Temperature and Density Dependence of the Viscosity of Cyclopentane

Kenneth R. Harris,* Paula J. Newitt, and Lawrence A. Woolf

School of Physical, Environmental and Mathematical Sciences,[†] University College, University of New South Wales, Australian Defence Force Academy, Canberra, ACT 2600, Australia

New measurements have been made for the viscosity of cyclopentane between 258 K and 298 K at pressures up to approximately 380 MPa with a self-centering falling-body viscometer. These extend earlier high-pressure measurements made below 25 MPa by Assael and Dalaouti. A correlation function is used to represent the results as a function of temperature and molar volume with a standard deviation of $\pm 0.3\%$. The uncertainty in the measurements is estimated at $\pm 1\%$.

Introduction

New measurements have been made for the viscosity of cyclopentane between 258 K and 298 K at pressures up to approximately 380 MPa using a self-centering falling-body viscometer. The work forms part of a project of the International Association for Transport Properties (http:/transp.eng.auth.gr/iatp.html) to provide high-quality viscosity data for substances that are liquid over broad ranges of temperature and pressure that can be used as reference fluids, particularly where it might not be possible to use water. To this end, measurements have been made for toluene with several different types of viscometer and a correlation was derived from them.¹ The cyclopentane viscosity data presented here complement recent high-pressure vibrating wire measurements made to 25 MPa by Assael and Dalaouti² and will be used similarly.

Experimental Section

The cyclopentane was Aldrich 99+% dried over sodium wire. Analysis by GCMS (using a Shimadzu GC17A gas chromatograph fitted with a J.W. Scientific DB5-MS 30 m \times 0.25 mm column and employing a Shimadzu QP5000 mass spectroscopic detector) detected an impurity, 2,2-dimethylbutane. By using the method of standard additions, doping cyclopentane with 2,2-dimethylbutane (Chemical Samples Co., 99%), the purity was estimated at 99.89%.

Densities at atmospheric pressure were obtained using an Anton-Paar model DMNA5000 vibrating tube densimeter calibrated with dry air (BOC Gases, Instrument grade, \leq 25 ppm water) and purified water (MilliQ ion exchange system, Waters-Millipore Ltd.). The density of the cyclopentane sample at 25 °C was 0.739 92₂ g/cm³. The reproducibility is \pm 10 μ g/cm³. From the density of 2,2dimethylbutane,³ 0.657 02 g/cm³, and that recommended for cyclopentane,⁴ 0.740 39₈ g/cm³, one obtains a purity of 99.95 mol %. The molar mass was taken as 70.1329 g/mol.

Viscosities (η) at atmospheric pressure were determined with a reproducibility of $\pm 0.2\%$ in a glass Ubbelohde viscometer mounted in a water thermostat controlled to ± 1 mK. This viscometer was calibrated at 25 °C using a

* To whom correspondence should be addressed. E-mail: k.harris@ adfa.edu.au.

Figure 1. Relative deviations of the viscosity of water at 25 °C (η) reported by Harlow (ref 18) (\bullet , uncertainty of 1.4%) and those recommended in the 1985 IAPS tables (ref 19) (\blacktriangle , standard uncertainty of 1%) from the results of this work, η' . η'' (mPa·s) = 0.8909 - 2.263 027 × 10⁻⁴(p/MPa) + 2.683 453 × 10⁻⁶(p/MPa)² - 4.055 610 × 10⁻⁹(p/MPa)³ + 3.168 239 × 10⁻¹²(p/MPa).⁴

Table 1. Viscosity and Density of Cyclopentane at 0.1MPa

<i>T</i> /K	$\rho/(g/cm^3)^a$	$\eta/(mPa \cdot s)^b$	<i>T</i> /K	$\rho/(g/cm^3)^a$	$\eta/(mPa \cdot s)^b$
278.15 283.15 288.15	0.759 64 0.754 76 0.749 85	0.5230 0.4932 0.4657	293.15 298.15	0.744 90 0.739 92	0.4405 0.4173

 $^a\,\mathrm{Measured}$ with vibrating tube densimeter. $^b\,\mathrm{Measured}$ with Ubbelohde viscometer.

set of calibration standards from the Cannon Instrument Co. (State College, PA). The results were found to fit the working equation

$$\eta/\rho = At + B/t \tag{1}$$

(where ρ is the density and *t* is the flowtime) with the classical kinetic energy correction as the second term (*A* and *B* are fitted constants).⁵ The alternative equation

$$\eta/\rho = At + B/t^2 \tag{2}$$

recommended by Bauer and Meerlender⁶ for long capillary Ubbelohde viscometers was tested but resulted in a poor fit.

