Temperature Dependence of the Thermophysical Properties of 1-Chlorohexane, 1-Iodohexane, 1-Iodoheptane, and 1-Chlorononane at Saturation Condition

Mikhail F. Bolotnikov* and Yurij A. Neruchev

Department of General Physics, Kursk State University, Kursk, Radishcheva 33, Russia

The speed of sound u, density ρ , and specific heat capacity at constant pressure C_P for liquid 1-chlorohexane, 1-iodohexane, 1-iodoheptane, and 1-chlorononane were measured as a function of temperature along the saturation line between (293.15 and 373.15) K. The experimental results were used to calculate various thermophysical properties such as the isobaric thermal expansion coefficient α_P , the isentropic compressibility k_S , the isothermal compressibility k_T , the specific heat capacity at constant volume C_V , the ratio of C_P to C_V , the temperature coefficient of pressure at constant volume $(\partial P/\partial T)_V$, and the internal pressure P_i .

Introduction

Thermodynamic properties of nonelectrolyte liquids are of profound importance in various fields related to the petrochemical industry and technology. In contrast to the *n*-alkanes, which have been studied comprehensively, their halogen-substituted analogues are less well understood. This could be related to the high chemical activity and relative thermal instability of certain haloalkanes. Presently, the sphere of application of haloalkanes is wide, including raw material for synthesis of alkanes and alkenes, solvents, anesthetics, insecticides, bactericidal preparations, and so forth.¹

A literature search indicated the availability of only a few thermodynamic properties for 1-chlorohexane, 1-iodohexane, 1-iodoheptane, and 1-chlorononane. Enthalpies of vaporization $\Delta_{vap} H^{\circ}$ of 1-chlorohexane in the temperature range from (298 to 368) K have been studied by Majer and Svoboda,² and heat capacities at constant pressure of 1-chlorohexane, 1-iodohexane, and 1-iodoheptane at 298.15 K and 308.15 K have been studied by Shehatta.³ The Antoine equation parameters of 1-chlorohexane in the temperature range from (288 to 408.7) K and 1-chlorononane in the temperature range from (342.2 to 477.9) K have been reported by Kemme and Kreps;⁴ corresponding parameters for 1-iodohexane in the temperature range from (293 to 453) K and 1-iodoheptane in the temperature range from (298 to 477) K are given in Potekhin's reference book.⁵ There is sufficient information on the temperatures of boiling for the investigated liquids.^{2,6-9} A value of the critical temperature is known only for 1-chlorohexane ($T_{\rm c}$ = 594.6 K).² Abramzon's reference book¹² provides data on surface tension for 1-iodoheptane from (293.15 to 373.15) K and for 1-chlorohexane, 1-iodohexane, and 1-chlorononane from (283.15 to 373.15) K, respectively. The speed of sound values of 1-chlorohexane and 1-iodohexane were reported by us in a previous paper.¹⁰

For this reason, we present here an experimental study of the thermodynamic properties of 1-chlorohexane, 1-iodohexane, 1-iodoheptane, and 1-chlorononane at saturation

 \ast To whom correspondence should be addressed. E-mail: bolotnikov@ mail.ru.

condition. These data are of interest because of the effect on the molecular interactions of chlorine and the iodine substitution in *n*-alkanes.

Experimental Section

Materials. The material used in this study, 1-chlorohexane and 1-iodohexane (mole fraction > 0.99) and 1-iodoheptane and 1-chlorononane (mole fraction > 0.98), was supplied by Sigma-Aldrich Ltd. All reagents were used after purification by fractional distillation. All chemicals were partially degassed and dried over Fluka type 0.4 nm molecular sieves. The purity of the products was checked by gas chromatography (GC). We obtained GC purity data of (99.3, 99.4, 98.8, and 98.4) mol % for 1-chlorohexane, 1-iodohexane, 1-iodoheptane, and 1-chlorononane, respectively.

Measurements. The ultrasonic speed was measured along the saturation line with our pulse-phase echo ultrasonic device, with a precision of $\pm 1 \text{ m} \cdot \text{s}^{-1}$. The details of the method and technique used to determine speed of sound have been described previously.¹⁰ The speed of sound was measured at 2 and 5 MHz. Dispersion was not observed. The speed of sound measuring cell was thermostated with a temperature stability of $\pm 10^{-2}$ K.

