67	1.3890	0.000	0.0000
0.0490	693.18	1.3927	0.018	-0.0014
0.1098	700.27	1.3964	0.047	-0.0042
0.1882	709.99	1.4023	0.063	-0.0065
0.2418	716.97	1.4064	0.075	-0.0080
0.3067	725.85	1.4113	0.087	-0.0099
0.3691	734.88	1.4170	0.085	-0.0108
0.4454	746.57	1.4240	0.084	-0.0118
0.5035	756.03	1.4298	0.079	-0.0121
0.5738	768.11	1.4372	0.072	-0.0120
0.6183	776.19	1.4422	0.066	-0.0117
0.6849	788.91	1.4497	0.055	-0.0113
0.7644	805.13	1.4598	0.048	-0.0095
0.8241	818.26	1.4674	0.030	-0.0081
0.9020	836.63	1.4789	0.012	-0.0048
0.9617	851.68	1.4871	0.004	-0.0029
1.0000	861.87	1.4940	0.000	0.0000

Table 2. Densities, ρ , Refractive Indices, n_D , Excess Molar Volumes, V^E , and Changes of Refractive Indices on Mixing, δn_D , for the Binary System Methylcyclohexane (3) + Isooctane (4) at 298.15 K

<i>X</i> 3	$ ho/ m kg\cdot m^{-3}$	n _D	$V^{\mathbb{E}}/\mathrm{cm}^3\cdot\mathrm{mol}^{-1}$	$\delta n_{\rm D}$
0.0000	687.67	1.3890	0.000	0.0000
0.0708	692.08	1.3912	-0.028	-0.0001
0.1502	697.20	1.3930	-0.057	-0.0008
0.2326	702.70	1.3955	-0.085	-0.0008
0.3345	709.76	1.3984	-0.108	-0.0011
0.3928	713.95	1.3999	-0.117	-0.0015
0.5196	723.43	1.4040	-0.124	-0.0014
0.5556	726.22	1.4050	-0.122	-0.0015
0.6333	732.39	1.4076	-0.114	-0.0013
0.6875	736.83	1.4093	-0.105	-0.0013
0.7372	741.02	1.4110	-0.097	-0.0011
0.7545	742.48	1.4118	-0.089	-0.0009
0.7674	743.56	1.4120	-0.080	-0.0011
0.8756	753.16	1.4162	-0.050	-0.0003
0.9478	759.86	1.4187	-0.022	-0.0001
1.0000	764.87	1.4204	0.000	0.0000

The excess molar volumes and the changes in refractive indices on mixing for binary and ternary mixtures were calculated from eqs 1 and 2, respectively,

$$V_{\rm m}^{\rm E} = \sum_{i=1}^{N} x_i M_i (\rho^{-1} - \rho_i^{-1}) \tag{1}$$

$$\delta n_{\rm D} = n_{\rm D} - \sum_{i=1}^{N} x_i n_{\rm Di} \tag{2}$$

where M_i is the molecular weight of component *i* in the mixture, ρ_i and n_{Di} are the properties of the pure components, and *N* is the number of components in the mixture.

Curves of excess molar volumes and changes in refractive index for binary mixtures are plotted in Figure 1. As can be seen, the toluene + isooctane system shows positive deviations of $V_{\rm m}^{\rm E}$ over the whole composition range with a maximum at nearly equimolecular composition, while the methylcyclohexane + isooctane system shows a negative deviation of this excess property. The binary systems studied show negative deviations for $\delta n_{\rm D}$ in the whole range of composition, with the largest values for the toluene + isooctane mixture.

The derived binary excess properties were correlated with the Redlich–Kister (Redlich and Kister, 1948) equa-

Fable 3. Densities, ρ , Refractive Indices, n_D , Excess
Molar Volumes, V ^E , and Changes of Refractive Indices on
Mixing, $\delta n_{\rm D}$, for the Ternary System TBA (1) + Toluene
(2) + Isooctane (4) at 298.15 K

