# Physical Solubility and Diffusivity of N<sub>2</sub>O and CO<sub>2</sub> into Aqueous Solutions of (2-Amino-2-methyl-1-propanol + Diethanolamine) and (*N*-Methyldiethanolamine + Diethanolamine)

Bishnu P. Mandal, Madhusree Kundu, Nitin U. Padhiyar, and Syamalendu S. Bandyopadhyay\*

Separation Science Laboratory, Cryogenic Engineering Centre, Indian Institute of Technology, Kharagpur 721302, India

In this work the physical solubility of  $N_2O$  in (diethanolamine + water), (2-amino-2-methyl-1-propanol + water), (N-methyldiethanolamine + water), (N-methyldiethanolamine + diethanolamine + water), and (2-amino-2-methyl-1-propanol + diethanolamine + water) as well as the diffusivity of N<sub>2</sub>O in (Nmethyldiethanolamine + diethanolamine + water) and (2-amino-2-methyl-1-propanol + diethanolamine + water) have been measured at (293, 298, 303, 308, and 313) K. For the binary mixtures the amine concentration ranges studied are (2.0, 2.5, and 3.0) kmol·m<sup>-3</sup>. For the ternary mixtures the total amine strength in the solution was kept at 30 mass %, in view of the recent interest in using concentrated amine solutions in gas treating. A solubility apparatus was used to measure the solubility of  $N_2O$  in amine solutions. The diffusivity was measured with a wetted wall column absorber. The uncertainty of the measurement is estimated to be  $\pm 2\%$ . A semiempirical model of the excess Henry's constant proposed by Wang et al. (Chem. Eng. J. 1992, 48, 31-40) was used to correlate the solubility of N<sub>2</sub>O in amine solutions. The parameters of the correlation were determined from the measured solubility data. The experimental N<sub>2</sub>O solubility and diffusivity data have been correlated. Comparison with the experimental results indicates that the models for solubility and diffusivity will be useful in estimating the solubility of N<sub>2</sub>O in (DEA + H<sub>2</sub>O), (AMP + H<sub>2</sub>O), (MDEA + H<sub>2</sub>O), (MDEA + DEA + H<sub>2</sub>O), and ( $\overline{AMP}$  + DEA +  $H_2O$ ) as well as diffusivity of  $N_2O$  in (MDEA + DEA +  $H_2O$ ) and (AMP + DEA +  $H_2O$ ) solvents. The " $N_2O$  analogy" is then used to estimate the solubility and diffusivity of  $CO_2$  in the aqueous alkanolamine solutions.

### Introduction

Aqueous solutions of alkanolamines are widely used for the removal of acid gases such as  $CO_2$  and  $H_2S$  from natural, refinery, and synthesis gas streams. A wide variety of alkanolamines that have proved to be of commercial interest for acid gas removal by chemical absorption are monoethanolamine (MEA), diethanolamine (DEA), *N*-methyldiethanolamine (MDEA), and diisopropanolamine (DIPA). A different class of chemical absorbents, the sterically hindered amines, for example, 2-amino-2-methyl-1-propanol (AMP), has been suggested recently as an attractive solvent for removal of acid gases from sour gas streams.

The use of a blended amine, a solution of two or more amines in varying compositions, shows considerable improvement in absorption and savings in energy requirements. Blends of primary and tertiary amines, such as aqueous solutions of MEA and MDEA, have been suggested for CO<sub>2</sub> removal.<sup>2,3</sup> Sterically hindered amine based blended amine solvents, for example,  $(AMP + MEA + H_2O)$ , have also been suggested recently as potential attractive new solvents for the acid gas treating processes.<sup>3,4</sup> Compared to MEA, DEA has a similar thermodynamic capacity to absorb  $CO_2$  and favorable reaction kinetics for  $CO_2$ , but with a better thermal stability and less amine degradation. Thus, MEA may be substituted by DEA in blends of alkanolamine aqueous solutions. Consequently, (MDEA + DEA +  $H_2O$ ) as well as (AMP + DEA +  $H_2O$ ) may be a potential solvent for acid gas removal.

\* Corresponding author. Telephone: 91-3222-283580. Fax: 91-3222-255303/282258. E-mail address: ssbandyo@hijli.iitkgp.ernet.in.

For the analysis of the experimental absorption rate and for the rational design of the gas absorption units, two of the most important parameters required are physical solubility and diffusivity of the solute gases in the solvents. However, since CO<sub>2</sub> reacts in amine solutions, its physical solubility and diffusivity cannot be measured directly. As a result, one must use a nonreacting gas such as N<sub>2</sub>O, as a surrogate to CO<sub>2</sub>. The N<sub>2</sub>O analogy has been frequently used to estimate the solubility and diffusivity of CO<sub>2</sub> in amine solutions.<sup>5-10</sup> Numerous solubility and diffusivity data of N<sub>2</sub>O in aqueous amine solutions were reported in the literature for the binary systems, such as (DEA +  $H_2O$ ),<sup>7,11-14</sup> (AMP +  $H_2O$ ),<sup>9,10,15,16</sup> and (MDEA +  $H_2O$ ).<sup>6-8</sup> But there are limited literature results on the solubility and the diffusivity of N<sub>2</sub>O and CO<sub>2</sub> in the ternary systems  $(MDEA + DEA + H_2O)$  and  $(AMP + DEA + H_2O)$ . Li and Lee<sup>14</sup> reported the solubility and the diffusivity of N<sub>2</sub>O and  $CO_2$  in (MDEA + DEA + H<sub>2</sub>O) and (AMP + DEA + H<sub>2</sub>O) in the temperature range (303 to 313) K. The diffusivities of N<sub>2</sub>O in 50 mass % blends of DEA and MDEA aqueous solutions in the temperature range (313 to 353) K have been reported by Rinker et al.<sup>17</sup> In this work the physical solubility of  $N_2O$  in (DEA +  $H_2O$ ), (AMP +  $H_2O$ ), (MDEA + H<sub>2</sub>O), (MDEA + DEA + H<sub>2</sub>O), and (AMP + DEA + H<sub>2</sub>O) and the diffusivity of N<sub>2</sub>O in (MDEA + DEA +  $H_2O$ ) and  $(AMP + DEA + H_2O)$  have been measured at (293, 298, 303, 308, and 313) K. For the binary mixtures the amine concentrations were (2.0, 2.5, and 3.0) kmol $\cdot$ m<sup>-3</sup>. For the ternary mixtures the total amine concentration was 30 mass %.