[†] Incorporating the former School of Chemistry.

Table 2.	Viscosity	of	Cyclo	pentane	from	258	Κ	to	298	Κ
	- /									

		-											
<i>T</i> /K	t/s	<i>p</i> /MPa	V/(cm ³ /mol)	$\rho/(g/cm^3)$	$\eta/(mPa \cdot s)$	Rea	<i>T</i> /K	t/s	<i>p</i> /MPa	<i>V</i> /(cm ³ /mol)	ρ/(g/cm ³)	$\eta/(mPa \cdot s)$	Rea
258.01	21.98	0.1	89.9819	0.77941	0.6851	514	268.01	69.92	200.7	80.9918	0.86593	2.1508	57
257.87	22.04	0.1	89.9667	0.77954	0.6871	511	268.01	79.13	225.6	80.2765	0.87364	2.4315	45
257.86	22.07	0.1	89.9660	0.77955	0.6878	510	268.01	89.32	250.8	79.6080	0.88098	2.7419	36
							268.01	100.19	275.3	79.0036	0.88772	3.0726	29
262.99	20.47	0.1	90.5254	0.77473	0.6384	588	268.01	112.52	301.0	78.4112	0.89443	3.4474	23
262.99	20.49	0.1	90.5254	0.77473	0.6388	587	268.01	125.22	325.3	77.8853	0.90046	3.8332	19
262.99	21.05	3.1	90.2605	0.77700	0.6562	558	268.01	140.04	351.2	77.3571	0.90661	4.2832	15
262.99	21.53	5.6	90.0449	0.77887	0.6709	535	268.01	155.96	378.0	76.8430	0.91268	4.7659	12
262.99	22.01	8.1	89.8316	0.78071	0.6858	513							
262.99	22.55	10.8	89.6055	0.78269	0.7025	490	273.15	17.94	0.1	91.6698	0.76506	0.5601	756
262.99	25.54	25.8	88.4602	0.79282	0.7943	388	273.15	17.97	0.1	91.6698	0.76506	0.5610	753
262.99	30.86	50.8	86.8352	0.80765	0.9576	271	273.15	18.44	3.1	91.3807	0.76748	0.5756	717
262.99	36.68	75.7	85.4712	0.82054	1.1362	195	273.15	18.87	5.6	91.1444	0.76947	0.5886	688
262.99	43.01	100.5	84.2987	0.83196	1.3301	144	273.15	19.31	8.1	90.9124	0.77143	0.6022	658
262.99	49.97	125.5	83.2532	0.84240	1.5429	108	273.15	19.74	10.6	90.6866	0.77335	0.6155	632
262.99	57.66	150.5	82.3200	0.85195	1.7779	82	273.15	22.42	25.9	89.4362	0.78417	0.6979	497
262.99	65.98	175.5	81.4794	0.86074	2.0319	64	273.15	27.10	50.8	87.7056	0.79964	0.8418	348
262.99	75.00	200.2	80.7196	0.86885	2.3071	50	273.15	32.17	75.8	86.2575	0.81306	0.9972	251
							273.15	37.69	100.7	85.0199	0.82490	1.1663	186
262.93	20.50	0.1	90.5187	0.77479	0.6392	587	273.15	43.66	125.5	83.9357	0.83556	1.3491	141
262.93	20.50	0.1	90.5187	0.77479	0.6393	587	273.15	50.25	150.5	82.9634	0.84535	1.5505	108
262.93	21.09	3.1	90.2531	0.77707	0.6574	556	273.15	57.39	175.5	82.0905	0.85434	1.7685	84
262.93	21.56	5.6	90.0384	0.77892	0.6719	534	273.15	65.19	200.5	81.2915	0.86273	2.0065	65
262.93	22.01	7.9	89.8388	0.78065	0.6858	513	273.15	73.72	225.3	80.5671	0.87049	2.2665	52
262.93	22.43	10.1	89 6612	0 78220	0.6987	495	273 15	83.08	250.6	79 8841	0.87793	2 5516	41
262.00	25 56	25.8	88 4548	0 79287	0 7950	387	273 15	93 35	275.8	79 2534	0 88492	2 8641	33
262.00	30.88	20.0 50.8	86 8336	0.80767	0.9583	271	273 15	104 31	300.7	78 6699	0.89148	3 1977	27
262.93	36 71	75.7	85 4697	0.82056	1 1371	195	273 15	116.23	325.9	78 1167	0.89780	3 5597	22
262.00	43 11	100.7	84 2840	0.83210	1 3330	144	273 15	128 97	350.7	77 6032	0.90374	3 9467	18
262.00	50.08	125.8	83 2390	0.84255	1 5462	108	273 15	145 21	379.2	77 0490	0.91024	4 4399	14
262.00	57 79	150.8	82 3083	0.85208	1 7819	82	210.10	110.21	010.2	11.0400	0.01021	1.1000	11
262.00	66 25	175.8	81 4667	0.86088	2 0402	63	278 16	16 93	0.1	92 2540	0 76022	0 5288	843
262.00	75 48	200.8	80 6987	0.86907	2 3219	49	278 16	16.00	0.1	92 2540	0.76022	0.5290	842