The specific heat capacity at constant pressure C_P was determined by a method of continuous heating with the help of a differential scanning modified Calvet type calorimeter IT-CP-400 (Russia). The general principles of operation of this type of calorimeter have been discussed in detail.^{16,17} For a Calvet type calorimeter, the specific heat capacity of liquid can be calculated with the relation

$$C_{Px} = C_{Pr} \frac{Q_x - Q_0}{Q_r - Q_0} \frac{m_r}{m_x} + \Delta C \tag{1}$$

where C_{Px} is the specific heat capacity of the researched liquid, C_{Pr} is the specific heat capacity of the reference liquid, m_x is the mass of the sample liquid, m_r is the mass of the reference liquid, Q_0 is the quantity of heat transferring into the empty measuring cell, Q_x is the quantity of heat transferred into the measuring cell filled with the

Table 1. Comparison of Densities and Specific HeatCapacity at Constant Pressure for Saturated Liquid1-Chlorohexane, 1-Iodohexane, and 1-Iodoheptane atDifferent Temperatures

ρ/(kg ⋅m ⁻³)		$C_{P'}(\mathbf{J}\cdot\mathbf{kg}^{-1}\cdot\mathbf{K}^{-1})$		
this work	literature (ref)	this work	literature (ref)	
878.52	1-Chlorohexane, 878.30 (7) 879.0 (14)	<i>T</i> = 293.15 K		
873.75	1-Chlorohexane, 873.54 (7) 874.5 (14) 873.43 (15)	T= 298.15 К 1694	1792 (3)	
	1-Chlorohexane,	<i>T</i> = 308.15 К 1720	1826 (3)	
1430.50	1-Iodohexane,	T = 298.15 K 1027	1028 (3)	
1417.13	1-Iodohexane,	T = 308.15 K 1041	1041 (3)	
1371.93	1-Iodoheptane,	T = 298.15 K 1105	1114 (3)	
1359.91	1-Iodoheptane,	T = 308.15 K 1124	1132 (3)	

sample liquid, and Q_r is the quantity of heat transferred into the measuring cell filled with the reference liquid.

The value ΔC takes into account the difference between the enthalpy of vaporization for the sample and the reference liquids. However, even for precision measurements, the value ΔC can be neglected.

In the measurement method for heat capacity, it was reasoned that the quantity of heat is always proportional to the heating time for the value of the temperature steps θ_i set up by flowmeter. In this case, eq 1 becomes

$$C_{P_X} = C_{Pr} \frac{\tau_x - \tau_0}{\tau_r - \tau_0} \frac{m_r}{m_x}$$
(2)

where τ_0 , τ_r , and τ_x are the heating times for the temperature steps (θ_0 , θ_r , and θ_x) of the empty cell, the cell filled with the reference liquid, and the cell filled with the sample liquid, respectively.

The calorimeter was calibrated with benzene, octane, and hexane. The uncertainty of the C_P measurements was estimated to be 3% over the entire temperature range. Densities were measured with an Ostwald–Sprengel type pycnometer, with a capacity of about 50 cm³. The uncertainty of the density measurements was estimated to be $\pm 3 \times 10^{-5}$ g·cm⁻³. Experimental values of density and specific heat capacity at constant pressure for the 1-chlorohexane, 1-iodohexane, and 1-iodoheptane were compared with those found in the literature, and they were found to be in fairly good agreement (with the exception of specific heat capacity data for 1-chlorohexane), as shown in Table 1.

Results and Discussion

The densities, speed of sound, and specific heat capacity at constant pressure of the sample liquids are given in Table 2 from (293.15 to 373.15) K, respectively. These data were fitted by the method of least squares with the following equation:

$$Y = \sum_{i=0}^{n} A_{i} (T/K)^{i}$$
(3)

where *Y* denotes $\rho/\text{kg}\cdot\text{m}^{-3}$, $u/\text{m}\cdot\text{s}^{-1}$, or $C_P/\text{J}\cdot\text{kg}^{-1}\cdot\text{K}^{-1}$, *T* is the absolute temperature, and A_i are the adjustable

Table 2. Measured Densities, Speed of Sound, andSpecific Heat Capacity at Constant Pressure forSaturated Liquid 1-Chlorohexane, 1-Iodohexane,1-Iodoheptane, and 1-Chlorononane from (293.15 to373.15) K