The  $N_2O$  analogy for the solubility and diffusivity of  $CO_2$  in amine solutions is given by relations 1 and 2, respectively

$$(H_{\rm CO_2})_{\rm amine} = (H_{\rm N_2O})_{\rm amine} \left(\frac{H_{\rm CO_2}}{H_{\rm N_2O}}\right)_{\rm water} \tag{1}$$

$$(D_{\rm CO_2})_{\rm amine} = (D_{\rm N_2O})_{\rm amine} \left(\frac{D_{\rm CO_2}}{D_{\rm N_2O}}\right)_{\rm water}$$
(2)

where  $(H_{N_2O})_{amine}$  and  $(D_{N_2O})_{amine}$  are the solubility and diffusivity of  $N_2O$  in the amine solution, respectively. Versteeg and van Swaaij<sup>7</sup> proposed, on the basis of the available data of solubility and diffusivity of  $N_2O$  and  $CO_2$  in water, the following correlations for the solubility and diffusivity of  $N_2O$  and  $CO_2$  in water.

$$H_{\rm N_2O}/{\rm kPa}\cdot{\rm m}^3\cdot{\rm kmol}^{-1} =$$

$$8.7470 imes 10^6 \exp(-2284/(T/K))$$
 (3)

 $H_{\rm CO_a}/{\rm kPa}\cdot{\rm m}^3\cdot{\rm kmol}^{-1} =$ 

$$2.8249 \times 10^{6} \exp(-2044/(T/K))$$
 (4)

$$D_{\rm N_2O}/{\rm m}^2 \cdot {\rm s}^{-1} = 5.07 \times 10^{-6} \exp(-2371/(T/{\rm K}))$$
 (5)

$$D_{\rm CO_o}/{\rm m}^2 \cdot {\rm s}^{-1} = 2.35 \times 10^{-6} \exp(-2119/(T/{\rm K}))$$
 (6)

#### **Experimental Section**

Reagent grade DEA, AMP, and MDEA of 98 mol % purity were obtained from E. Merck. Double distilled water degassed by boiling was used for making the amine solutions. The total amine contents of the solutions were determined by titration with standard HCl using methyl orange indicator. A pure CO<sub>2</sub> cylinder, obtained from Hydrogas, India, had 99.995 mol % certified purity. A zero grade N<sub>2</sub>O cylinder was obtained from Hydrogas, India.

Physical Solubility. The experimental setup with a Corning glass equilibrium cell was similar to the one used by Kundu et al.<sup>18</sup> A magnetic stirrer was used for the liquid phase, and two four-bladed impellers mounted on a shaft, passing through a mercury seal and driven by a dc motor, were used for the gas phase. The temperature of the equilibrium cell was controlled within  $\pm 0.2$  K of the desired level with a circulator temperature controller (FP 55, Julabo, Germany) operated in external control mode. Precalibrated platinum sensors with temperature indicators (Pt-100, TD 300, Julabo, FRG) were used for the measurement of temperatures in the equilibrium cell, in the thermostated bath, and in the eudiometer tube. The uncertainty in the measurement of temperature was  $\pm 0.1$ K. All solubility measurements were done at atmospheric pressure. A precise manometric device was employed to maintain atmospheric pressure in the cell throughout the equilibrium experiment. The total pressure was measured for each run within an accuracy of  $\pm 0.2$  kPa.

For each run, the equilibrium cell was allowed to reach thermal equilibrium with respect to the desired temperature for solubility measurement. The cell was then purged with the desired gas. The gas streams at the outlet of the respective flow meters were passed through water vapor saturators, maintained at the measurement temperature, before being introduced into the cell. The gas-phase stirrer was kept on at 70 rpm during purging to ensure uniform gas-phase concentration throughout the cell. After comple-

Table 1. Measured Solubility and Diffusivity of  $\text{CO}_2$  and  $N_2\text{O}$  in Water

|             | <i>H</i> /kPa∙m             | <sup>3</sup> ·kmol <sup>-1</sup> | $D_{{ m CO}_2}/10^9{ m m}^2{ m \cdot s}^{-1}$ |                              |  |
|-------------|-----------------------------|----------------------------------|-----------------------------------------------|------------------------------|--|
| <i>T</i> /K | CO <sub>2</sub><br>in water | N <sub>2</sub> O<br>in water     | CO <sub>2</sub><br>in water                   | N <sub>2</sub> O<br>in water |  |
| 293         | 2647                        | 3581                             | 1.71                                          | 1.54                         |  |
| 298         | 3096                        | 4091                             | 1.90                                          | 1.80                         |  |
| 303         | 3314                        | 4512                             | 2.13                                          | 1.98                         |  |
| 308         | 3765                        | 5023                             | 2.47                                          | 2.29                         |  |
| 313         | 4098                        | 5715                             | 2.86                                          | 2.58                         |  |

tion of purging, 10 mL of freshly prepared amine solution of desired concentration was quickly transferred into the cell and the cell was fully sealed. The liquid-phase and gasphase stirrers were turned on to commence absorption. The attainment of equilibrium was indicated when there was no absorption for at least 1 h while the temperature was maintained constant at the desired level. It took about (4 to 5) h to reach equilibrium for each run. The measured volume change is equal to the volume of gas absorbed. The partial pressure of N<sub>2</sub>O in the experiments was corrected for the vapor pressure of the solution.

The temperature of the system was controlled within  $\pm 0.2$  K. The reproducibility between the various experiments was within 2%. The estimated experimental uncertainty in the measured solubility is about  $\pm 2\%$ .

**Diffusivity.** The diffusivities of CO<sub>2</sub> in water and N<sub>2</sub>O in water and aqueous amine solutions were measured in a cylindrical stainless steel wetted wall absorber of outside diameter 2.81  $\times$  10<sup>-2</sup> m. The apparatus and the experimental procedure are the same as those described by Saha et al.<sup>10</sup> The gas-liquid contact time could be varied from 0.3 to 0.8 s by varying the absorption length but keeping the liquid flow rate constant. The gas absorption rate was measured by the volume uptake method using a soap film meter. The liquid flow rate was measured with a rotameter that was calibrated at various experimental temperatures and amine concentrations. The temperature of absorption was controlled within  $\pm 0.2$  K. The pressure in the absorption chamber was about 100 kPa. The experimental uncertainty was estimated to be  $\pm 4\%$ . The reproducibility between the various experiments was always within  $\pm 2\%$ .

### **Results and Discussion**

*Solubility.* To validate the solubility apparatus and the experimental procedure of the measurement, the solubilities of N<sub>2</sub>O in water and CO<sub>2</sub> in water at (293, 298, 303, 308, and 313) K were measured. These are presented in Table 1. Figure 1 compares the literature results<sup>8,14</sup> and those obtained in this study for the solubility of CO<sub>2</sub> in water. The comparison between the literature results<sup>8,14</sup> and results obtained in this study for the solubility of N<sub>2</sub>O in water is shown in Figure 2. The results of this study for the solubilities of CO<sub>2</sub> and N<sub>2</sub>O in water are in excellent agreement with the literature results. Equations 3 and 4 appear to be accurate correlations for the solubility of N<sub>2</sub>O and CO<sub>2</sub> in water as a function of temperature, as shown in Figures 2 and 1, respectively. While the measured N<sub>2</sub>O solubility in water of this study and that reported by Li and Lee<sup>14</sup> agreed well with the solubility calculated from eq 3, the solubility values reported by Al-Ghawas et al.8 are smaller than the calculated values using eq 3.