262.00	85 58	225 Q	79 9926	0.87674	2 6295	30	278 16	17 39	2 9	01 0731	0.76254	0.5230	801
262.00	96 65	250.0	79 3391	0.88396	2 9667	31	278 16	17.33	5.0	91 7607	0.76430	0.5430	779
262.00	108 69	275.8	78 7342	0.89076	2 3330	24	278 16	18.26	8.1	91 4636	0.76679	0.5697	732
262.00	121 58	200.6	78 1713	0.89717	3 7251	20	278 16	18 71	10.1	91 2115	0.76890	0.5037	698
202.33	121.00	300.0	70.1715	0.03717	5.7251	20	278 16	21 25	25.0	80 0307	0.70030	0.5658	550
263.03	20.48	0.1	00 5204	0 77470	0.6386	588	278 16	25.68	50.8	88 1454	0.77565	0.0018	385
263.03	20.40	0.1	00.5204 00.5204	0.77470	0.0300	587	278 16	20.00	75.8	86 6573	0.75505	0.7561	270
263.03	20.45	10.0	80 6245	0.77470	0.0330	103	278 16	35.60	100.6	85 3884	0.80331	1 10/8	207
263.03	24.45	20.6	88 8455	0.78038	0.7608	433	278 16	<i>41 4</i> 0	125 7	84 2688	0.82225	1.1040	156
263.03	26.47	20.0	88 1207	0.70530	0.7000	362	278 16	41.40	150 7	83 9779	0.83225	1.2750	120
263.03	28 57	40.5	87 4720	0.73575	0.8273	314	278 16	5/ 33	175.8	82 3825	0.85131	1.4005	03
263.03	20.37	40.J 50.5	86 8580	0.80177	0.0075	979	278 16	61 56	200.7	81 5743	0.85074	1 8053	73
263.03	33.03	60.5	86 28/1	0.80743	1 02/3	238	278 16	60.48	225.8	80 8280	0.85767	2 1 3 6 6	58
262.03	25 25	70.5	Q5 7499	0.01201	1.0245	210	279 16	77 06	250.8	20.1 <i>1</i> /2	0.80707	2 2051	17
262.03	27 91	70.J 80.6	0J.7422 95 9995	0.01795	1.0333	19/	279 16	87 20	275 0	70 5049	0.87308	2.3331	27
262.03	J1.01 40.96	00.0	0J.220J 04 7509	0.02200	1.1705	164	279 16	07.50	200.8	79.3048	0.88212	2.0793	20
262.03	40.20	100.4	84.7552 84.2055	0.02744	1.2457	1/14	279 16	109 17	225.0	78 2550	0.00074	2 2 2 2 2 0	25
262.03	42.03	110.4	04.3033 92 9695	0.03103	1.3203	145	279 16	100.47	250.0	77 8210	0.89300	3.3230	20
262.03	40.01	120.5	82 4562	0.83022	1.4057	115	279 16	125 51	220.1	77 9557	0.00780	1 1 4 2 0	16
262 02	40.40 51 95	120.0	00.4000 83 UR00	0.04033	1.4535	102	£10.10	100.01	500.1	11.2001	0.30700	4.1439	10
262.03	54.26	140.4	82 6802	0.04434	1.5551	103	287 02	15.06	0.1	02 4206	0 75064	0 4710	1050
262 02	57 59	140.4	02.0093 89 2921	0.04010	1 7727	32 22	207.93	15.00	0.1	03.4300 03.4300	0.75004	0.4710	1030
263.03	60.91	160.5	02.3201 81 0792	0.03109	1.1131	00 71	207.33	15.07	2.0	03 1061	0.75004	0.4/12	005
203.03 969.09	64 17	170.5	01.9703	0.85550	1.0742	67	207.33	15.00	5.0	02 05 97	0.75520	0.4645	995
203.03 969.09	04.17	10.3	01.0400	0.63900	1.9700	61	207.93	10.00	0.4	92.0327	0.75551	0.4955	904
203.03	07.00	100.4	01.3201	0.00237	2.0030	55	207.93	10.20	0.1	92.3747	0.75756	0.5064	900
203.03	72.01	190.3	81.0194	0.80303	2.1927	55	207.93	10.70	10.8	92.3007	0.73983	0.5210	800
203.03	/3.81	200.2	80.7220	0.80881	2.2705	51	207.93	19.00	20.9	90.9217	0.77133	0.3923	475
960 01	10.00	0.1	01 00 49	0 76000	0.6016	650	201.93	20.00	30.9 75 0	03.0130	0.10109	0.7133	4/3
200.UI	19.28	0.1	91.0842	0.70998	0.0010	009	207.93	21.20	/ J.ð 100 9	0/.44U0 96 1049	0.00200	0.0400	344
260.01	10.21	2.0	31.0042 00.0190	0.70998 0.77997	0.3334	633	207.93 207 02	26 05	100.ð 195 7	00.1040 81 0190	0.01431	U.3000 1 1190	200
200.01	19.70	3.U E E	30.0130	0.11661	0.0143	000	201.93 907 00	30.93 49.90	160.0	04.3460	0.02000	1.1460	154
200.01	20.10 20.29	0.0 Q 1	90.3844 00.2601	0.77615	0.0200	000 501	201.93 207 00	42.30	175 7	00.9120 89 0895	0.033/9	1.3083	117
