Determination and Study on the Solubility of Methane in Heptane + Cyclohexane and Heptane + Ethanol at High Pressures

Xia Shuqian, Ma Peisheng,* Guo Yugao, and Hua Chao
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China

Abstract

It is known that the use of natural gas as a vehicular fuel is advantageous, but the storage limitation of natural gas is a severe drawback to the use. In this paper, a method for storing natural gas at moderate temperatures and pressures by dissolving natural gas in solvents is studied. A set of experimental equipment for measuring gas solubility in liquids under high pressures was established. The solubilities of methane in heptane + cyclohexane and heptane + ethanol were measured over the temperature range from 291.15 K to 313.15 K and pressures to 12.00 MPa . The new solubility measurements are believed to have uncertainties of 0.002 in the mole fraction. The data were analyzed using the Peng-Robinson equation of state with two kinds of mixing rules. In general, the equation coupled with the simple mixing rule represents the experimental data of methane + heptane + cyclohexane well over the complete temperature and pressure range when the interaction parameters k_{ij} for methane + heptane and methane + cydohexane were used and the k_{ij} for heptane+cyd ohexane was ignored. Owing to the polarity of ethanol, when the experimental data of methane + heptane + ethanol were calculated by the equation, besides the interaction parameters k_{ij} for methane + heptane and methane + cyclohexane, the interaction parameter for heptane + ethanol as well as an additional interaction parameter, I_{ij}, must be employed. At the same time, the molar volumes of liquid-phase mixtures at high pressures for two kinds of ternary systems were measured and calculated.

Introduction

The use of natural gas as vehicular fuel is advantageous from an environmental point of view and has attracted a lot of attention. With respect to environmental protection, the use of natural gas as a vehicular fuel results in the reductions in $\mathrm{CO}, \mathrm{CO}_{2}$, and SO_{2} of 97,24 , and 90%, respectively, and the amount of lead discharged in exhaust gases is reduced to zero. Therefore, the potential importance of using natural gas as a vehicular fuel is obvious. ${ }^{1}$ However, when the storage volume is limited, the storage limitation of natural gas is a severe drawback to the use of natural gas as the vehicle fuel. Conventional storage techniques for natural gas need compression or liquefaction to give compressed natural gas (CNG) and liquefied natural gas (LNG). But CNG requires very high pressure vessels for storage and, LNG needs cryogenic processing equipment and cryogenic storage. Regarding the drawbacks associated with CNG and LNG storage techniques, it is highly desirable to develop a safe and more convenient way to store natural gas for use as the vehicular fuel. ${ }^{2}$

It has been recognized that, when gases are stored with a solvent, the critical pressure of the mixture is lower so that the storage pressure can be reduced. So, a method for storing natural gas at room temperatures and moderate pressures is to dissolve natural gas in solvents, such as light hydrocarbons. By this method, the energy storage density would be increased and the driving range of the vehicular could be extended.

Therefore it is of practical significance to study the solubility of methane, the main component of natural gas, in light hydrocarbons, ethanol, or other compounds and their mixtures.

[^0]The objectives of this work are to develop an apparatus for the measurement of gas solubility at normal temperature and high pressures, to measure the sol ubilities of CH_{4} in $\mathrm{n}-\mathrm{C}_{7} \mathrm{H}_{16}+\mathrm{c}-\mathrm{C}_{6} \mathrm{H}_{12}$ and $\mathrm{n}-\mathrm{C}_{7} \mathrm{H}_{16}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ at temperatures of $291.15 \mathrm{~K}, 303.15 \mathrm{~K}$, and 318.15 K at pressures from 2.0 MPa to 12.0 MPa , and to compare the results with the equation of state (EOS).

Experimental Method

The experimental apparatus used in this study employs a variable-volume, stainless steel equilibrium cell, which has a volume range from $200 \mathrm{~cm}^{3}$ to $360 \mathrm{~cm}^{3}$. In the cell, there is a piston, so the pressure of the cell can be raised by means of a manual oil pump. The cell was immersed in a water bath with a measuring precision of 0.1 K . A highpressure circulating pump was used to circulate the liquid and provide an excellent mixing of the gas and liquid. A sampling vessel with a volume of $24.1 \mathrm{~cm}^{3}$ is placed in the circulation flow in order to keep the pressure constant during sampling. The method consists of introducing known compositions of well-degassed binary solvents into the thermostated equilibrium cell. Then methane was introduced into the system, and the pressure was measured by a pressure transducer with measuring precision of 0.01 MPa. If the desired pressure in the apparatus was higher than that of the gas cylinder, the manual oil pump adjusted the gas pressure. The liquid pump was started, and the liquid in the equilibrium cell was cycled continuously at the rate of $15.0 \mathrm{~cm}^{3} / \mathrm{min}$. The system pressures were noted continually. The system was maintained at the temperature until the pressure of the system was changeless for about 30 min . The equipment flowchart is shown in Figure 1.