<i>X</i> 1	<i>X</i> ₂	$ ho/kg\cdot m^{-3}$	n _D	$V^{E}/cm^{3}\cdot mol^{-1}$	$\delta n_{\rm D}$
0.9006	0.0549	775.97	1.3902	0.307	-0.0009
0.7987	0.0969	768.91	1.3939	0.564	-0.0020
0.6888	0.1099	755.84	1.3948	0.768	-0.0029
0.7046	0.1923	776.51	1.4040	0.644	-0.0023
0.5899	0.1105	743.80	1.3944	0.884	-0.0038
0.6017	0.2071	764.86	1.4046	0.770	-0.0037
0.6011	0.2904	783.60	1.4145	0.670	-0.0026
0.5046	0.0984	732.83	1.3933	0.906	-0.0040
0.4908	0.2160	753.07	1.4046	0.805	-0.0051
0.4982	0.2945	769.79	1.4133	0.750	-0.0046
0.4996	0.3963	792.88	1.4256	0.653	-0.0030
0.3929	0.1022	723.76	1.3940	0.827	-0.0041
0.4166	0.1870	739.94	1.4016	0.813	-0.0053
0.4031	0.2943	757.83	1.4123	0.809	-0.0059
0.3979	0.4002	778.86	1.4242	0.714	-0.0052
0.3991	0.4974	801.38	1.4363	0.588	-0.0033
0.2910	0.1086	716.94	1.3947	0.723	-0.0045
0.3278	0.1829	730.99	1.4009	0.791	-0.0060
0.2949	0.3126	750.09	1.4131	0.690	-0.0075
0.2961	0.4024	766.99	1.4225	0.638	-0.0076
0.3010	0.5042	788.49	1.4345	0.587	-0.0062
0.3167	0.5818	808.58	1.4452	0.532	-0.0036
0.2203	0.1201	713.65	1.3961	0.638	-0.0046
0.2068	0.2068	725.22	1.4032	0.619	-0.0067
0.2029	0.3049	740.26	1.4121	0.595	-0.0081
0.1933	0.4108	757.46	1.4223	0.553	-0.0091
0.2144	0.4981	776.22	1.4322	0.540	-0.0083
0.2111	0.5872	794.32	1.4428	0.493	-0.0070
0.2047	0.6842	815.49	1.4556	0.434	-0.0044
0.1087	0.0909	702.99	1.3944	0.435	-0.0037
0.1017	0.1845	714.91	1.4014	0.421	-0.0066
0.1065	0.2984	731.50	1.4107	0.440	-0.0092
0.1136	0.3973	747.70	1.4199	0.435	-0.0103
0.1118	0.4932	764.07	1.4298	0.417	-0.0106
0.1089	0.6913	802.90	1.4531	0.376	-0.0081
0.1000	0.6081	784.47	1.4425	0.383	-0.0099
0.0965	0.8055	827.78	1.4686	0.268	-0.0046
0.0434	0.0655	696.63	1.3929	0.253	-0.0028
0.0417	0.0629	696.25	1.3926	0.245	-0.0028
0.0806	0.0878	701.12	1.3941	0.367	-0.0038
0.0772	0.2000	715.67	1.4030	0.335	-0.0067
0.0703	0.2920	728.03	1.4103	0.346	-0.0091
0.0675	0.3973	743.78	1.4197	0.353	-0.0107
0.0747	0.4825	758.60	1.4283	0.350	-0.0111
0.0634	0.5882	776.59	1.4397	0.310	-0.0109
0.0668	0.6906	797.43	1.4520	0.284	-0.0093
0.0660	0.7805	817.24	1.4639	0.234	-0.0068
0.0578	0.8890	842.40	1.4794	0.171	-0.0027

tion, according to the expression

$$\Delta Q_{ij} = x_i x_j \sum_{p=0}^{m} A_p (x_i - x_j)^p$$
(3)

In this equation ΔQ_{ij} is the excess property, A_p is a parameter, and *m* is the degree of the polynomial expansion.

The excess molar volumes for the ternary mixtures were correlated with the Cibulka equation (Cibulka, 1982):

$$\Delta Q_{123} = \Delta Q_{12} + \Delta Q_{13} + \Delta Q_{23} + x_1 x_2 x_3 (C_1 + C_2 x_1 + C_3 x_2)$$
(4)

where ΔQ_{12} , ΔQ_{13} , and ΔQ_{23} are the binary contributions expressed by the Redlich–Kister equation described above, and C_1 , C_2 , and C_3 are adjustable ternary parameters.