200.01	20.02 21.00	0.1	00.1407	0.77700	0.0420	J01 557	201.93 907 00	40.24	1/0./	06.3033	0.04314	1.40/9	117
200.UI	22 05	10.0 95 0	30.1407 88 0279	0.11199	0.0309	100/	207.93	04.07 61 59	200.0 295 7	02.1443	0.000/0	1.0010	92 79
260.01	~3.93 20 00	20.9 50 0	00.3312 87 9500	0./000/	0.7430	49A 300	207.93 207 02	60 00	2607	01.3734 80 6679	0.00104	1.0932 9 1900	13
200.01	24 00	JU.9	01.2000 QE 0510	0.003/4	0.0009	ასბ ეეი	201.93	70 00	200.1 975 7	00.00/3 00.0007	0.00341	2.12U0	10
200.UI	34.30	100 7	00.0012	0.01091	1.0043	222 164	207.93	10.09	200 0	00.000/ 70.2062	0.07037	2.3000 2.6000	40
200.01	40.20	100.7	04.0439 02 5000	0.02034	1.2433	104 194	201.93	01.00	300.ð 295 5	13.0300	0.00000	2 0010	აუ იი
268 01	40.00 53 75	160.0	00.00U2 89 6330	0.03911	1.4400	164	207.93 287.02	34.00 107 20	340 5	10.00U2 78 2192	0.0090/	2 1064	32 97
268.01	61 55	175 7	81 7797	0.04073	1 8956	33 73	287 93	116 44	376 9	77 7545	0.03333	3 5626	21 22
~~~·	01.00	110.1	01.1161	0.00700	1.0000	10	~UI.UU	110.11	010.0	11.1040	0.00100	0.0060	66

**Table 2 (Continued)** 

<i>T</i> /K	t/s	<i>p</i> /MPa	<i>V</i> /(cm ³ /mol)	$\rho/(g/cm^3)$	$\eta/(mPa \cdot s)$	$Re^{a}$	<i>T</i> /K	t/s	<i>p</i> /MPa	<i>V</i> /(cm ³ /mol)	$\rho/(g/cm^3)$	$\eta/(mPa \cdot s)$	Rea
298.03	13.38	0.1	94.7018	0.74057	0.4190	1311	298.00	13.39	0.1	94.6979	0.74060	0.4191	1310
298.03	13.38	0.1	94.7018	0.74057	0.4190	1310	298.00	13.40	0.1	94.6979	0.74060	0.4196	1307
298.03	13.38	0.1	94.7018	0.74057	0.4190	1310	298.00	13.77	3.0	94.3457	0.74336	0.4308	1244
298.03	14.10	5.5	94.0554	0.74566	0.4410	1190	298.00	14.08	5.3	94.0814	0.74545	0.4404	1193
298.03	14.40	7.8	93.8012	0.74768	0.4505	1143	298.00	14.47	8.1	93.7585	0.74802	0.4526	1133
298.03	14.83	10.8	93.4647	0.75037	0.4637	1083	298.00	14.86	10.9	93.4587	0.75042	0.4644	1079
298.03	16.91	25.9	91.9690	0.76257	0.5276	848	298.00	16.95	26.0	91.9617	0.76263	0.5288	844
298.03	20.50	50.9	89.9336	0.77983	0.6379	592	298.00	20.53	50.8	89.9316	0.77985	0.6390	590
298.03	24.30	75.8	88.2673	0.79455	0.7549	430	298.00	24.38	75.8	88.2654	0.79457	0.7572	427
298.03	28.41	100.8	86.8585	0.80744	0.8807	320	298.00	28.52	100.8	86.8585	0.80744	0.8842	318
298.03	32.83	125.8	85.6400	0.81893	1.0159	244	298.00	32.98	125.8	85.6376	0.81895	1.0207	241
298.03	37.64	150.7	84.5642	0.82935	1.1633	188	298.00	37.76	150.7	84.5638	0.82935	1.1669	187
298.03	42.84	175.7	83.6010	0.83890	1.3221	147	298.00	42.91	175.7	83.6012	0.83890	1.3241	147
298.03	48.39	200.7	82.7308	0.84772	1.4914	117	298.00	48.51	200.7	82.7292	0.84774	1.4951	116
298.03	54.34	225.6	81.9380	0.85593	1.6729	93	298.00	54.52	225.7	81.9336	0.85597	1.6784	93
298.03	60.85	250.6	81.2068	0.86363	1.8711	75	298.00	60.95	250.7	81.2031	0.86367	1.8743	75
298.03	67.74	275.6	80.5294	0.87090	2.0809	61	298.00	67.89	275.7	80.5248	0.87095	2.0854	61
298.03	75.12	300.4	79.9028	0.87773	2.3054	50	298.00	75.29	300.6	79.8953	0.87781	2.3106	50
298.03	83.01	325.3	79.3153	0.88423	2.5452	42	298.00	82.89	324.9	79.3222	0.88415	2.5415	42
298.03	91.38	350.1	78.7639	0.89042	2.7995	35	298.00	91.17	349.6	78.7730	0.89032	2.7929	35
298.03	101.68	378.0	78.1834	0.89703	3.1121	28	298.00	100.78	375.7	78.2277	0.89652	3.0845	29