The measured solubility of  $N_2O$  and the estimated solubility of  $CO_2$  in (DEA + H<sub>2</sub>O), (AMP + H<sub>2</sub>O), (MDEA + H<sub>2</sub>O), (MDEA + DEA + H<sub>2</sub>O), and (AMP + DEA + H<sub>2</sub>O) for the temperatures (293, 298, 303, 308, and 313) K are presented in Tables 2 and 3. The solubility measurements



**Figure 1.** Henry's constant of  $CO_2$  in water as a function of temperature:  $\bigtriangledown$ , this study;  $\bigcirc$ , Al-Ghawas et al.;<sup>8</sup>  $\square$ , Li and Lee;<sup>14</sup> -, calculated using eq 4.



**Figure 2.** Henry's constant of N<sub>2</sub>O in water as a function of temperature:  $\bigtriangledown$ , this study;  $\bigcirc$ , Al-Ghawas et al.,<sup>8</sup>  $\square$ , Li and Lee,<sup>14</sup> -, calculated using eq 3.

are in good agreement with the literature results. While the average absolute deviation (AAD%) values of the measured solubilities in the binary systems are in the range 1.5 to 15.6% when compared with the literature results,<sup>8,10,19–22</sup> for the ternary systems of this study the deviations with the literature results<sup>14</sup> are in the range 4.7 to 11.7%. As shown in Table 2, the solubilities of  $N_2O$  and  $CO_2$  in the binary mixtures have been found to decrease with increasing temperature. At constant temperature the solubilities decrease with increase in the concentration of DEA, AMP, and MDEA. As shown in Figure 5, for the ternary system (AMP + DEA + H<sub>2</sub>O), the N<sub>2</sub>O solubility has been found to decrease with the increase in DEA concentration at constant temperature. The solubility also decreases with increase in temperature at constant DEA concentration.

A semiempirical model proposed by Wang et al.<sup>1</sup> was used to correlate the solubility of  $N_2O$  in amine solutions. In this method the excess Henry's coefficient for the mixed solvent system has the following form

$$R = \ln H_{1,m} - \sum_{i=2}^{n} \varphi_i \ln H_{1,i}$$
(7)

where  $H_{1,m}$  is Henry's constant of N<sub>2</sub>O in the mixed solvent,  $H_{1,i}$  is Henry's constant of N<sub>2</sub>O in pure solvent *i*, and  $\varphi_i$  is the volume fraction of solvent *i*. The volume fraction is calculated as

$$\varphi_i = x_i v_i \Big| \sum_{i=1}^n x_i v_i \tag{8}$$

where  $v_i$  is the molar volume of pure solvent *i* and  $x_i$  is the mole fraction of solvent *i*. From eq 7, the excess Henry's quantity *R* can be calculated from the measured  $H_{1,m}$  and the estimated  $H_{1,i}$ .

The calculated excess Henry's quantity for the binary system is then correlated as a function of volume fraction as follows

$$R_{ij} = \varphi_i \varphi_j \alpha_{ij} \tag{9}$$

where  $\varphi_i$  and  $\varphi_j$  are the volume fractions of amine and water, respectively. To correlate the excess quantity  $R_{ij}$  in the binary solvent systems involved in this work, the twobody interaction parameter  $\alpha_{ij}$  for the absorption solvent may be estimated as a polynomial function of the absorption temperature and the volume fraction of the solvent *j*, as follows.

$$\alpha_{ij} = k_1 + k_2 (T/K) + k_3 (T/K)^2 + k_4 \varphi_j$$
(10)

 $R_{ij}$  is a third-order polynomial of the volume fraction of the solvent and a second-order polynomial of the temperature. The four parameters  $k_1$ ,  $k_2$ ,  $k_3$ , and  $k_4$  in eq 10 were all obtained from corresponding experimental data by a

Table 2. Estimated Solubility of CO<sub>2</sub>,  $H_{CO_2}$ , for DEA (1) + H<sub>2</sub>O (3) and AMP (2) + H<sub>2</sub>O (3) and MDEA (2) + H<sub>2</sub>O (3) from 293 K to 313 K Using the N<sub>2</sub>O Analogy

| amine                | $H_{\rm N_2O}$ /kPa·m <sup>3</sup> ·kmol <sup>-1</sup> at the following <i>T</i> /K |      |      |      | Н    | CO₂/kPa∙m³∙k | xmol <sup>-1</sup> at the | following T | ľΚ   |      |
|----------------------|-------------------------------------------------------------------------------------|------|------|------|------|--------------|---------------------------|-------------|------|------|
| kmol⋅m <sup>-3</sup> | 293                                                                                 | 298  | 303  | 308  | 313  | 293          | 298                       | 303         | 308  | 313  |
| DEA                  |                                                                                     |      |      |      |      |              |                           |             |      |      |
| 2.0                  | 4525                                                                                | 5004 | 5471 | 6104 | 7247 | 3345         | 3787                      | 4018        | 4575 | 5197 |
| 2.5                  | 4676                                                                                | 5101 | 5592 | 6235 | 7423 | 3456         | 3860                      | 4107        | 4674 | 5323 |
| 3.0                  | 4795                                                                                | 5245 | 5690 | 6394 | 7621 | 3544         | 3969                      | 4179        | 4793 | 5465 |
| AMP                  |                                                                                     |      |      |      |      |              |                           |             |      |      |
| 2.0                  | 4271                                                                                | 4805 | 5236 | 5877 | 6318 | 3157         | 3636                      | 3846        | 4405 | 4530 |
| 2.5                  | 4385                                                                                | 4917 | 5325 | 5984 | 6441 | 3241         | 3721                      | 3911        | 4485 | 4619 |
| 3.0                  | 4492                                                                                | 5045 | 5451 | 6072 | 6545 | 3320         | 3818                      | 4004        | 4551 | 4693 |
| MDEA                 |                                                                                     |      |      |      |      |              |                           |             |      |      |
| 2.0                  | 4276                                                                                | 4617 | 4903 | 5343 | 5811 | 3161         | 3494                      | 3601        | 4005 | 4167 |
| 2.5                  | 4445                                                                                | 4890 | 5215 | 5475 | 5968 | 3286         | 3701                      | 3830        | 4104 | 4279 |
| 3.0                  | 4697                                                                                | 5075 | 5345 | 5602 | 6095 | 3472         | 3841                      | 4115        | 4199 | 4371 |