After equilibrium was reached, the sample valves were closed and the sample can was uninstalled and linked to a

Figure 1. Schematic flow diagram of experimental system. 1, gas cylinder; 2, water bath; 3, manual oil pump; 4, equilibrium cell; 5 , vacuum pump; 6, pressure transducer; 7, introduction vessel; 8, high-pressure pump for liquid circulating; 9, sample vessel; V1V9 valves.

Figure 2. Schematic flow diagram of sampling system. 1, sample vessel; 2, trapper; 3, ice-water bath; 4, drainage; 5, gas-flow meter; V1-V3, high-pressure valves; K1-K3, vitric valves.
trapper. Then the sample process was started. The liquid sample was drawn and flashed into the trapper, which was immersed in an ice-water bath. The separated liquid was kept in the tube, while the effluent gas was collected with the drainage. The sampling flowchart is shown in Figure 2. The collected liquid was weighed using an electronic balance, and the measuring range and precision of the balance were 0 to 200 g and 0.0001 g , respectively. The volume of the gas collected was measured at ambient temperature and atmosphere pressure by a gas meter, which has a measuring range of 0 to $3 \times 10^{3} \mathrm{~cm}^{3}$ and a precision of $0.1 \mathrm{~cm}^{3}$. On the basis of the amount of the liquid collected and the volume of the gas meter, the gas solubility of methane in the solvent at the condition could be calculated. At the same time, the molar volumes of the equilibrium liquid phase could be calculated.

Estimated uncertainties in experimental measurements are less than 0.002 in mole fraction and $0.5 \mathrm{~cm}^{3} / \mathrm{mol}$ in molar volume.

Evaluation of the Apparatus

The apparatus and the experimental procedure were checked using methanol and n-hexane as the standard solvents, respectively, before the experiment. The evaluating data were listed in Tables 1 and 2.

From Tables 1 and 2 , the experimental solubility of methane in methanol and n-hexane at different temperatures and pressures are in good agreement with the data

Table 1. Solubility Data of Methane (x_{1}) in Methanol (T $=298.15 \mathrm{~K}$)

x_{1}		$\mathrm{P} / \mathrm{MPa}$
0.04418	This Work	5.45
0.09121		12.00
	Reference 3	5.45
0.04401		11.96

Table 2. Solubility Data of Methane (x_{1}) in Hexane ($\mathbf{T}=$ 310.9 K)

x_{1}		$\mathrm{P} / \mathrm{MPa}$
0.0985	This Work	
0.1921		2.15
0.2540		4.50
	Reference 4	
0.0996		2.18
0.1898		4.30
0.2573		6.03

Table 3. Binary Interaction Parameters k_{ij} of Methane (1) + Heptane (2) and Methane (1) + Cyclohexane (3)

in refs 3 and 4, which were dassed as credible. It can be seen from the data that the experimental apparatus and procedure are reliable.

Materials. All chemicals used in this study were purchased from commercial suppliers. Methane with > 99.9\% purity from Beijing Analysis Instrument was used for all experiments. Other reagents were all purchased from Tianjin Chemical Agents Corp. with a purity of 99.5%.

Results

Methane + Heptane + Cyclohexane System. The solubility data for methane in heptane + cyclohexane binary solvents are presented in Table 4. The fugacity coefficient of methane in gas phase was calculated by the Peng-Robinson (PR) E OS. The relation of methane fugacity and methane solubility in heptane + cyclohexane were shown in Figure 3.

The methane fugacity and the solubility can be fitted to the equation $f_{i}=H x_{i}$ well, because the binary solvents is a nearly ideal system, and the activity coefficient of the component almost is 1.