The unweighted least-squares method was used to fit the polynomials to the data. The F-test method was used to evaluate the number of adjustable parameters in correla-

Table 4. Densities, ρ , Refractive Indices, n_D , Excess Molar Volumes, V^E , and Changes of Refractive Indices on Mixing, δn_D , for the Ternary System TBA (1) + Methylcyclohexane (3) + Isooctane (4) at 298.15 K

<i>X</i> 1	<i>X</i> 3	$ ho/{ m kg}{ m \cdot}{ m m}^{-3}$	n _D	V ^E /cm ³ ⋅mol ⁻¹	$\delta n_{\rm D}$
0.9077	0.0442	769.76	1.3859	0.315	-0.0008
0.7953	0.1012	759.20	1.3873	0.598	-0.0016
0.6958	0.2008	757.24	1.3911	0.712	-0.0014
0.6942	0.1048	746.00	1.3873	0.778	-0.0021
0.6005	0.3009	756.51	1.3949	0.746	-0.0011
0.6059	0.1998	745.93	1.3910	0.797	-0.0018
0.6078	0.0925	734.95	1.3871	0.858	-0.0024
0.5163	0.3834	755.53	1.3980	0.733	-0.0010
0.5044	0.2957	744.99	1.3948	0.742	-0.0014
0.5036	0.1977	734.99	1.3913	0.799	-0.0019
0.5002	0.1025	725.69	1.3880	0.841	-0.0022
0.4067	0.4954	755.17	1.4021	0.659	-0.0008
0.3842	0.4048	743.67	1.3989	0.649	-0.0012
0.4057	0.2886	734.55	1.3946	0.699	-0.0018
0.4062	0.2021	726.63	1.3918	0.738	-0.0019
0.3958	0.0981	716.79	1.3885	0.770	-0.0020
0.3074	0.5883	754.23	1.4056	0.552	-0.0007
0.2989	0.4978	744.54	1.4023	0.538	-0.0011
0.3060	0.3995	736.01	1.3986	0.554	-0.0017
0.3117	0.2896	726.78	1.3950	0.573	-0.0018
0.2925	0.2002	717.58	1.3922	0.616	-0.0019
0.3029	0.1094	711.04	1.3894	0.665	-0.0018
0.2055	0.6929	754.32	1.4092	0.430	-0.0007
0.1993	0.5936	744.25	1.4056	0.417	-0.0012
0.2071	0.4954	735.99	1.4022	0.442	-0.0016
0.1975	0.4972	735.36	1.4022	0.423	-0.0016
0.2090	0.4020	728.15	1.3991	0.437	-0.0017
0.2064	0.2933	719.02	1.3956	0.453	-0.0018
0.2135	0.1987	712.06	1.3924	0.495	-0.0020
0.1956	0.1020	703.75	1.3898	0.496	-0.0016
0.1943	0.0940	702.98	1.3896	0.521	-0.0016
0.1155	0.7922	755.28	1.4128	0.286	-0.0006
0.1123	0.6833	744.77	1.4088	0.275	-0.0012
0.1076	0.5949	736.60	1.4057	0.257	-0.0015
0.0913	0.4989	727.34	1.4024	0.225	-0.0019
0.0962	0.4022	720.05	1.3995	0.234	-0.0017
0.0968	0.3041	712.65	1.3964	0.246	-0.0018
0.1065	0.1974	705.35	1.3932	0.317	-0.0016
0.0948	0.1009	698.00	1.3907	0.327	-0.0011
0.0641	0.8903	759.75	1.4162	0.217	-0.0005
0.0658	0.8425	755.34	1.4144	0.208	-0.0008
0.0646	0.7454	746.34	1.4110	0.177	-0.0012
0.0554	0.6478	737.05	1.4075	0.146	-0.0016
0.0606	0.5482	729.24	1.4040	0.138	-0.0020
0.0613	0.4456	721.21	1.4010	0.132	-0.0017
0.0695	0.3430	714.04	1.3976	0.145	-0.0019
0.0770	0.2312	706.13	1.3944	0.235	-0.0015
0.0778	0.2313	706.28	1.3943	0.215	-0.0016
0.0671	0.1485	699.96	1.3922	0.213	-0.0012
0.0379	0.0505	692.14	1.3898	0.162	-0.0007
0.0532	0 0494	692 75	1 3894	0 205	-0.0009