Т	ρ	и	C_P	ρ	и	C_P
K	kg•m ³	$\mathbf{m} \cdot \mathbf{s}^{-1}$	$\overline{J \cdot kg^{-1} \cdot K^{-1}}$	kg•m ³	$\mathbf{m} \cdot \mathbf{s}^{-1}$	J•kg ⁻¹ •K ⁻¹
	1-	Chlorohe	exane	1-Iodohexane		
293.15	878.52	1219.1	1680	1437.18	1045.5	1021
298.15	873.75	1200.1	1694	1430.50	1031.3	1027
303.15	868.98	1181.9	1707	1423.82	1017.2	1034
308.15	864.21	1166.2	1720	1417.13	1003.2	1041
313.15	859.44	1140.7	1732	1410.44	989.2	1049
318.15	854.67	1128.1	1745	1403.74	975.4	1057
323.15	849.90	1106.0	1758	1397.04	961.6	1065
328.15	845.12	1087.0	1771	1390.33	947.9	1071
333.15	840.35	1068.8	1783	1383.61	934.2	1075
338.15	835.58	1050.2	1796	1376.89	920.7	1080
343.15	830.81	1031.7	1807	1370.17	907.2	1084
348.15	826.04	1013.3	1816	1364.44	893.8	1090
353.15	821.27	995.0	1832	1356.70	880.5	1097
358.15	816.50	976.9	1844	1349.96	867.3	1105
363.15	811.73	958.9	1856	1343.21	854.1	1113
368.15	806.96	940.6	1868	1336.46	841.0	1120
373.15	802.19	922.9	1879	1329.70	828.0	1126
	1	-Iodohep	tane	1-0	Chlorono	nane
293.15	1377.90	1079.0	1092	871.36	1297.2	1809
298.15	1371.93	1064.5	1105	867.35	1278.2	1822
303.15	1365.93	1050.2	1116	863.32	1259.5	1835
308.15	1359.91	1035.9	1124	859.28	1240.9	1848
313.15	1353.87	1021.6	1133	855.23	1222.5	1861
318.15	1347.80	1007.4	1141	851.15	1204.3	1874
323.15	1341.71	993.3	1150	847.07	1186.3	1888
328.15	1335.59	979.2	1158	842.96	1168.4	1902
333.15	1329.45	965.2	1165	838.85	1150.7	1915
338.15	1323.29	951.3	1172	834.71	1133.2	1929
343.15	1317.10	937.4	1180	830.57	1115.9	1942
348.15	1310.89	923.6	1185	826.40	1098.8	1956
353.15	1304.65	909.8	1194	822.22	1081.9	1970
358.15	1298.39	896.1	1200	818.03	1065.1	1984
363.15	1292.11	882.5	1208	813.82	1048.5	1998
368.15	1285.80	869.0	1215	809.60	1032.2	2012
373.15	1279.47	855.4	1223	805.36	1015.9	2026

Table 3. Coefficients A_i of the Least-Squares Fit by Equation 3 for Densities, Speed of Sound, and Specific Heat Capacity at Constant Pressure for 1-Chlorohexane, 1-Iodohexane, 1-Iodoheptane, and 1-Chlorononane from 293.15 K to 373.15 K and Standard Deviation σ