EOS Estimation. The mixtures of methane + heptane + cyclohexane were considered as ideal mixtures. The experimental data for the ternary systems can be predicted by binary equilibrium data of methane + heptane and methane + cyclohexane using the PR EOS. ${ }^{5}$ The PR EOS

Figure 3. The curves of methane fugacity with methane (1) solubility (x_{1}) in cyclehexane (3) + heptane (2). $\boldsymbol{\square}, \mathrm{w}_{3}=0.2000$; \bullet, $\mathrm{w}_{3}=0.5000 ; \mathbf{\Delta}, \mathrm{w}_{3}=0.8000$. Note: w_{3} is the mass percent of cyclohexane in the solvent.
specific relations used are

$$
P=\frac{R T}{V-b}-\frac{a}{V(V+b)+b(V-b)}
$$

where

$$
\begin{gather*}
a=\left(\frac{0.45724 R^{2} T_{c}^{2}}{P_{c}}\right) \alpha\left(T_{r}\right) \\
b=\frac{0.0778 R T_{c}}{P_{c}} \tag{3}
\end{gather*}
$$

and

$$
\begin{gather*}
\alpha\left(T_{r}\right)=\left[1+m\left(1-T_{r}^{0.5}\right)\right]^{2} \tag{4}\\
m=f(\omega)=0.37464+1.54226 \omega-0.26992 \omega^{2} \tag{5}
\end{gather*}
$$

To apply the PR equation to mixtures, the values of a and b can be determined using the mixing rules ${ }^{3}$

$$
\begin{gather*}
a=\sum_{i}^{N} \sum_{j}^{N} x_{i} x_{j}\left(1-k_{i j}\right)\left(a_{i} a_{j}\right)^{1 / 2} \tag{6}\\
b=\sum_{i}^{N} x_{i} b_{i} \tag{7}
\end{gather*}
$$

In eq 6, k_{ij} is an empirical interaction parameter characterizing the binary interactions between components " i " and " j ". Values of these parameters were determined by fitting experimental binary mixture data to minimize the objective function, F, which is expressed as

$$
\begin{equation*}
F=\sum_{i}^{N}\left(\hat{f}_{i}^{g}-\hat{f}_{i}^{\prime}\right)^{2} \tag{8}
\end{equation*}
$$

The calculation procedure is the following. First, the solubility data of methane in heptane and in cyclohexane were collected from the literature. ${ }^{6}$ The fugacity coefficients of methane in both the liquid and gas phases were calculated by the PR EOS. The binary interaction parameters k_{ij} in the PR EOS of methane + heptane and methane + cyclohexane were correlated by the simplex method. ${ }^{7}$ The results were listed in Table 3. Then the binary interaction parameters k_{ij} of methane with each pure solvent were used, and the binary interaction parameter k_{ij} of heptane

Table 5. Solubility Data for Methane (1) in Heptane (2) + Ethanol (3) ${ }^{\text {a }}$

T/K	$\begin{gathered} \mathrm{P} / \\ \mathrm{MPa} \end{gathered}$	X2	X_{1}	$\underset{(x)}{\text { RD1\% }}$	$\begin{gathered} \text { RD2\% } \\ (\mathrm{x}) \end{gathered}$	$\begin{aligned} & \mathrm{Vm}_{\mathrm{m}} \\ & \left(\mathrm{~cm}^{3}\right. \\ & \left.\mathrm{mol}^{-1}\right) \end{aligned}$	$\begin{gathered} \text { RD1\% } \\ (\mathrm{V}) \end{gathered}$	$\begin{gathered} \text { RD2\% } \\ \text { (V) } \end{gathered}$
291.15	2.67	0.718	0.0993	-8.37	1.38	121.8	-2.66	-1.95
	5.11	0.638	0.196	1.61	2.34	117.4	-5.13	-5.03
	8.06	0.553	0.305	4.52	0.423	107.2	-2.85	-3.21
	12.00	0.445	0.441	6.53	-1.62	93.3	1.06	0.348
303.15	2.65	0.722	0.0943	-7.73	-0.824	118.0	2.45	3.13
	5.09	0.646	0.190	-1.80	2.72	112.0	1.79	1.88
	8.07	0.560	0.297	5.17	1.19	108.5	-2.00	-2.36
	12.00	0.453	0.431	6.84	-1.22	94.8	2.21	1.52
318.15	2.65	0.730	0.0842	-14.5	-6.92	125.9	-1.36	-0.751
	5.12	0.654	0.180	0.413	1.55	117.1	0.152	0.216
	8.06	0.565	0.290	6.13	2.18	107.5	1.78	1.39
	12.01	0.469	0.412	5.60	-2.23	97.0	3.98	3.32
291.15	2.65	0.594	0.0950	-6.40	3.15	132.2	-3.71	-2.41
	5.11	0.533	0.188	1.57	4.04	111.7	-4.93	-4.55
	8.06	0.471	0.283	2.34	-0.578	95.9	-3.54	-3.67
	11.98	0.381	0.420	6.25	-1.92	76.8	2.55	1.95
303.15	2.64	0.601	0.0850	11.9	-1.44	112.7	-3.08	-1.79
	5.10	0.540	0.180	0.980	3.85	107.6	-3.33	-2.97
	8.07	0.478	0.273	2.27	-0.272	98.5	0.241	0.114
	12.00	0.387	0.410	6.52	-1.39	85.9	5.98	5.39
318.15	2.66	0.606	0.0772	-17.9	-6.70	113.8	-1.56	-0.304
	5.11	0.549	0.165	-2.66	0.962	105.1	1.93	2.31
	8.04	0.485	0.262	1.95	-0.206	98.8	2.95	2.82
	12.00	0.394	0.400	6.24	-1.43	88.4	6.51	5.95
303.15	2.64	0.0990	0.0393	-10.7	-2.19	68.3	-4.62	-0.481
	5.12	0.0946	0.0822	0.660	3.01	67.4	-3.69	-0.391
	8.06	0.0901	0.126	2.35	-0.200	66.8	-3.27	-0.731
	12.00	0.0835	0.190	6.88	-1.28	64.5	-0.440	1.24
AAD\%				5.60	2.04		2.85	2.26