tion polynomials. The fitting parameters of eqs 3 and 4 and the corresponding standard deviations obtained are given in Table 5 for the excess molar volumes and in Table 6 for the changes in refractive index. The standard deviations were calculated using the following expression:

$$\sigma = \left(\frac{\sum_{i}^{n_{\rm DAT}} (z_{\rm exp} - z_{\rm calc})^2}{n_{\rm DAT} - n_{\rm PAR}}\right)^{1/2}$$
(5)

In this equation *z* is the value of the property, n_{DAT} is the number of experimental data, and n_{PAR} is the number of parameters.

As can be expected, taking into account the behavior of binary mixtures, the ternary systems exhibit positive values of V^{E} over most of the diagram (Figures 2a and 3a),

Figure 1. Excess molar properties at 298.15 K, as a function of composition, for (\bullet) toluene (2) + isooctane (4) and (\blacksquare) methylcy-clohexane (3) + isooctane (4) systems: (-) Redlich–Kister equation; (a) V^{E} ; (b) δn_{D} .

Table 5. Parameters of Estimation of Eqs 3 and 4, and Standard Deviations at 298.15 K for $V^{E}/cm^{3} \cdot mol^{-1}$

binary system	A_0	A_1	A_2	A_3	A_4	σ
$MCH^a + isooctane^b$	-0.496	0.005	0.078			0.002
toluene + isooctane ^{b}	0.323	0.171				0.003
$TBA + toluene^{c}$	2.146	-0.451	0.731	0.704		0.005
$TBA + MCH^{a,c}$	2.695	-1.075	0.711	1.812		0.003
$TBA + isooctane^{c}$	3.459	-1.099	0.559	1.957	0.645	0.006
ternary system		<i>C</i> ₁	C_2	C_3	σ	
TBA + toluene + isoo	ctane ^b	6.732 -	-10.029	-3.47	5 0.02	25
$TBA + MCH^a + isooc$	tane ^b	3.727	-9.653	0.17	4 0.02	27

^a MCH: methylcyclohexane. ^b This paper. ^c Peña et al. (1999).

except for the ternary system TBA + methylcyclohexane + isooctane, where a change in sign occurs at compositions close to the binary system methylcyclohexane + isooctane.

Table 6.	Parameters	of	Estimation of Eqs 3 and 4, and
Standard	Deviations	at	298.15 K for δn _D

system	$10^{4}A_{0}$	$10^{4}A_{1}$	$10^{4}A$	$_2 10^4 A_3$	$10^{4}A_{4}$	$10^4\sigma$
MCH ^a +	-60	13	34	-30		1
isooctane ^b						
toluene +	-483	59	-14	98		3
isooctane ^b						
$TBA + toluene^{c}$	7	35				0.23
$TBA + MCH^{a,c}$	-5	44	-14			0.6
$TBA + isooctane^{c}$	-81	33	-35			0.4
system	<i>C</i> ₁		<i>C</i> ₂	<i>C</i> ₃	$10^4\sigma$	
TBA + toluene + isooctaneb	-0.00	98 0.	0748	-0.0566	<1	
$TBA + MCH^{a} +$	-0.01	87 0.	0398	-0.0037	2	

^a MCH: methylcyclohexane. ^b This paper. ^c Peña et al. (1999).

Figure 2. Curves of constant excess properties at 298.15 K for the ternary system TBA + toluene + isooctane: (a) V^{E} ; (b) δn_{D} .

This ternary system also shows a maximum V^{E} value corresponding to the binary system TBA + isooctane. Curves of constant δn_{D} for ternary systems have been plotted in Figures 2b and 3b. All the experimental points measured present negative values of δn_{D} (Tables 3 and 4). The TBA + toluene + isooctane mixture shows a minimum value for the binary system toluene + isooctane, while in the TBA + methylcyclohexane + isooctane ternary system the minimum is placed in the binary system TBA + isooctane, and moreover this ternary system shows a minimum value for values of molar fraction of isooctane of 0.5.