property	A_0	A_1	A_2	σ(Y)	
	1-0	Chlorohe	ane		
ρ/kg⋅m ⁻³	$1.158 imes 10^3$	-0.955	$1.806 imes10^{-6}$	$8.831 imes 10^{-3}$	
$C_P / \mathbf{J} \cdot \mathbf{k} \mathbf{g}^{-1} \cdot \mathbf{K}^{-1}$	767.336	3.615	$-1.703 imes 10^{-3}$	2.852	
$u/m \cdot s^{-1}$	$2.458 imes 10^3$	-4.621	$1.356 imes 10^{-3}$	0.148	
	1	-Iodohexa	ane		
ρ/kg⋅m ⁻³	$1.81 imes 10^3$	-1.218	-1.861×10^{-4}	0.566	
$C_P/\mathbf{J}\cdot\mathbf{kg}^{-1}\cdot\mathbf{K}^{-1}$	553.759	1.839	$-8.308 imes10^{-4}$	8.001	
$u/m \cdot s^{-1}$	$2.014 imes 10^3$	-3.762	$1.566 imes 10^{-3}$	0.084	
	1.	Iodohept	ane		
ρ/kg⋅m ⁻³	1.686×10^3	-0.911	$-4.795 imes10^{-4}$	$7.270 imes 10^{-3}$	
C_P /J·kg ⁻¹ ·K ⁻¹	159.079	4.470	$-4.355 imes10^{-3}$	5.149	
$u/m \cdot s^{-1}$	$2.034 imes 10^3$	-3.624	$1.246 imes 10^{-3}$	0.112	
	1-0	Chloronor	nane		
ρ/kg⋅m ⁻³	$1.080 imes 10^3$	-0.622	$-3.040 imes10^{-4}$	0.012	
$C_P / \mathbf{J} \cdot \mathbf{kg}^{-1} \cdot \mathbf{K}^{-1}$	$1.186 imes 10^3$	1.661	$1.584 imes10^{-3}$	0.862	
$u/m \cdot s^{-1}$	$2.727 imes 10^3$	-5.946	$3.647 imes10^{-3}$	0.113	

parameters. The resulting coefficients A_i are listed in Table 3 along with the standard deviation σ , defined by

$$\sigma = \left[\sum_{i=1}^{n} (Y_{\text{obs}} - Y_{\text{cal}})^2 / (n-p)\right]^{1/2}$$
(4)

where Y_{obs} and Y_{cal} are the observed and calculated quantities as defined earlier, *n* is the total number of experimental points, and *p* is the number of parameters.

Table 4. Calculated Isobaric Thermal Expansion Coefficient, Isentropic Compressibilities, Isothermal Compressibilities,
Specific Heat Capacity at Constant Volume, the Ratio of C_P to C_V , Temperature Coefficient of Pressure at Constant
Volume and Internal Pressure for Saturated Liquid 1-Chlorohexane, 1-Iodohexane, 1-Iodoheptane and 1-Chlorononane
from 293.15 K to 373.15 K