^{*a*} Reynolds number for annular flow:  $Re = 2r_1^2 \rho v/(r_2 - r_1)\eta$ ) where v is the terminal velocity of the sinker and  $r_1$  and  $r_2$  are the radii of the sinker and tube, respectively (ref 9).

The effect of the impurity on the viscosity was checked by adding 0.5 and 1% 2,2-dimethylbutane by mass. There was no discernible effect within the experimental error of  $\pm 0.2\%$ : the composition dependence of the viscosity of the mixture is therefore very flat in this composition range.

The high-pressure viscometer and its operation and calibration have been described elsewhere.^{7,8} It was also calibrated with the Cannon standards.⁸ Platinum resistance thermometers newly recalibrated by the National Measurement Laboratory (CSIRO, West Lindfield, NSW) between (-65 and 100) °C on the ITS-90 to a tolerance of  $\pm 8$  mK were employed. The viscometer oil-bath temperature was controlled⁸ to within  $\pm 0.01$  K between (-10 and 25) °C and to  $\pm 0.02$  K below -10 °C. The primary pressure gauge (400 MPa Heise CM) was calibrated⁷ against a deadweight tester to  $\pm 0.05\%$ , and pressures have an overall uncertainty of  $\pm 0.2$  MPa.

The working equation for the falling-body viscometer  $is^{7,9,10} \label{eq:scalar}$ 

$$\eta(p,T) = \frac{t(1-\rho/\rho_{\rm s})}{A[(1+2\alpha(T-T_{\rm ref}))][1-2\beta(p-p_{\rm ref})/3]}$$
(3)

where *t* is the fall time at temperature *T* and pressure *p*,  $\rho$  is the density of the fluid,  $\rho_{\rm s}$  is that of the sinker,  $\alpha$  is the coefficient of thermal expansion  $(1.6 \times 10^{-5} \, {\rm K}^{-1})$ , and  $\beta$  is the bulk compressibility  $(2 \times 10^{-6} \, {\rm MPa}^{-1})$  of the sinker and tube material, in this case 316 stainless steel. *A* is the calibration constant, 28 707  ${\rm Pa}^{-1}$  (±0.17%⁸), obtained at temperature  $T_{\rm ref}$  and pressure  $p_{\rm ref}$ , valid for  $Re < 1000.^8$  The sinker density was corrected for changes in temperature and pressure from the calibration state point,  $T_{\rm ref} \equiv 298.15 \, {\rm K}$  and  $p_{\rm ref} \equiv 0.1 \, {\rm MPa}$ , using the relation¹¹

$$\rho_{\rm s} = \frac{\rho_{\rm s}(T_{\rm ref}, p_{\rm ref})}{[1 + 3\alpha(T - T_{\rm ref})][1 - \beta(p - p_{\rm ref})]} \tag{4}$$

The overall uncertainty in the viscosity, based on replicate measurements and the sum of the uncertainty in the calibration ( $\pm 0.2\%$ ) and that in the fit to the function of temperature and density described below ( $\pm 0.25\%$ ), is estimated at  $\pm 1\%$ .

Calculation of the viscosity from fall times requires knowledge of the density of cyclopentane as a function of *T* and *p*. There are three sets of *pVT* data for cyclopentane in the literature: those of Brazier and Freeman¹² are confined to a single isotherm (303.15 K) but extend to 450 MPa, those of Kuss and Taslimi¹³ lie in the pT region (39.2) MPa to 196.1 MPa, 298.15 K to 353.15 K), and those of Baonza et al.⁴ lie in the region (0.1 MPa to 104.3 MPa, 192.79 K to 298.15 K). We have used two equations of state based on these data in this work, one given by Cibulka and co-workers,¹⁴ recommended for the region (0.1 MPa to 196 MPa, 192.79 K to 353.15 K), and one based on the method of Malhotra and Woolf^{15,16} for extrapolation of modified Tait equation parameters outside the range of experimental data. For the latter method, the Tait parameter C was taken to be  $0.2220^{13}$  and Tait parameters B(T) were obtained from the equation