Several methods to predict the physical properties of mixtures were applied to test their validities, which are compiled by Iglesias et at. (1996). The agreement between the experimental values of densities and refractive indices and the predicted ones is shown by standard deviation values, σ , calculated by eq 5 (in this case, $n_{PAR} = 0$) and given in Tables 7 and 8, respectively. The densities of

Figure 3. Curves of constant excess properties at 298.15 K for the ternary system TBA + methylcyclohexane + isooctane: (a) V^{E} ; (b) δn_{D} .

Table 7. Standard Deviations, σ , of the Experimental Results from Those Estimated for Density (kg·m⁻³)^{*a*}

				σ			
system	HBT	R	SDR	BT	Ri	Ν	YW
toluene + isooctane	6.35	10.22	4.34	5.88	16.94	7.11	5.49
MCH ^b + isooctane	1.15	9.54	0.71	4.49	16.59	3.02	3.50
TBA + toluene + isooctane	2.90	7.95	6.52	6.12	26.16	6.24	4.69
TBA + MCH ^b + isooctane	4.00	10.60	8.35	51.8	29.5	1.48	0.42

^a Methods: Hankinson-Brobst-Thomson (HBT), Rackett (R), Spencer and Danner modified Rackett (SDR), Bradford-Thodos (BT), Riedel (Ri), Narsinham (N), and Yen-Woods (YW). ^b MCH: Methylcyclohexane.

Table 8. Standard Deviations, σ , of the Experimental Results from Those Estimated for Refractive Index^{*a*}

	σ					
system	LL	DG	AB	Е	Nw	0
toluene + isooctane	0.0003	0.0005	0.0005	0.0011	0.0012	0.0015
$MCH^{b} + isooctane$	0.0005	0.0005	0.0005	0.0006	0.0004	0.0007
TBA + toluene + isooctane	0.0024	0.0031	0.0031	0.0017	0.0037	0.0015
$TBA + MCH^b +$	0.0022	0.0021	0.0021	0.0020	0.0022	0.0019

^{*a*} Methods: Lorentz–Lorenz (LL), Dale–Gladstone (DG), Arago– Biot (AB), Eykman (E), Newton (Nw), and Oster (O). ^{*b*} MCH: methylcyclohexane.

binary and ternary systems were estimated using the following methods: Hankinson–Brobst–Thompson (HBT), Rackett (R), Spencer and Danner modified Rackett (SDR), Bradford–Thodos (BT), Riedel (Ri), Narsinham (N), and Yen–Woods (YW). The parameter values needed in the HBT and SDR methods can be found in Hankinson and Thomson (1979) and Muñoz et al. (1999). The SDR method

Table 9. Standard Deviations, σ , of the Experimental Results from Those Estimated for Different Empirical Equations, Using Binary Mixture Data

empirical	TBA + tolue isooctane	ene + (σ)	$TBA + MCH + isooctane (\sigma)$		
equation	$V^{\mathbb{E}}/\mathrm{cm}^{3}\cdot\mathrm{mol}^{-1}$	$\delta n_{\rm D}$	$V^{\text{E}}/\text{cm}^3 \cdot \text{mol}^{-1}$	$\delta n_{\rm D}$	
Kohler	0.050	0.0005	0.070	0.0007	
Jacob-Fitzner	0.062	0.0005	0.076	0.0007	
Colinet	0.046	0.0005	0.069	0.0007	
Tsao-Smith ^a	0.042	0.0012	0.075	0.0007	
Tsao–Smith ^b	0.097	0.0005	0.124	0.0008	
Tsao-Smith ^c	0.053	0.0011	0.131	0.0007	
Toop ^a	0.051	0.0006	0.065	0.0007	
Toop ^b	0.051	0.0008	0.071	0.0008	
Toop ^c	0.063	0.0011	0.086	0.0007	
Scatchard ^a	0.052	0.0006	0.066	0.0007	
Scatchard ^b	0.058	0.0008	0.076	0.0008	
Scatchard ^c	0.066	0.0011	0.094	0.0008	

^{*a*} TBA is the asymmetric component in the equation. ^{*b*} Toluene or MCH is the asymmetric component in the equation. ^{*c*} Isooctane is the asymmetric component in the equation.