<i>T</i> /K	$lpha_P imes 10^{3}/\mathrm{K}^{-1}$	C_V J·kg ⁻¹ ·K ⁻¹	$k_S imes 10^{10}/\mathrm{Pa}^{-1}$	$k_T imes 10^{10}/\mathrm{Pa}^{-1}$	$\gamma = C_P / C_V$	$(dP/dT)_V/bar\cdot K^{-1}$	P _i /bar
1-Chlorobevane							
293 15	1.086	1287	7 659	10.00	1 3058	10 861	3182
298 15	1.000	1301	7 947	10.35	1 3024	10.553	3145
303 15	1.002	1314	8 238	10.00	1 2992	10.261	3109
308 15	1.000	1326	8 508	11.04	1 2071	10.006	3082
313 15	1.104	13/3	8 9/2	11.04	1 2800	9.627	3032
219 15	1.111	1343	0.542	11.04	1.2033	9.027	2006
310.13	1.117	1004	9.194	11.00	1.2091	9.421	2990
323.13	1.123	1370	9.019	12.33	1.2000	9.096	2938
328.15	1.129	1384	10.014	12.81	1.2793	8.816	2892
333.15	1.136	1398	10.417	13.29	1.2754	8.550	2847
338.15	1.142	1413	10.851	13.80	1.2710	8.283	2799
343.15	1.149	1427	11.308	14.32	1.2668	8.022	2751
348.15	1.156	1442	11.790	14.88	1.2664	7.766	2703
353.15	1.163	1456	12.299	15.47	1.2580	7.515	2653
358.15	1.170	1471	12.833	16.09	1.2536	7.271	2603
363.15	1.177	1486	13.398	16.74	1.2492	7.032	2553
368.15	1.184	1501	14.007	17.43	1.2446	6.794	2500
373.15	1.192	1516	14.636	18.15	1.2401	6.566	2449
			1 Jodok	avana			
293 15	0 929	803	6 365	8 00	1 2708	11 /81	3364
200.15	0.024	800	0.303	0.03	1.2700	11.401	2225
290.15	0.934	009	0.372	0.34	1.2093	10.021	3333
303.15	0.939	810	0.787	8.60	1.2673	10.921	3309
308.15	0.944	822	7.011	8.88	1.2658	10.639	3277
313.15	0.949	830	7.245	9.15	1.2634	10.370	3246
318.15	0.955	838	7.487	9.44	1.2611	10.110	3215
323.15	0.960	846	7.741	9.74	1.2587	9.854	3183
328.15	0.966	852	8.005	10.06	1.2566	9.599	3148
333.15	0.971	856	8.281	10.39	1.2550	9.343	3111
338.15	0.977	862	8.567	10.74	1.2532	9.097	3075
343.15	0.982	866	8.867	11.10	1.2514	8.852	3036
348.15	0.988	873	9.180	11.47	1.2490	8.615	2998
353.15	0.994	880	9.507	11.85	1.2464	8.385	2960
358.15	0.999	888	9.847	12.25	1.2435	8.162	2922
363.15	1.005	897	10.205	12.66	1.2406	7.941	2883
368.15	1.011	904	10.579	13.10	1.2378	7,723	2842
373 15	1.017	911	10.969	13 55	1 2352	7 509	2801
070.10	1.017	011	10.000	10.00	1.2002	1.000	2001
			1-lodoh	leptane			
293.15	0.865	887	6.234	7.67	1.2311	11.274	3303
298.15	0.872	901	6.431	7.89	1.2270	11.056	3295
303.15	0.880	908	6.638	8.16	1.2295	10.779	3266
308.15	0.887	914	6.853	8.43	1.2300	10.525	3242
313.15	0.894	921	7.077	8.71	1.2300	10.277	3217
318.15	0.902	928	7.309	8.99	1.2300	10.035	3191
323.15	0.909	936	7.554	9.29	1.2291	9.800	3165
328.15	0.918	943	7.807	9.59	1.2289	9.564	3137
333.15	0.925	949	8.074	9.91	1.2279	9.335	3108
338.15	0.933	955	8.350	10.25	1.2275	9.106	3078
3/3 15	0.000	962	8 640	10.20	1 2265	8 884	3047
348 15	0.040	067	8 0/3	10.00	1 2258	8 663	3015
252 15	0.049	075	0.945	11.30	1.2230	8.005	2021
259 15	0.938	0.021	9.200	11.34	1.2240	0.440	2049
336.13	0.900	301	9.309	11.73	1.2200	0.234	2010
303.13	0.974	909	9.933	16.14	1.6666	0.025 7.910	2913
368.15	0.983	995	10.296	12.57	1.2210	7.819	2877
373.15	0.992	1003	10.679	13.02	1.2194	7.615	2840
			1-Chloro	ononane			
293.15	0.919	1474	6.820	8.39	1.2276	10.947	3207
298.15	0.927	1481	7.057	8.69	1.2298	10.658	3176
303.15	0.935	1493	7.302	8.98	1.2288	10.402	3152
308 15	0.943	1504	7 558	9.29	1 2285	10 142	3194
313 15	0 051	1517	7 891	9 61	1 2267	308.0	3007
313.13 319.15	0.331	1517	1.064 Q 101	0.01	1.2201	0.030	2087
310.13 392 1 ^r	0.303	1541	0.101	5.54 10.90	1.2204	J.U44 0 106	2020
323.13 290 15	0.907	1541	0.009	10.20	1.2249	9.400 0.100	2006 2006
328.13	0.975	1554	0.090	10.04	1.2240	9.100	3000
333.15	0.984	1566	9.003	11.01	1.2229	8.932	29/4
338.15	0.992	1579	9.329	11.40	1.2216	8.706	2943
343.15	1.001	1591	9.669	11.79	1.2204	8.482	2909
348.15	1.009	1604	10.022	12.22	1.2190	8.264	2876
353.15	1.018	1617	10.391	12.65	1.2176	8.050	2842
358.15	1.027	1631	10.776	13.11	1.2161	7.839	2806
363.15	1.036	1645	11.177	13.58	1.2145	7.631	2770
368.15	1.046	1659	11.593	14.07	1.2130	7.432	2735
373.15	1.055	1672	12.031	14.57	1.2116	7.239	2700

Figure 1. Densities ρ as a function of temperature from (293.15 to 373.15) K: \Box , hexane; \blacksquare , heptane; \blacktriangle , nonane; \bigcirc , 1-chlorononane; \triangle , 1-chlorohexane; \blacklozenge , 1-iodohexane; \blacklozenge , 1-iodohexane.