$$B(T) = -p_{\rm c} + b_1(1 - T_{\rm r}) + b_2(1 - T_{\rm r})^2 \qquad T_{\rm r} = T/T_{\rm c}$$
(5)

The critical pressure  $p_c$  and temperature  $T_c$  are the values recommended by Kudchadker et al.¹⁷ (4.508 MPa, 511.65 K), and  $b_1$  and  $b_2$ , obtained from a least-squares fit of the *B* parameters of refs 12 and 13, are 68.2777 MPa and 286.3729 MPa, respectively.

Measurements were made of the viscosity of water at 298.15 K as a test of the instrument and technique. Figure 1 shows a comparison with the results of Harlow¹⁸ (uncertainty given as  $\pm 1.4\%$ ) and the 1985 International Association for the Properties of Steam (IAPS) recommendations (standard uncertainty,  $\pm 1\%$ ).¹⁹ The agreement is well within the limits of the combined uncertainties.

## **Results and Discussion**

The results are presented in Tables 1 and 2.

The viscosities were fitted as a function of temperature and molar volume to the empirical Pade approximation used for toluene, 8 

$$\sqrt{T}\eta = (\xi_1 + \xi_2 V_r + \xi_2 V_r^2) / (1 + \xi_4 V_r)$$
(6)

where the  $\eta - V$  isotherms are mapped onto a single

Table J. Coefficients of Dest Fit. Equations of any	cincients of dest.	LICHUS VI DESL FIL. L'UUALIVIIS V AIIU /
-----------------------------------------------------	--------------------	------------------------------------------

	1
10 ⁻³ ζ ₁ /(K ^{0.5} /mPa·s)	0.252 583 2
10 ⁻¹ ζ ₂ /(K ^{0.5} mol/mPa·s·cm ³ )	$-0.710\ 693\ 7$
$10\zeta_3/(K^{0.5} \text{ mol}^2/\text{mPa}\cdot\text{s}\cdot\text{cm}^6)$	0.502 047 4
$10^{2}\zeta_{4}/(\text{mol/cm}^{3})^{a}$	$-0.238\ 253\ 2$
$10\xi_1/(\text{cm}^3/\text{K}\cdot\text{mol})$	$-0.347\ 809\ 1$
$10^4 \xi_1/(cm^3/K^2 \cdot mol)$	0.474 140 0
standard uncertainty/mPa·s	0.004
standard percentage uncertainty	0.25
maximum percentage deviation	0.8

 $^{a}\, Incorrect$  units were given in Table 3 of ref 8 for this parameter.



**Figure 2.** Residuals (experimental – calculated values) for the fit of the experimental high-pressure viscosity results of this work to eqs 6 and 7 plotted as a function of reference molar volume,  $V_{t,r}$ , for each experimental isotherm. The dashed lines represent the expanded uncertainty of the fit, or 95% confidence limits, that is, the standard uncertainty multiplied by 2. Symbols: •, 258 K;  $\Box$ , 263 K;  $\blacktriangle$ , 268 K;  $\bigtriangledown$ , 273 K; •, 278 K;  $\bigcirc$ , 288 K;  $\blacksquare$ , 298 K.



**Figure 3.** Residuals (literature data – values calculated from eqs 6 and 7 using the coefficients of Table 3) for the comparison of the viscosity results of Assael and Dalaouti (ref 2) (vibrating wire;  $\bullet$ , 253 K;  $\Box$ , 273 K;  $\blacktriangle$ , 293 K;  $\bigtriangledown$ , 309 K) and of Brazier and Freeman (ref 12) (rolling ball;  $\blacksquare$ , 303 K) with those of this work as a function of reference molar volume,  $V_{r}$ . The dashed lines represent limits of  $\pm 2\%$  about our correlation.

isotherm,  $T_{\rm ref}$ , taken as an arbitrary reference, by