Table 3. Estimated Solubility of CO<sub>2</sub>,  $H_{CO_2}$ , for AMP (2) + DEA (1) + H<sub>2</sub>O (3) and MDEA (2) + DEA (1) + H<sub>2</sub>O (3) from 293 K to 313 K Using the N<sub>2</sub>O Analogy

| mass %/  | $H_{\mathbb{I}}$ | <sub>N₂O</sub> /kPa∙m³∙k | xmol <sup>-1</sup> at the | e following 7 | 7K   | $H_{\rm CO_2}$ /kPa·m <sup>3</sup> ·kmol <sup>-1</sup> at the following <i>T</i> /K |      |      |      | 7K   |
|----------|------------------|--------------------------|---------------------------|---------------|------|-------------------------------------------------------------------------------------|------|------|------|------|
| mass %   | 293              | 298                      | 303                       | 308           | 313  | 293                                                                                 | 298  | 303  | 308  | 313  |
| MDEA/DEA |                  |                          |                           |               |      |                                                                                     |      |      |      |      |
| 30/0     | 4423             | 4879                     | 5205                      | 5498          | 5979 | 3269                                                                                | 3692 | 3823 | 4121 | 4287 |
| 28.5/1.5 | 4462             | 4901                     | 5247                      | 5545          | 6061 | 3298                                                                                | 3709 | 3854 | 4156 | 4346 |
| 27/3     | 4505             | 4945                     | 5297                      | 5607          | 6145 | 3330                                                                                | 3742 | 3891 | 4203 | 4406 |
| 25.5/4.5 | 4547             | 4986                     | 5346                      | 5662          | 6297 | 3361                                                                                | 3773 | 3927 | 4244 | 4515 |
| 24/6     | 4596             | 5015                     | 5399                      | 5742          | 6401 | 3397                                                                                | 3795 | 3965 | 4304 | 4590 |
| 22.5/7.5 | 4643             | 5045                     | 5445                      | 5886          | 6545 | 3432                                                                                | 3818 | 3999 | 4412 | 4693 |
| 21/9     | 4675             | 5097                     | 5502                      | 6015          | 6723 | 3456                                                                                | 3857 | 4041 | 4509 | 4821 |
| 0/30     | 4802             | 5234                     | 5701                      | 6405          | 7625 | 3550                                                                                | 3961 | 4187 | 4801 | 5468 |
| AMP/DEA  |                  |                          |                           |               |      |                                                                                     |      |      |      |      |
| 30/0     | 4502             | 5060                     | 5475                      | 6095          | 6582 | 3328                                                                                | 3829 | 4021 | 4569 | 4720 |
| 28.5/1.5 | 4532             | 5103                     | 5470                      | 6105          | 6819 | 3350                                                                                | 3862 | 4018 | 4576 | 4890 |
| 27/3     | 4574             | 5105                     | 5479                      | 6125          | 7125 | 3381                                                                                | 3863 | 4024 | 4591 | 5109 |
| 25.5/4.5 | 4601             | 5135                     | 5481                      | 6142          | 7284 | 3401                                                                                | 3886 | 4026 | 4604 | 5223 |
| 24/6     | 4607             | 5140                     | 5492                      | 6167          | 7345 | 3405                                                                                | 3890 | 4034 | 4623 | 5267 |
| 22.5/7.5 | 4645             | 5175                     | 5521                      | 6179          | 7385 | 3434                                                                                | 3916 | 4055 | 4632 | 5296 |
| 21/9     | 4663             | 5192                     | 5542                      | 6198          | 7402 | 3447                                                                                | 3929 | 4071 | 4646 | 5308 |



**Figure 3.** Diffusivity of  $CO_2$  in water as a function of temperature:  $\bigtriangledown$ , this study;  $\bigcirc$ , Al-Ghawas et al.,<sup>8</sup>  $\Box$ , Li and Lee;<sup>14</sup> –, calculated using eq 6.

regression method. The average regression deviation between calculated values and experimental data was calculated from

$$\sigma = \frac{1}{n_{i=1}^{n}} \frac{|H_{\mathrm{m,calc}} - H_{\mathrm{m,exp}}|}{H_{\mathrm{m,exp}}}$$
(11)

Wang et al.<sup>1</sup> proposed the solubility of  $N_2O$  in pure amine solvent as follows.

$$H_{\rm N_2O-pure\ amine} = b_1 \exp\left(\frac{b_2}{T/\rm K}\right)$$
 (12)

The parameters  $b_1$  and  $b_2$  for six pure amines (MEA, DEA, DIPA, MDEA, TEA, and AMP) were reported. As pointed out by Wang et al.<sup>1</sup> for temperatures between (293 and 358) K, the average regression deviations between the calculated solubilities of N<sub>2</sub>O in pure amines and experimental data are <2.5%, which is satisfactory for estimating the solubilities of N<sub>2</sub>O in pure amines. Thus, eq 12 with the parameters  $b_i$  of Wang et al.<sup>1</sup> was adopted directly in this study. Also, the solubilities of N<sub>2</sub>O and CO<sub>2</sub> in pure water,  $H_{N_2O}$  and  $H_{CO_2}$ , are calculated using eqs 1 and 2.<sup>7</sup> The densities of amine aqueous solutions, required in the calculation of



**Figure 4.** Diffusivity of N<sub>2</sub>O in water as a function of temperature:  $\bigtriangledown$ , this study;  $\bigcirc$ , Al-Ghawas et al.,<sup>8</sup>  $\Box$ , Li and Lee,<sup>14</sup> –, calculated using eq 5.

volume fraction, were estimated on the basis of the correlation of Hsu and  $\rm Li^{23}$  and Mandal et al.^{24}

Using the solubility data in this work, the parameters,  $k_1$ ,  $k_2$ ,  $k_3$ , and  $k_4$ , in eq 10 are determined for each binary system, and the results are presented in Table 4. It is noted that the temperature in eq 10 is, in this study, in kelvin (K) while degree centigrade (°C) was used in the correlation of Wang et al.<sup>1</sup>

For ternary solvent systems, the excess Henry's constant has the form

$$R_{ijk} = \varphi_i \varphi_j \alpha_{ij} + \varphi_i \varphi_k \alpha_{ik} + \varphi_j \varphi_k \alpha_{jk} + \varphi_i \varphi_j \varphi_k \alpha_{ijk}$$
(13)

where subscripts *i* and *j* stand for amine and water, respectively; the subscript *k* stands for another amine solvent. In this approach, two-body and three-body interactions are considered to describe the excess Henry's constant for the ternary system. Two of the two-body interaction parameters in eq 13 were taken from the excess quantity of the binary systems, (MDEA + H<sub>2</sub>O), (AMP + H<sub>2</sub>O), and (DEA + H<sub>2</sub>O). The remaining two-body interaction parameters between MDEA and DEA as well as AMP and DEA and the one three-body interaction parameter were regressed from the (MDEA + DEA + H<sub>2</sub>O) and