Figure 2. Isentropic compressibilities k_S as a function of temperature from (293.15 to 373.15) K: \blacklozenge , hexane; \blacksquare , heptane; \blacktriangle , nonane; \bigcirc , 1-chloronexane; \Box , 1-iodoheptane; \triangle , 1-iodohexane.

Isentropic compressibilities k_S of the measuring liquids were calculated from the Laplace equation,

$$k_S = \frac{1}{\rho u^2} \tag{5}$$

where u is the sound velocity and ρ is the density of the measuring liquids. The isobaric thermal expansion coefficient

$$\alpha_P = -\frac{1}{\rho} \left(\frac{\partial P}{\partial T} \right)_P \tag{6}$$

was calculated from numerical differentiation of the density fitting equation. Calculations of the values (see Table 4) of isothermal compressibilities k_T , specific heat capacity at constant volume C_V , γ (which is the ratio of C_P to C_V), temperature coefficient of pressure at constant volume $(\partial P/\partial T)_{V}$, and internal pressure P_i were carried out with the following system of equations:

$$\gamma = 1 + \frac{u^2 \alpha_P^2 T}{C_P} \tag{7}$$

$$\gamma = \frac{k_T}{k_S} = \frac{C_P}{C_V} \tag{8}$$

$$k_T = k_S + \frac{\alpha_P^2 T}{\rho C_P} \tag{9}$$

$$\left(\frac{\mathrm{d}P}{\mathrm{d}T}\right)_{V} = \frac{\alpha_{P}}{k_{T}} \tag{10}$$

$$P_{\rm i} = \left(\frac{\mathrm{d}E}{\mathrm{d}V}\right)_T = T \left(\frac{\mathrm{d}P}{\mathrm{d}T}\right)_V - P \tag{11}$$

Figure 3. Molar heat capacity at constant volume as a function of temperature from (293.15 to 373.15) K: •, hexane; \times , heptane; \blacktriangle , nonane; \blacksquare , 1-chlorononane; \Box , 1-chlorohexane; \triangle , 1-iodoheptane; \bigcirc , 1-iodohexane.

Figure 4. Internal pressure P_i as a function of temperature from (293.15 to 373.15) K: \blacklozenge , hexane; \blacksquare , heptane; \blacktriangle , nonane; \bigcirc , 1-chlorononane; \times , 1-chlorohexane; \bigcirc , 1-iodohexane; \Box , 1-iodohexane.

The accuracies of calculated values of k_S , k_T , α_P , C_V , γ , $(\partial P/\partial T)_V$ and P_i were (0.1 to 0.2)% for isentropic compressibilities, (1 to 2)% for isothermal compressibilities, 1% for the isobaric thermal expansion coefficient, 3% for specific heat capacity at constant volume, 1% for the ratio of C_P to C_V , and 1% for the temperature coefficient of pressure at constant volume and for internal pressure.

The density, isentropic compressibilities, molar heat capacity at constant volume, and internal pressure of the investigated liquids and their *n*-alkane analogues from (293.15 to 373.15) K are shown in Figures 1–4, respectively. The densities for hexane, heptane, and nonane presented in Figure 1 are taken from Vargaftik's reference book.¹¹ Values of isentropic compressibilities, molar heat

capacity at constant volume, and internal pressure for hexane, heptane, and nonane that are presented in Figures 2-4 are taken from Neruchev's article.¹³ As can be seen from Figure 1, the densities of haloalkanes far exceed the densities of *n*-alkanes corresponding to them. The density of iodoalkanes is almost twice that of *n*-alkanes corresponding to them.

The isentropic compressibility carries more information on intensity of intermolecular interaction in liquid. A larger intensity of intermolecular interaction corresponds to a lower isentropic compressibility. As can be seen from Figure 2, the isentropic compressibility of haloalkanes is less than the isentropic compressibility of *n*-alkanes corresponding to them. Substitution of the chlorine atom by

Figure 5. Molar heat capacity at constant pressure as a function of temperature from (293.15 to 373.15) K: ■, 1-chlorononane; □, 1-chlorohexane; \triangle , 1-iodoheptane; \bigcirc , 1-iodohexane.

iodine in haloalkanes increases the intensity of intermolecular interactions. From Figure 2, it follows that with an increase in temperature, intensity of intermolecular interaction decreases for the liquids in this study.