gives the best estimation in binary systems whereas in TBA + toluene + isooctane and TBA + methylcyclohexane + isooctane ternary systems the HBT and Y methods present the smallest deviations. In all the cases the Ri method is the poorest predictive method. Refractive index estimation was carried out using the mixing rules proposed by Lorentz–Lorenz (LL), Dale–Gladstone (DG), Arago–Biot (AB), Eykman (E), Newton (N), and Oster (O). Predictions for binary systems are significantly better than those for ternary systems, and differences of one order of magnitude can be found. The Oster equation shows the best estimation in the two ternary systems whereas the lowest deviation in the toluene + isooctane and methylcyclohexane + isooctane mixtures was obtained by the LL and N rules, respectively.

Several methods for the estimation of excess properties of ternary and multicomponent solutions have been developed using additive binary contributions. A compilation of the equations for the different methods has recently been summarized (Muñoz et al., 1999). The standard deviations between experimental and predicted methods are given in Table 9. With respect to $V^{\mathbb{E}}$, the Tsao–Smith and Toop equations, both with TBA as the asymmetric component,

give the best results for the TBA + toluene + isooctane and TBA + methylcyclohexane + isooctane systems, respectively. On the other hand, with respect to δn_D , there are not great differences between the different equations, although it is worth noting that the poorest correlation for the system TBA + toluene + isooctane is given by equations in which isooctane is the asymmetric component. It has to be noted that the correlation equations give deviations significantly lower than those of the estimation equations, especially in the case of V^{E} . This fact clearly shows that, if information about binary systems is available, the use of the correlation methods of excess properties is more convenient than the use of the methods for direct estimation of these properties, since the correlation methods fit better the experimental results for multicomponent systems.

Literature Cited

- Cibulka, I. Estimation of Excess Volume and Density of Ternary Liquid Mixtures of Nonelectrolytes from Binary Data. *Collect. Czech. Commun.* **1982**, *47*, 1414–1419.
- Hankinson, R. W.; Thomson, G. H. A New Correlation for Saturated Densities of Liquids and Their Mixtures. *AIChE J.* **1979**, *25*, 653–663.
- Iglesias, M.; Orge, B.; Tojo, J. Refractive Indices, Densities, and Derived Excess Properties on Mixing of the Systems Acetone + Methanol + Water and Acetone + Methanol + 1-Butanol at 298.15 K. *Fluid Phase Equilib.* **1996**, *126*, 203–223.
- Martínez-Soria, V.; Peña, M. P.; Montón, J. B. Vapor–Liquid Equilibria for the Binary Systems *tert*-Butyl Alcohol + Toluene, + Isooctane, and + Methylcyclohexane at 101.3 kPa. *J. Chem. Eng. Data* **1999**, 44, 148–151.
- Muñoz, R.; Burguet, M. C.; Martínez-Soria, V.; de Araújo, R. N. Densities, Refractive Indices, and Derived Excess Properties of *tert*-Butyl Alcohol + Toluene, + Methylcyclohexane, and + Isooctane and Toluene + Methylcyclohexane, and the ternary System *tert*-Butyl Alcohol + Toluene + Methylcyclohexane at 298.15 K. *Fluid Phase Equilib.* 1999, *167*, 99–111.
 Peña, M. P.; Martínez-Soria, V.; Montón, J. B. Densities, Refractive
- Peña, M. P.; Martínez-Soria, V.; Montón, J. B. Densities, Refractive Indices, and Derived Excess Properties of *tert*-Butyl Alcohol + Methyl *tert*-Butyl Ether and 2-Methylpentane Binary and Ternary Systems at 303.15. *Fluid Phase Equilib.* **1999**, *166*, 53-65.
- Redlich, O.; Kister, A. T. Thermodynamics of Nonelectrolytic Solutions. Algebraic Representation of Thermodynamic Properties and the Classification of Solutions. *Ind. Eng. Chem.* **1948**, 40, 345–348.
- TRC Thermodynamic Tables; Thermodynamic Research Center, The Texas A&M University System: College Station, TX, 1996.

Received for review December 8, 1999. Accepted March 1, 2000.

JE990315Y