a Key: RD is the relative deviation of calculation from the experimental data, $x R D=x($ cal $)-x(\exp) / x(\exp), V R D=V($ cal $)-$ $V(\exp) N(\exp) . R D 1(x)$ is the relative deviation for x when only a single interaction parameter, k_{ij}, was used. RD2 (x) is the relative deviation for x when two interaction parameters, k_{ij} and I_{ij}, were used. RD1(V) is the relative deviation for molar volume calculated by Aalto-Keskinen model. RD2(V) is the relative deviation for molar volume calculated by the YWAK model. AAD is the average absolute deviation of calculation form the experimental data, AAD $=\left|\Sigma_{i}^{N} R D\right| / N$.

+ cyclohexane was considered as zero, and the experimental data for the ternary system were predicted by the PR equation. The estimation average absolute deviation (AAD) from the experimental solubility data is 2.4%, and the results are presented in Table 4.

The molar volumes of liquid-phase mixtures at high pressures were estimated by the Aalto-Keskinen model. ${ }^{8,9}$ In the model, the correlation of Hankinson and Thomson ${ }^{10}$ is used to predict the densities of saturated liquids, and the modified Chang-Zhao equation ${ }^{11,12}$ is applied to predicting compressed liquid molar volume. The calculation AAD from the experimental molar volume is 0.59%, and the results are also presented in Table 4.

Methane + Heptane + Ethanol System. The sol ubility data for methane in heptane + ethanol binary solvents are presented in Table 5.

EOS Correlation. The experimental data for methane + heptane + ethanol have been correlated using the PR cubic equation of state. To apply the PR equation to mixtures, the values of b can also be determined using the mixing rules as eq 9 except eq 7 . In eq $9, \mathrm{l}_{\mathrm{ij}}$ also is the binary interaction between components " i " and " j "

$$
\begin{equation*}
\mathrm{b}=0.5 \sum \sum \mathrm{x}_{\mathrm{i}} \mathrm{x}_{\mathrm{j}}\left(1-\mathrm{l}_{\mathrm{ij}}\right)\left(\mathrm{b}_{\mathrm{i}}+\mathrm{b}_{\mathrm{j}}\right) \tag{9}
\end{equation*}
$$

The PR EOS representation of the solubility for the system is shown in Table 5. In general, the PR equation describes the data with an AAD of 5.6% when a single interaction parameter, k_{i}, is used over the complete temperature range. The quality of the EOS representation is

Table 6. Binary Interaction Parameters k_{ij} and I_{ij} for Methane + Heptane + Ethanol System

	methane + heptane	methane + ethanol	heptane + ethanol
k_{ij}	0.04003	0.09299	0.08554
l_{ij}	-0.1619	-0.1653	0.1370
standard error		1.52%	

improved when an additional interaction parameter, I_{ij}, is employed, resulting in an AAD of 2.0%. The correlation results were shown in Table 5, and the parameters k_{ij} and I_{ij} acquired in the method are given in Table 6.