Table 4. Parameters,  $k_1$ ,  $k_2$ ,  $k_3$ , and  $k_4$ , of the Equation  $\alpha_{ij} = k_1 + k_2(T/K) + k_3(T/K)^2 + k_4\varphi_j$  and  $\alpha_{234}$  for the Excess Henry's Constant for the Binary and Ternary Solvent Systems

| system                | $k_1$          | $k_2$            | $k_3$            | $k_4$            | a234           | AAD % |
|-----------------------|----------------|------------------|------------------|------------------|----------------|-------|
| $(DEA + H_2O)$        | 307.401 05     | $-2.023\ 024\ 3$ | 0.003 341 4      | 0.413 234 3      |                | 0.87  |
| $(AMP + H_2O)$        | $-29.760\ 815$ | 0.236 224 8      | $-0.000\ 417\ 1$ | $-1.577\ 179\ 4$ |                | 0.77  |
| $(MDEA + H_2O)$       | 81.968 179     | $-0.472\ 605\ 2$ | 0.000 713 6      | $-3.567\ 293\ 2$ |                | 0.81  |
| (DEA + AMP)           | 9224.624 3     | -24.041 875      | 0.038 887 9      | -819.86149       |                |       |
| (DEA + MDEA)          | -144.84378     | 3.014 200 2      | -0.004 884 3     | -38.221012       |                |       |
| $(DEA + AMP + H_2O)$  |                |                  |                  |                  | -7669.1550     | 1.25  |
| $(DEA + MDEA + H_2O)$ |                |                  |                  |                  | $-435.707\ 31$ | 0.84  |

Table 5. Estimated Diffusivity of CO<sub>2</sub>,  $D_{CO_2}$ , for AMP (2) + DEA (1) + H<sub>2</sub>O (3) and MDEA (2) + DEA (1) + H<sub>2</sub>O (3) from 293 K to 313 K Using the N<sub>2</sub>O Analogy

| mass %/  | 1    | $D_{\rm N_2O}/(10^9 {\rm m}^2)$ | $-s^{-1}$ ) at the f | ollowing T/H | K    | $D_{\rm CO_2}/(10^9~{ m m^2\cdot s^{-1}})$ at the following <i>T</i> /K |      |      |      | K    |
|----------|------|---------------------------------|----------------------|--------------|------|-------------------------------------------------------------------------|------|------|------|------|
| mass %   | 293  | 298                             | 303                  | 308          | 313  | 293                                                                     | 298  | 303  | 308  | 313  |
| MDEA/DEA |      |                                 |                      |              |      |                                                                         |      |      |      |      |
| 30/0     | 0.84 | 0.93                            | 1.10                 | 1.16         | 1.21 | 0.93                                                                    | 0.98 | 1.18 | 1.25 | 1.34 |
| 28.5/1.5 | 0.94 | 1.04                            | 1.12                 | 1.15         | 1.24 | 1.04                                                                    | 1.10 | 1.21 | 1.24 | 1.38 |
| 27/3     | 0.95 | 1.04                            | 1.13                 | 1.17         | 1.27 | 1.06                                                                    | 1.10 | 1.22 | 1.26 | 1.41 |
| 25.5/4.5 | 0.96 | 1.05                            | 1.15                 | 1.19         | 1.32 | 1.07                                                                    | 1.11 | 1.24 | 1.28 | 1.46 |
| 24/6     | 0.96 | 1.06                            | 1.17                 | 1.22         | 1.37 | 1.07                                                                    | 1.12 | 1.26 | 1.32 | 1.52 |
| 22.5/7.5 | 0.97 | 1.07                            | 1.17                 | 1.25         | 1.39 | 1.08                                                                    | 1.13 | 1.26 | 1.35 | 1.54 |
| 21/9     | 0.98 | 1.08                            | 1.19                 | 1.27         | 1.44 | 1.09                                                                    | 1.14 | 1.28 | 1.37 | 1.60 |
| 0/30     | 1.04 | 1.12                            | 1.25                 | 1.38         | 1.57 | 1.16                                                                    | 1.18 | 1.35 | 1.49 | 1.74 |
| AMP/DEA  |      |                                 |                      |              |      |                                                                         |      |      |      |      |
| 30/0     | 0.71 | 0.83                            | 1.01                 | 1.19         | 1.32 | 0.79                                                                    | 0.88 | 1.09 | 1.28 | 1.46 |
| 28.5/1.5 | 0.72 | 0.84                            | 1.02                 | 1.20         | 1.33 | 0.80                                                                    | 0.89 | 1.10 | 1.29 | 1.47 |
| 27/3     | 0.74 | 0.85                            | 1.04                 | 1.23         | 1.34 | 0.82                                                                    | 0.90 | 1.12 | 1.33 | 1.49 |
| 25.5/4.5 | 0.77 | 0.87                            | 1.05                 | 1.24         | 1.36 | 0.86                                                                    | 0.92 | 1.13 | 1.34 | 1.51 |
| 24/6     | 0.79 | 0.88                            | 1.07                 | 1.26         | 1.38 | 0.88                                                                    | 0.93 | 1.15 | 1.36 | 1.53 |
| 22.5/7.5 | 0.80 | 0.91                            | 1.08                 | 1.27         | 1.39 | 0.89                                                                    | 0.96 | 1.16 | 1.37 | 1.54 |
| 21/9     | 0.84 | 0.93                            | 1.12                 | 1.28         | 1.42 | 0.93                                                                    | 0.98 | 1.21 | 1.38 | 1.57 |



**Figure 5.** Henry's constant of N<sub>2</sub>O in (AMP + DEA + H<sub>2</sub>O) as a function of DEA concentration at different temperatures:  $\blacksquare$ , 293 K;  $\blacklozenge$ , 298 K;  $\blacktriangle$ , 303 K;  $\bigstar$ , 308 K;  $\diamondsuit$ , 313 K; -, calculated using eq 7.

 $(AMP + DEA + H_2O)$  ternary systems' solubility data. When any of the volume fractions in the above equation is zero, eq 13 will be identical to that of the binary system.