$$V_{\rm r} = V - \xi_1 (T - T_{\rm ref}) - \xi_2 (T - T_{\rm ref})^2$$
(7)

In this work,  $T_{\rm ref}$  was chosen as 273.15 K. The coefficients of the fit,  $\zeta_i$  and  $\xi_j$ , are given in Table 3. The residual plot is shown as Figure 2. For cyclopentane, this correlation is superior to those based on reduced viscosities employed in earlier studies.^{8,20–22}

The viscosity of cyclopentane has been measured under high pressure by Brazier and Freeman¹² using a rolling ball viscometer at the single temperature of 303.15 K to 400 MPa pressure and by Assael and Dalaouti² using a vibrating wire technique over the temperature range of (210 to 310) K but to only 25 MPa pressure. Figure 3 shows a comparison with the results of this work. Our results are in satisfactory agreement with those of Assael and Dalaouti (uncertainty,  $\pm 0.5$  to 1%), but much less so with those of Brazier and Freeman (uncertainty not explicitly stated but gauged at  $\pm 2$ %). A similar lack of agreement with the latter workers' results has been found by other groups for hexane²³ and hexadecane.¹¹ Lohrenz and co-workers²⁴ have made an analysis of the rolling ball viscometer showing that it is extremely sensitive to the effects of nonuniform construction and may exhibit random slip and spin that vary with density and viscosity.

#### Acknowledgment

We thank Prof. Dr. Manfred Zeidler and Dr. A. Enninghorst of RWTH, Aachen, Germany, for locating the pVT data of Kuss and Taslimi for us, and Mr. Tony Herlt, Research School of Chemistry, the Australian National University, Canberra, for the sample of 2,2-dimethylbutane.

#### **Literature Cited**

- Assael, M. J.; Avelino, H. M. T.; Dalaouti, N. K.; Fareleira, J. M. N. A.; Harris, K. R. Reference Correlation for the Viscosity of Liquid Toluene from 213 to 373 K at Pressures to 250 MPa. *Int. J. Thermophys.* 2001, *22*, 789–799.
- (2) Assael, M. J.; Dalaouti, N. K. Measurement of the Viscosity of Cyclopentane from 210 to 310 K and Pressures up to 25 MPa. *High Temp.—High Pressures* 2000, *32*, 179–184.
- (3) Riddick, J. A.; Bunger, W. B. Organic Solvents, 4th ed.; Weissberger, A., Ed.; Techniques of Chemistry, Vol. II; Wiley: New York, 1986.
- (4) Baonza, V. G.; Alonso, M. C.; Delgado, J. N. Study of the Equation of State of Cyclopentane from 193 to 298 K and Pressures up to 104 MPa. *Ber. Bunsen-Ges. Phys. Chem.* **1992**, *96*, 1859–1868.
- (5) Cannon, M. R.; Manning, R. E.; Bell, J. D. The Kinetic Energy Correction and a New Viscometer. Anal. Chem. 1960, 32, 355– 358.
- (6) Bauer, H.; Meerlender, G. Precise Viscosity Measurements of Newtonian Liquids with ν < 1 mm²/s for the Selection of Suitable Standards. *Rheol. Acta* **1984**, *23*, 514–521.
- (7) Malhotra, R.; Price, W. E.; Woolf, L. A.; Easteal, A. J. Thermodynamic and Transport Properties of 1,2-Dichloroethane. *Int. J. Thermophys.* **1990**, *11*, 835–861.
- (8) Harris, K. R. Temperature and Density Dependence of the Viscosity of Toluene. J. Chem. Eng. Data 2000, 45, 893–897.