The molar volumes of liquid-phase mixtures for the system at high pressures were al so estimated by the AaltoKeskinen model. Because of the polarity of ethanol, the calculation of AAD is 2.9%, which is much larger than the result for the methane + heptane + cyclohexane system. To improve the calculation accuracy, the Aalto-Keskinen model was modified to predict the liquid molar volumes for methane + heptane + ethanol. In the modified model, the Hankinson and Thomson correlation, which is used to predict the densities of saturated liquids, was replaced by the Yen-Woods model. ${ }^{13}$ The modified model is called the YWAK model. All the calculation results were presented in Table 5.

Conclusion

Data have been obtained on the solubility of methane in heptane + cydohexane and heptane + ethanol at temperatures of $291.15 \mathrm{~K}, 303.15 \mathrm{~K}$, and 318.15 K at four different pressures. The data for the methane + heptane + cyclohexane system are well described by the PR EOS when the interaction parameters k_{ij} were used. And the experimental data for the methane + heptane + ethanol system can be well calculated by the PR equation when an additional interaction parameter, I_{ij}, is employed. The acquired solubility data will be of value in the devel opment and evaluation of solution theories of mixing and in the use for natural gas storage.

Appendix

Aalto-Keskinen Model.

$$
\left.\begin{array}{c}
\frac{V_{s}}{V^{*}}=V_{R}^{(0)}\left[1-\omega_{S R K} V_{R}^{(\delta)}\right] \\
V_{R}^{(0)}=1+a\left(1-T_{r}\right)^{1 / 3}+b\left(1-T_{r}\right)^{2 / 3}+c\left(1-T_{r}\right)+d \\
\left(1-T_{r}\right)^{4 / 3}
\end{array}\right] \begin{gathered}
V_{R}^{(\delta)}=\frac{e+f T_{r}+g T_{r}^{2}+h T_{r}^{3}}{T_{r}-1.00001} \\
\frac{V}{V_{s}}=\frac{A+C^{\left(D-T_{r}\right) B}\left(P_{r}-P_{s, r}\right)^{E}}{A+C\left(P_{r}-P_{s, r}\right)^{E}} \\
A=a_{0}+a_{1} T_{r}+a_{2} T_{r}^{3}+a_{3} T_{r}^{6}+a_{4} T_{r} \\
C=c_{1}\left(1-T_{r}\right)^{c_{2}}+\left[1-\left(1-T_{r}\right)_{2}^{c}\right] \exp \left[c_{3}+c_{4}\left(P_{r}-P_{s, r}\right)\right]
\end{gathered}
$$

where V_{s} is the molar volumes of saturated liquids and $\mathrm{V}^{*} \omega_{\text {SRK }}$ and $\mathrm{T}_{\mathrm{c}, \mathrm{HBT}}$ are the characteristic parameters for every compound. $P_{s, r}$ is reduced vapor pressure.

The mixing rules for $\mathrm{V}^{*}, \omega_{\text {SRK }}, \mathrm{T}_{\mathrm{C}, \mathrm{HBT}}$, and P_{c} are

$$
\begin{gathered}
\mathrm{T}_{\mathrm{c}, \mathrm{~m}}=\left(\sum \sum \mathrm{x}_{\mathrm{i}} \mathrm{x}_{\mathrm{j}} \mathrm{~V}_{\mathrm{ij}}^{*} \mathrm{~T}_{\mathrm{cij}}\right) \mathrm{N}_{\mathrm{m}}^{*} \\
\mathrm{~V}_{\mathrm{ij}}^{*} \mathrm{~T}_{\mathrm{cij}}=\left(\mathrm{V}_{\mathrm{i}}^{*} \mathrm{~V}_{\mathrm{j}}^{*} \mathrm{~T}_{\mathrm{ci}} \mathrm{~T}_{\mathrm{cj}}\right)^{1 / 2} \\
\mathrm{~V}_{\mathrm{m}}^{*}=1 / 4\left[\sum \mathrm{x}_{\mathrm{i}} \mathrm{~V}_{\mathrm{i}}^{*}+3\left(\sum \mathrm{x}_{\mathrm{i}} \mathrm{~V}_{\mathrm{i}}^{* 1 / 3}\right)\left(\sum \mathrm{x}_{\mathrm{i}} \mathrm{~V}_{\mathrm{i}}^{* 2 / 3}\right)\right] \\
\omega_{\mathrm{SRK}, \mathrm{~m}}=\sum \sum \mathrm{x}_{\mathrm{i}} \mathrm{x}_{\mathrm{j}}\left(\omega_{\mathrm{SRK}, \mathrm{i}} \omega_{\mathrm{SRK}, \mathrm{j}}\right)^{1 / 2} \\
\mathrm{P}_{\mathrm{c}, \mathrm{~m}}=\left(0.291-0.080 \omega_{\mathrm{SRK}, \mathrm{~m}}\right) \mathrm{R} \mathrm{~T}_{\mathrm{c}, \mathrm{~m}} \mathrm{~N}_{\mathrm{m}}^{*}
\end{gathered}
$$