**Diffusivity.** To validate the diffusivity apparatus and the experimental procedure of the measurement, the diffusivities of N<sub>2</sub>O and CO<sub>2</sub> in water were measured at (293, 298, 303, 308, and 313) K. The results are presented in Table 1. The comparisons between the literature values<sup>8,14</sup> and the values obtained in this study for the diffusivities of CO<sub>2</sub> and N<sub>2</sub>O in water are shown in Figures 3 and 4. As shown in Figures 3 and 4, the diffusivities of CO<sub>2</sub> and N<sub>2</sub>O in water obtained in this study are in excellent agreement with the literature values. While the measured N<sub>2</sub>O diffusivity in water of this study and that reported by Li and Lee<sup>14</sup> agreed well with the diffusivity calculated from eq 5, the diffusivity values reported by Al-Ghawas et al.<sup>8</sup> are smaller than the calculated values using eq 5. The measured diffusivities of N<sub>2</sub>O as well as the estimated diffusivities of  $CO_2$  in (AMP + DEA + H<sub>2</sub>O) and  $(MDEA + DEA + H_2O)$  are presented in Table 5. For (24) mass % MDEA + 6 mass % DEA) and 30 mass % DEA, over the temperature range (303 to 313) K, the experimental data of this study are within 3.83% deviation when compared with the experimental data of Li and Lee.<sup>14</sup> For (24 mass % AMP + 6 mass % DEA), over the temperature range (303 to 313) K, the deviation of the experimental data of this study is within 2.5% of the experimental data reported by Li and Lee.<sup>14</sup> Recently Ko et al.<sup>25</sup> measured the diffusivities of N<sub>2</sub>O in aqueous single alkanolamines, MEA, DEA, DIPA, TEA, and AMP at 30, 35, and 40 °C. Although the present work reports the diffusivities of N<sub>2</sub>O in the blended alkanolamines (MDEA + DEA +  $H_2O$ ) and  $(AMP + DEA + H_2O)$ , the diffusivity of N<sub>2</sub>O in water of this work has been found to agree well with that of Ko et al.<sup>25</sup> Besides, the diffusivities of N<sub>2</sub>O in 30 mass % aqueous MDEA and 30 mass % aqueous AMP have been found to agree well with those calculated from the correlation proposed by Ko et al.  $^{\rm 25}$  (eq 13). The diffusivity of  $N_2O$  in 30 mass % aqueous DEA of this study is, however, about 30% higher than those calculated from the correlation proposed by Ko et al.<sup>25</sup> As shown in Figure 6, for the ternary system (AMP + DEA +  $H_2O$ ), the  $N_2O$  diffusivity has been found to increase with the increase in concentration of DEA at constant temperature. The diffusivity also increases with increase in temperature at constant DEA concentration.

The diffusivity of  $N_2 O$  in the blended amine solutions is correlated as follows

$$D = (b_0 + b_{11}M_1 + b_{12}M_1^2 + b_{21}M_2 + b_{22}M_2^2 + c_{12}M_1M_2) \exp(-c/T)$$
(14)



**Figure 6.** Diffusivity of N<sub>2</sub>O in (AMP + DEA + H<sub>2</sub>O) as a function of the DEA concentration at different of temperatures:  $\blacksquare$ , 293 K;  $\blacklozenge$ , 298 K;  $\bigstar$ , 303 K;  $\bigstar$ , 308 K;  $\diamondsuit$ , 313 K;  $\neg$ , calculated using eq 14.

Table 6. Parameters,  $b_0$ ,  $b_{11}$ ,  $b_{12}$ ,  $b_{21}$ ,  $b_{22}$ ,  $c_{12}$ , and c, of the Equation  $D = (b_0 + b_{11}M_1 + b_{12}M_1^2 + b_{21}M_2 + b_{22}M_2^2 + c_{12}M_1M_2) \exp(-c/T)$  for the Diffusivity of N<sub>2</sub>O, for (AMP + MEA + H<sub>2</sub>O) and (MDEA + DEA + H<sub>2</sub>O)

|           | ternary systems               |                            |  |  |  |  |  |
|-----------|-------------------------------|----------------------------|--|--|--|--|--|
| parameter | $(AMP + DEA + H_2O)$          | $(MDEA + DEA + H_2O)$      |  |  |  |  |  |
| $b_0$     | $4.463~882 	imes 10^{-7}$     | $-5.593~534 	imes 10^{-8}$ |  |  |  |  |  |
| $b_{11}$  | $-2.713~784	imes10^{-7}$      | $5.126~698	imes 10^{-8}$   |  |  |  |  |  |
| $b_{12}$  | $4.124~287	imes 10^{-8}$      | $-1.056~576	imes10^{-8}$   |  |  |  |  |  |
| $b_{21}$  | $-2.742~821	imes10^{-7}$      | $5.267~597	imes10^{-8}$    |  |  |  |  |  |
| $b_{22}$  | $4.211~549	imes10^{-8}$       | $-1.182\ 803	imes 10^{-8}$ |  |  |  |  |  |
| C12       | $8.341~194 	imes 10^{-8}$     | $-2.224~859	imes10^{-8}$   |  |  |  |  |  |
| С         | $4.149\ 272\ \times\ 10^{-3}$ | $-2.939~735	imes10^{-3}$   |  |  |  |  |  |
| AAD %     | 1.8                           | 1.9                        |  |  |  |  |  |

where  $M_1$  is the molarity of DEA and  $M_2$  is the molarity of MDEA or AMP. The parameters in eq 14 were determined using the diffusivity data of Table 5. The overall average absolute deviation (AAD%) values for the calculations of the diffusivity of N<sub>2</sub>O in (AMP + DEA + H<sub>2</sub>O) and (MDEA + DEA + H<sub>2</sub>O) are 1.8 and 1.9%, respectively. The parameters are presented in Table 6.

The Stokes–Einstein relation  $(D\eta/T = a \text{ constant}, \eta \text{ is})$  viscosity) has often been used to correlate the diffusivity of N<sub>2</sub>O in aqueous single amine solutions.<sup>6,10</sup> The viscosity,  $\eta$ , values of the blended amine solutions required to calculate the Stokes–Einstein relation, that is,  $D\eta/T$ , were taken from Mandal et al.<sup>24</sup> It was observed from Tables 7 and 8 that the experimental diffusivities of N<sub>2</sub>O in (AMP + DEA + H<sub>2</sub>O) and (MDEA + DEA + H<sub>2</sub>O) do not follow the Stokes–Einstein relation strictly.