An elementary analysis of the behavior of molar heat capacity at constant volume for the liquids studied results (Figure 3) in the following conclusion. The difference between a molecule of n-alkane and a molecule of haloalkane consists of substitution of an atom of hydrogen (H) with a heavier atom of a halogen (G). Thus the distinction of their molar heat capacity at constant volume will depend on the value of the amplitude of oscillations of atoms in C-H and C-G bonds. We think that the contribution of the C–G bond to the thermal capacity C_V is more than the contribution of the C-H bond because of the appreciable difference between the atomic masses of hydrogen and the halogens. Therefore, we expected to see a higher value of molar heat capacity at constant volume for haloalkanes than for their corresponding alkanes and their temperature dependences should be similar. The dependences of the thermal capacities C_V presented in Figure 3 on temperature for the researched liquids confirmed our assumptions.

Some essential information on the intensity of intermolecular interaction may be obtained from internal pressure data for liquids (Figure 4). As can be seen from Figure 4, the internal pressure of haloalkanes is more than that in *n*-alkanes where intermolecular interactions are less

In Figure 5, results of measurements of the molar heat capacity for the investigated liquids are shown. As can be seen from Figure 5, the molar heat capacity of the researched liquids in the range of temperatures under study grows practically linearly with increasing temperature.

Literature Cited

- Ternay, A. Contemporary Organic Chemistry, W. B. Saunders: Philadelphia, 1979; Vol. I.
- Majer, V.; Svoboda, V. Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation; Blackwell Scientific: Oxford, 1985.
- Shehatta, I. Heat capacity at constant pressure of some halogen (3)compounds. Thermochim. Acta 1993, 213, 1-10.
- Kemme, H. R.; Kreps, S. I. Vapor pressure of primary *n*-alkyl chlorides and alcohols. *J. Chem. Eng. Data* **1969**, *14*, 98–102.
- Potekhin, A. A. Properties of Organic Compounds; Khimiya: (5)Leningrad, 1984.
- Weast, R. C.: Grasselli, J. G. CRC Handbook of Data on Organic (6)*Compounds*, 2nd ed.; CRC Press: Boca Raton, FL, 1989. Paul, H.-I.; Krug, J.; Knapp, H. Measurements of VLE, V^E, and
- (7)HE for binary mixtures of 1-chlorohexane with three n-alkylbenzenes: toluene, ethylbenzene, n-propylbenzene. J. Chem. Eng. Data 1988, 33, 453-460.
- Mumford, S. A.; Phillips, J. W. C. The physical properties of some aliphatic compounds. *J. Chem. Soc.* **1950**, *1950*, 75–84. *Catalog Handbook of Fine Chemicals*, Aldrich Chemical Co.: (8)
- (9)Milwaukee, 1990.
- (10) Bolotnikov, M. F.; Neruchev, Yu. A. Speed of sound of hexane + 1-chlorohexane, hexane + 1-iodohexane, and 1-chlorohexane + 1-iodohexane at saturation condition. J. Chem. Eng. Data 2003, 48, 411-415
- (11) Vargaftik, N. B. Handbook of the Thermophysical Properties of Liquids and Gases; FM: Moscow, 1963.
- (12) Abramzon, A. A. Surface-Active Substance, Khimia: Leningrad, 1981
- (13) Neruchev, Yu. A.; Zotov, V. V. Recommended values of some thermodynamic properties of n-alkanes at saturation conditions. Ul'trazvuk Termodin. Svoistva Veshestva 1977, 11, 7–17 (in Russian).
- (14) Timmermanns, J. Physico-Chemical Constants of Pure Organic Compounds; Elsevier: New York, 1965; Vol. II.
- Kovacs, E.; Aim, K.; Linek, J. Excess molar volumes of (an alkane (15)- 1-chloroalkane) at T = 298.15 K. J. Chem. Thermodyn. 2001, 33, 33-46.
- (16) Calvet, E.; Prat, H. Recent Progress in Microcalorimetry; Pergamon Press: Oxford, U.K., 1963.
- (17)Platunov, E.; Buravoy, S.; Kurenin, V.; Petrov G. Thermophysical Measurements and Apparatus; Mashinostroenie: Leningrad, 1986 (in Russian).

Received for review January 13, 2003. Accepted December 9, 2003.

JE034013E