The Yen-Wood Model. The Yen-Wood model, which was used to predict the molar volumes of saturated liquids in the YWAK model, is expressed as follows

$$
\begin{gathered}
\begin{array}{c}
V_{c} \\
V_{s}
\end{array}=1+A\left(1-T_{r}\right)^{1 / 3}+B\left(1-T_{r}\right)^{2 / 3}+(0.93-B)\left(1-T_{r}\right)^{4 / 3} \\
A=17.4425-214.578 Z_{c}+989.625 Z_{c}^{2}-1522.06 Z_{c}^{3} \\
B=-3.28257+13.6377 Z_{c}+107.4844 Z_{c}^{2}- \\
384.211 Z_{c}^{3} \quad\left(Z_{c} \leq 0.26\right) \\
B=60.2091-402.063 Z_{c}+501.0 Z_{c}^{2}+641.0 Z_{c}^{3} \\
\left(Z_{c}>0.26\right)
\end{gathered}
$$

Literature Cited

(1) Stefano, D. P.; Aldo, F.; Tommaso, L. Natural Gas, Cars and the Environment, A (Relatively) 'Clean' and Cheap Fuel Looking F or Users. Ecol. Econ. 2001, 38, 179-189.
(2) Mallinson, R. G.; Starling K. E.; Harwell, J. H. High Energy Density Storage of Methane in Light Hydrocarbon Solutions. U.S. Patent Number 5,900,515, May 4, 1999.
(3) Brunner, E.; Hultenschmidt, W.; Schlichtharle, G. Fluid Mixtures at High Pressures IV. Isothermal Phase Equilibria in Binary Mixtures Consisting of (Methanol + Hydrogen or Nitrogen or Methane or Carbon monoxide or Carbon dioxide). J. Chem. Thermodyn. 1987, 19, 273-291.
(4) Srinivasa, S.; Dariwish, N. A.; Khaled, A. M. G.; Robinson, J. R. L. Solubility of Methane in Hexane, Decane, and Dodecane at Temperatures from 311 to 423 K and Pressures to 10.4 MPa J . Chem. Eng. Data. 1992, 37, 516-520.
(5) Peng, D. Y.; Robinson, D. B. A New Two-Constant Equation of State. Ind. Eng. Chem. Fundam. 1976, 15, 59-64.
(6) Clever, H. L.; Young, C. L. The International Union of Pure and Applied Chemistry. Methane, Solubility Data Series; Pergamon Press: Oxford, 1987; Vol. 27-28.
(7) Nelder, J. A.; Mead, R. A Simplex Method for Function Minimization. Comput. J. 1965, 18, 308-313.
(8) Aalto, M.; Keskinen, K. I.; Aittamaa, J.; Liukkonen, S. An Improved Correlation for Compressed Liquid Densities of Hydrocarbons. Part 2. Mixtures. Fluid Phase Equillib. 1996, 114, 2135.
(9) Aalto, M.; Keskinen, K. I. Liquid Densities at High Pressures. Fluid Phase Equillib. 1999, 166, 183-205.
(10) Hankinson, R.; Thomson, G. A New Correlation for Saturated Densities of Liquids and Their Mixtures. AIChE J. 1979, 25, 653663.
(11) Chang, C. H.; Zhao, X. A New Generalized Equation for Predicting Volumes of Copressed Liquids. Fluid Phase Equilib. 1990, 58, 231-238.
(12) Aalto, M.; Keskinen, K. I.; Aittamaa, J.; Liukkonen, S. An Improved Correlation for Compressed Liquid Densities of Hydrocarbons. Part 1. Pure Compound. Fluid PhaseEquillib. 1996, 114, 1-19.
(13) Yen, L. C.; Woods, S. S. A Generalized Equation for Computer Calculation of Liquid Densities. AIChE J. 1966, 12, 95-99.

Received for review J uly 18, 2003. Accepted March 3, 2004.
J E034138

[^0]: * To whom correspondence may be addressed. Email: mapeisheng@ tju.edu.cn or shuqianxia@163.com.