## Conclusions

The solubility of  $N_2O$  in (diethanolamine + water), (2amino-2-methyl-1-propanol + water), (*N*-methyldiethanolamine + water), (*N*-methyldiethanolamine + diethanolamine + water), and (2-amino-2-methyl-1-propanol + diethanolamine + water) as well as the diffusivity of  $N_2O$  in (*N*-methyldiethanolamine + diethanolamine + water) and (2-amino-2-methyl-1-propanol + diethanolamine + water) and (2-amino-2-methyl-1-propanol + diethanolamine + water) have been measured at (293, 298, 303, 308, and 313) K and at atmospheric pressure. The  $N_2O$  analogy was used to estimate the solubility of  $CO_2$  in (diethanolamine + water), (2-amino-2-methyl-1-propanol + water), (*N*-methyldi-

| Table 7. Diffusivity of $N_2O$ in (AMP + DEA + $H_2O$ ) | for |
|---------------------------------------------------------|-----|
| the Stokes–Einstein Relation                            |     |

| Т   | mass % AMP/ | $D_{ m N_2O}$                  | η                              | $D\eta/T$                                  |
|-----|-------------|--------------------------------|--------------------------------|--------------------------------------------|
| Κ   | mass % DEA  | $10^9 {\rm ~m^2 \cdot s^{-1}}$ | $10^3  N \cdot s \cdot m^{-2}$ | $10^{15} \mathrm{N}{\cdot}\mathrm{K}^{-1}$ |
| 293 | 30/0        | 0.71                           | 4.89                           | 11.84                                      |
|     | 28.5/1.5    | 0.72                           | 4.84                           | 11.89                                      |
|     | 27/3        | 0.74                           | 4.82                           | 12.17                                      |
|     | 25.5/4.5    | 0.77                           | 4.78                           | 12.56                                      |
|     | 24/6        | 0.79                           | 4.77                           | 12.86                                      |
|     | 22.5/7.5    | 0.80                           | 4.75                           | 12.96                                      |
|     | 21/9        | 0.84                           | 4.72                           | 13.53                                      |
|     | 0/30        | 1.04                           | 4.22                           | 14.98                                      |
| 303 | 30/0        | 1.01                           | 3.21                           | 10.70                                      |
|     | 28.5/1.5    | 1.02                           | 3.18                           | 10.70                                      |
|     | 27/3        | 1.04                           | 3.16                           | 10.84                                      |
|     | 25.5/4.5    | 1.05                           | 3.15                           | 10.92                                      |
|     | 24/6        | 1.07                           | 3.13                           | 11.05                                      |
|     | 22.5/7.5    | 1.08                           | 3.12                           | 11.12                                      |
|     | 21/9        | 1.12                           | 3.10                           | 11.46                                      |
|     | 0/30        | 1.25                           | 2.57                           | 10.60                                      |
| 313 | 30/0        | 1.32                           | 2.24                           | 9.446                                      |
|     | 28.5/1.5    | 1.33                           | 2.21                           | 9.391                                      |
|     | 27/3        | 1.34                           | 2.19                           | 9.376                                      |
|     | 25.5/4.5    | 1.36                           | 2.18                           | 9.472                                      |
|     | 24/6        | 1.38                           | 2.16                           | 9.523                                      |
|     | 22.5/7.5    | 1.39                           | 2.15                           | 9.548                                      |
|     | 21/9        | 1.42                           | 2.13                           | 9.663                                      |
|     | 0/30        | 1.57                           | 1.97                           | 9.881                                      |
|     |             |                                |                                |                                            |

Table 8. Diffusivity of  $N_2O$  in (MDEA + DEA +  $H_2O$ ) for the Stokes–Einstein Relation

| -   |              |                                        |                                           |                                         |
|-----|--------------|----------------------------------------|-------------------------------------------|-----------------------------------------|
| Т   | mass % MDEA/ | $D_{ m N_2O}$                          | η                                         | $D\eta/T$                               |
| K   | mass % DEA   | $10^9 \text{ m}^2 \cdot \text{s}^{-1}$ | $\overline{10^3  N \cdot s \cdot m^{-2}}$ | $10^{15} \text{ N} \cdot \text{K}^{-1}$ |
| 293 | 30/0         | 0.84                                   | 3.46                                      | 9.919                                   |
|     | 28.5/1.5     | 0.94                                   | 3.61                                      | 11.58                                   |
|     | 27/3         | 0.95                                   | 3.68                                      | 11.93                                   |
|     | 25.5/4.5     | 0.96                                   | 3.79                                      | 12.42                                   |
|     | 24/6         | 0.96                                   | 3.69                                      | 12.09                                   |
|     | 22.5/7.5     | 0.97                                   | 3.73                                      | 11.36                                   |
|     | 21/9         | 0.98                                   | 3.85                                      | 12.88                                   |
|     | 0/30         | 1.04                                   | 4.22                                      | 14.98                                   |
| 303 | 30/0         | 1.10                                   | 2.68                                      | 9.729                                   |
|     | 28.5/1.5     | 1.12                                   | 2.62                                      | 9.684                                   |
|     | 27/3         | 1.13                                   | 2.59                                      | 9.659                                   |
|     | 25.5/4.5     | 1.15                                   | 2.67                                      | 10.13                                   |
|     | 24/6         | 1.17                                   | 2.58                                      | 9.962                                   |
|     | 22.5/7.5     | 1.17                                   | 2.61                                      | 10.07                                   |
|     | 21/9         | 1.19                                   | 2.69                                      | 10.56                                   |
|     | 0/30         | 1.25                                   | 2.57                                      | 10.60                                   |
| 313 | 30/0         | 1.21                                   | 1.92                                      | 7.422                                   |
|     | 28.5/1.5     | 1.24                                   | 1.85                                      | 7.329                                   |
|     | 27/3         | 1.27                                   | 1.86                                      | 7.546                                   |
|     | 25.5/4.5     | 1.32                                   | 1.94                                      | 8.181                                   |
|     | 24/6         | 1.37                                   | 1.89                                      | 8.273                                   |
|     | 22.5/7.5     | 1.39                                   | 1.86                                      | 8.260                                   |
|     | 21/9         | 1.44                                   | 1.98                                      | 9.109                                   |
|     | 0/30         | 1.57                                   | 1.97                                      | 9.881                                   |

ethanolamine + water), (N-methyldiethanolamine + diethanolamine + water), and (2-amino-2-methyl-1-propanol + diethanolamine + water) as well as the diffusivity of CO<sub>2</sub> in (N-methyldiethanolamine + diethanolamine + water) and (2-amino-2-methyl-1-propanol + diethanolamine + water). The experimental N<sub>2</sub>O solubility and diffusivity data have been correlated. For the purpose of process design, the obtained correlations are, in general, satisfactory for estimating the solubility and diffusivity of N<sub>2</sub>O in amine solutions. The solubility of N<sub>2</sub>O and CO<sub>2</sub> in water as well as in binary and ternary amine solvents has been found to be in good agreement with the literature results and the results calculated from the correlation. The physical solubilities of CO2 and N2O in aqueous blended amine solvents have been correlated in this work with standard deviations of 1.78% and 2.09%, for (N-methyldiethanol-

amine + diethanolamine + water) and (2-amino-2-methyl-1-propanol + diethanolamine + water) solutions, respectively. In the case of diffusivities of CO<sub>2</sub> and N<sub>2</sub>O in (Nmethyldiethanolamine + diethanolamine + water) and (2amino-2-methyl-1-propanol + diethanolamine + water) solutions, the literature results have been found to be in good agreement with the results calculated from the correlation.