- (9) Isdale, J. D.; Spence, C. M. A Self-Centering Falling Body Viscometer for High Pressures. National Engineering Laboratory Report No. 592; Department of Industry: U.K., 1975.
- (10) Isdale, J. D.; Easteal, A. J.; Woolf, L. A. Shear Viscosity of Methanol and Methanol + Water Mixtures Under Pressure. *Int. J. Thermophys.* **1985**, *6*, 439–450.
- (11) Dymond, J. H.; Young, K. J.; Isdale, J. D. Transport Properties of Nonelectrolyte Liquid Mixtures. II. Viscosity Coefficients for *n*-Hexane + *n*-Hexadecane System at Temperatures from 25 to 100 °C at Pressures up to the Freezing Pressure or 500 MPa. *Int. J. Thermophys.* **1980**, *1*, 345–373.
- (12) Brazier, D. W.; Freeman, G. W. The Effects of Pressure on the Density, Dielectric Constant, and Viscosity of Several Hydrocarbons and other Organic Liquids. *Can. J. Chem.* **1969**, *47*, 893– 899.
- (13) Kuss, E.; Taslimi, M. *pV*, *T* Measurements on Twenty Organic Liquids. *Chem.-Ing.-Tech.* **1970**, *42*, 1073–1081.
- (14) Cibulka, I.; Takagi, T.  $P \rho T$  Data of Liquids: Summarization and Evaluation. 6. Nonaromatic Hydrocarbons ( $C_n$ ,  $n \ge 5$ ) except *n*-Alkanes  $C_5$  to  $C_{16}$ . J. Chem. Eng. Data **1999**, 44, 1112–1128.
- (15) Malhotra, R.; Woolf, L. A. Thermodynamic Properties of 2,2,4-Trimethylpentane. J. Chem. Thermodyn. 1990, 23, 1059–1073.
- (16) Malhotra, R.; Woolf, L. A. Extrapolation of (p, V, T) Data for Liquids. High Temp.—High Pressures 1991, 23, 107–110.
- (17) Kudchadker, A. P.; Alani, G. H.; Zwolonski, B. J. The Critical Constants of Organic Substances. *Chem. Rev.* **1968**, *68*, 659–735.
- (18) Harlow, A. Further Investigations into the Effect of High Pressure on the Viscosity of Liquids. Thesis, Imperial College of Science and Technology, University of London, U.K., 1967.

- (19) Sengers, J.; Watson, J. T. R. Improved International Formulations
- Sengers, J.; Watson, J. T. R. Improved International Formulations for the Viscosity and Thermal Conductivity of Water Substance. *J. Phys. Chem. Ref. Data* **1986**, *15*, 1291–1314, Appendix A.
   Harris, K. R.; Malhotra, R.; Woolf, L. A. Temperature and Density Dependence of the Viscosity of Octane and Toluene. *J. Chem. Eng. Data* **1997**, *42*, 1254–1260.
   Harris, K. R. Correlation of Dense Fluid Self-Diffusion and Shear Viscosity Coefficients. *High Temp.—High Pressures* **1993**, *25*, 359–366.
   Harris, K. R. Temperature and Density Dependence of the
- (22) Harris, K. R. Temperature and Density Dependence of the Selfdiffusion Coefficient of *n*-Hexane from 223 to 333 K and up to 400 MPa. *J. Chem. Soc., Faraday Trans.* 1 1982, 78, 2265–2275.
- (23) Isdale, J. D.; Dymond, J. H.; Brawn, T. A. Viscosity and Density (23) Isdate J. D., Dynold, S. H., Drawn, F. A. Viscost and Density of *n*-Hexane–Cyclohexane Mixtures between 25 and 100 °C up to 500 MPa. *High Temp.—High Pressures* 1979, *11*, 571–580.
  (24) Lohrenz, J.; Swift, G. W.; Kurata, F. A. I. Chem. E. J. 1960, 6,
- 547-550.

Received for review July 22, 2003. Accepted October 20, 2003. This work was supported by a grant from the University of New South Wales (2001 URSP).

JE034142V