#### **Literature Cited**

- (1) Wang, Y. W.; Xu, S.; Otto, F. D.; Mather, A. E. Solubility of N<sub>2</sub>O in Alkanolamines and in Mixed Amines. Chem. Eng. J. 1992, 48, 31 - 40
- (2) Hagewiesche, D. P.; Ashour, S. S.; Al-Ghawas, H. A.; Sandall, O. C. Absorption of Carbon Dioxide into Aqueous Blends of Monoethanolamine and N-Methyldiethanolamine. Chem. Eng. Sci. **1995**, 50, 1071-1079.
- (3) Mandal, B. P.; Guha, M.; Biswas, A. K.; Bandyopadhyay, S. S. Removal of Carbon Dioxide by Absorption in Mixed Amines: Modeling of Absorption in Aqueous MDEA/MEA and AMP/MEA (4) Xiao, J.; Li, C. W.; Li, M.-H. Kinetics of Absorption of Carbon
- Dioxide into Aqueous Solutions of 2-Amino-2-methyl-1-propanol - Monoethanolamine. *Chem. Eng. Sci.* **2000**, *55*, 161−175
- Clarke, J. K. A. Kinetics of Absorption of Carbon Dioxide in Monoethanolamine Solutions at Short Contact Times. Ind. Eng. *Chem. Fundam.* **1964**, *3*, 239–245.
  (6) Haimour, N.; Sandall, O. C. Absorption of Carbon Dioxide into
- Aqueous Methyldiethanolamine. Chem. Eng. Sci. 1984, 39, 1791-1796
- Versteeg, G. F.; van Swaaij, W. P. M. Solubility and Diffusivity of Acid Gases ( $CO_2$ ,  $H_2S$ ) in Aqueous Alkanolamine Solutions. J. (7) Chem. Eng. Data 1988, 33, 29-34.
- (8) Al-Ghawas, H. A.; Hagewiesche, D. P.; Ruiz-Ibanez, G.; Sandall, O. C. Physicochemical Properties Important for Carbon Dioxide Absorption in Aqueous Methyldiethanolamine. J. Chem. Eng. *Data* **1989**, *34*, 385–391. (9) Xu, S.; Otto, F. D.; Mather, A. E. Physical Properties of Aqueous
- Additional Additional
- (10)Diffusivity of N2O and CO2 in Aqueous Solutions of 2-Amino-2methyl-1-propanol. *J. Chem. Eng. Data* **1993**, *38*, 78–82. (11) Sada, E.; Kumazawa, H.; Butt, M. A. Solubility of Gases in
- Aqueous Solutions of Amines. J. Chem. Eng. Data 1977, 22, 277-278
- (12) Versteeg, G. F.; Oyevaar, M. H. The Reaction Between CO2 and Diethanolamine at 298 K. Chem. Eng. Sci. 1989, 44, 1264-1268.

- (13) Haimour, N. M. Solubility of N<sub>2</sub>O in Aqueous Solutions of Diethanolamine at Different Temperatures. J. Chem. Eng. Data **1990**, 35, 177-178.
- (14) Li, M.-H.; Lee, W.-C. Solubility of N<sub>2</sub>O and CO<sub>2</sub> in (Diethanolamine + 2-Amino-2-methyl-1-propanol + Water). J. Chem. Eng.
- Data 1996, 41, 551–556.
  (15) Bosch, H.; Versteeg, G. F.; van Swaaij, W. P. M. Kinetics of the Reaction of CO<sub>2</sub> with the Sterically Hindered Anino 2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2-Amino-2 methyl-1-propanol at 298 K. Chem. Eng. Sci. 1990, 45, 1167-1173
- (16) Littel, R. J.; Versteeg, G. F.; van Swaaij, W. P. M. Solubility and Diffusivity Data for the Absorption of COS, CO<sub>2</sub>, and N<sub>2</sub>O in Amine Solutions. *J. Chem. Eng. Data* **1992**, *37*, 49–55.
  (17) Rinker, E. B.; Russell, J. W.; Tamimi, A.; Sandall, O. C. Diffusivity of Nitrous Oxide in *N*-Methyldiethanolamine + Diethanolamine + Watar. *J. Chem. Eng.* **1005**, *40*, 620–621.
- + Water. J. Chem. Eng. Data 1995, 40, 630-631.
  (18) Kundu, M.; Mandal, B. P.; Bandyopadhyay, S. S. Vapour-Liquid
- Equilibrium of CO2 in Aqueous Solutions of 2-Amino-2-methyl-1-propanol. J. Chem. Eng. Data **2003**, 48, 789–796. (19) Tsai, T.-C.; Ko, J.-J.; Wang, H.-M.; Lin, C.-Y.; Li, M.-H. Solubility
- of Nitrous Oxide in Alkanolamine Aqueous Solutions. J. Chem. Eng. Data 2000, 45, 341-347.
- (20) Rinker, E. B. Acid Gas Treating with Blended Alkanolamines. Ph.D. Dissertation, University of California, Santa Barbara, 1997.
- (21) Li, M.-H.; Lai, M.-D. Solubility and Diffusivity of N<sub>2</sub>O and CO<sub>2</sub> in (Monoethanolamine + N-Methyldiethanolamine + Water) and in (Monoethanolamine + 2-Amino-2-methyl-1- propanol + Water). J. Chem. Eng. Data 1995, 40, 486-492.
- (22) Hagewiesche, D. P.; Ashour, S. S.; Sandall, O. C. Solubility and Diffusivity of Nitrous Oxide in Ternary Mixtures of Water, Monoethanolamine, and N-Methyldiethanolamine and Solution Densities and Viscosities. J. Chem. Eng. Data 1995, 40, 627-629.
- (23) Hsu, C.-H.; Li, M.-H. Densities of Aqueous Blended Amines. J. *Chem. Eng. Data* **1997**, *42*, 502–507. Mandal, B. P.; Kundu, M.; Bandyopadhyay, S. S. Density and
- (24)Viscosity of Aqueous Solutions of (N-Methyldiethanolamine + Monoethanolamine), (N-Methyldiethanolamine + Diethanolamine), (2-Amino-2-methyl-1-propanol + Monoethanolamine), (N-Methyldiethanolamine + Diethanolamine). J. Chem. Eng. Data
- 2003, 48, 703–707.
  (25) Ko, J. J.; Tsai, T. C.; Lin, C. Y.; Wang, H. M.; Li, M. H. Diffusivity of Nitrous Oxide in Aqueous Alkanolamines Solutions. *J. Chem.* Eng. Data 2001, 46, 160-165.

Received for review June 30, 2003. Accepted November 6, 2003. This work was supported by the Centre for High Technology (CHT), New Delhi, India.

JE0301951