Densities, Partial Molar Volumes, and Heat Capacities of Glycine, L-Alanine, and L-Leucine in Aqueous Magnesium Chloride Solutions at Different Temperatures

Bhajan S. Lark,[†] Poonam Patyar,[†] Tarlok S. Banipal,^{*,‡} and Nand Kishore[§]

Department of Chemistry and Department of Applied Chemistry, Guru Nanak Dev University, Amritsar 143 005, India, and Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India

The apparent molar volumes $(V_{2,\phi})$ have been determined for glycine, L-alanine, and L-leucine in water and in aqueous magnesium chloride solutions with concentrations \approx (0.05 to 0.80) mol·kg⁻¹ by measuring the densities at (288.15, 298.15, and 308.15) K. The apparent molar heat capacities ($C_{p2,\phi}$) have also been determined for glycine and L-alanine in aqueous magnesium chloride solutions with concentrations pprox $(0.05 \text{ to } 0.40) \text{ mol}\cdot\text{kg}^{-1}$ by measuring heat capacities in the temperature range (298.15 to 328.15) K. These properties show a peculiar dependence upon the concentration of magnesium chloride. The standard partial molar volumes at infinite dilution (V_2°) obtained from these data have been used to calculate the partial molar volumes of transfer of amino acids from water to aqueous magnesium chloride solutions at infinite dilution $(\Delta_t V_{\alpha})$, which are positive for the presently studied amino acids at all temperatures and concentrations. The partial molar expansibilities $(\partial V_2^{\circ}/\partial T)_P$ at infinite dilution and the $(\partial^2 V_2^{\circ}/\partial T^2)_P$ values have also been determined from the V_2° data at various concentrations of the salt. The volumetric interaction parameters have been calculated from $\Delta_t V_2^{\circ}$ data. The results have been discussed in terms of various interactions operating in these systems.

Introduction

Despite the many publications on the structural and dynamical properties of proteins available in the literature, their thermodynamic properties in solutions remain unclear and demanding of further efforts.¹⁻³ The complex conformational and configurational factors affecting the structures of proteins in various solvents/cosolutes elude conclusive and direct interpretation of the results. This has led to the investigations of the behavior of model compounds, namely amino acids, peptides, and their derivatives. Some of these are directed at extracting thermodynamic properties of amino acid side chains and then checking the possibility of the additivity to estimate the properties of structurally more complicated molecules in the solution, such as of unfolded proteins.^{4,5}

The interactions between charged biomolecules and ions can highly influence the behavior and conformation of the former in aqueous solutions. Consequently, salt solutions have been found to affect the solubility, denaturation, dissociation into subunits, and activity of enzymes.⁶ Magnesium in biological chemistry has been branded as a Cinderella element because of its double behavior.⁷ In light of the importance of magnesium in biology, the present paper reports the apparent molar volumes $(V_{2,\phi}^{\infty})$ of glycine (gly), L-alanine (ala), and L-leucine (leu) in aqueous solutions of magnesium chloride (MgCl₂) at (288.15, 298.15, and 308.15) K and the apparent molar heat capacities $(C_{p2,\phi})$ of glycine and L-alanine from (298.15 to 328.15) K obtained

[‡] Department of Applied Chemistry, Guru Nanak Dev University.

from precisely measured densities and specific heat capacities, respectively. The $V_{2,\phi}$ and $C_{p2,\phi}$ values of amino acids show an interesting dependence on the MgCl₂ concentrations. The partial molar volumes of the three amino acids obtained at infinite dilution $(V_{2,\phi}^{\infty})$ have been used to evaluate partial molar volumes of transfer $(\Delta_t V_2^{\infty})$ of these amino acids from water to aqueous MgCl₂ solutions. Interaction coefficients have been calculated using the McMillan Mayer approach. These, along with transfer data, have been rationalized in terms of various interactions.

Experimental Section

Glycine, L-alanine, and L-leucine (LR, Thomas Baker) were purified by recrystallization from a hot solution of 50% aqueous ethanol (EtOH). The large crystals formed were crushed, dried in a vacuum desiccator, and then used for density measurements. Magnesium chloride, MgCl₂·6H₂O (AR, SD Fine Chemicals Ltd., India), was used as such and kept stored in a vacuum desiccator.

Water used to prepare solutions was obtained by distilling deionized water over alkaline KMnO₄, and it was thoroughly degassed prior to its use. All the solutions were prepared afresh on a molality scale. Weighings were done on a Mettler balance having an accuracy of ± 0.01 mg. The estimated uncertainties in molalities are found to be $\leq 6 \times$ $10^{-6} \text{ mol} \cdot \text{kg}^{-1}$.

The densities of the solutions were measured by using a vibrating-tube digital densimeter (model DMA 60/602, Anton Paar, Austria). The details of its principles and working have been described elsewhere.8 The temperature of the water flowing around the densimeter cell was controlled within ± 0.01 K using an efficient temperature bath (Heto Birkerod/Denmark). The densimeter was cali-

^{*} To whom all correspondence should be sent. E-mail: tsbanipal@ yahoo.com. Fax: 0183-258819, 258820. Department of Chemistry, Guru Nanak Dev University.

[§] Department of Chemistry, Indian Institute of Technology Bombay.

brated with dry air and water, and all the measurements were made relative to pure water. The working of the densimeter was checked by measuring the densities of aqueous NaCl solutions, which agree well with the literature values.⁹

The heat capacities of aqueous solutions of amino acids were measured using a microdifferential scanning calorimeter (SETARAM, France) employing cells of 1 cm³ capacity. The masses of the sample and reference cells with or without the liquid of interest were always matched to within 0.1 mg. The instrument has a heat capacity resolution of 5×10^{-5} of the absolute value. To minimize the vapor space, the cell was always filled to 98% of the total volume. The amplitude of the deviation from equilibrium (*A*) is related to the specific heat capacity of the liquid by

$$A = m_{\rm s} C_{\rm p} \sigma \tag{1}$$

Here, m_s is the mass of the sample in the cell, C_p is the specific heat capacity of the sample, and σ is the scan rate of the instrument. The specific heat capacity (C_p) of the aqueous solution of MgCl₂ in the sample cell was determined against that of water of equal mass (m_s) in the reference cell. Corrections were applied to the values of A for the heat capacity difference arising due to any difference in the geometry of the cells by scanning both sample and reference cells empty and subtracting the resultant deviation. Sufficient equilibrium time was allowed before starting the temperature scanning at the rate 12 K·h⁻¹. The C_p of the aqueous MgCl₂ solution was calculated by using the following relation:

$$C_{\rm p} = \frac{A_{\rm sample} - A_{\rm water}}{A_{\rm water}} C_{\rm p}^{\rm o} + C_{\rm p}^{\rm o}$$
(2)

Here $A_{\text{sample}} - A_{\text{water}}$ is the amplitude difference arising upon scanning the sample cell containing the solution of interest and the reference cell containing water. A_{water} is the amplitude obtained with water in the sample cell and an empty reference cell whereas A_{sample} is the amplitude obtained with sample in the sample cell and an empty reference cell. C_{p}° is the specific heat capacity of the reference water at the temperature of interest. The accuracy of the calorimeter was checked by measuring the apparent molar heat capacities of aqueous sodium chloride at several concentrations, which showed excellent agreement with the literature.¹⁰ The apparent molar heat capacities of aqueous amino acids in the presence of MgCl₂ were calculated from the DSC scans at temperatures from (298.15 to 328.15) K at intervals of 5 K.

Results and Discussion

The apparent molar volumes $(V_{2,\phi})$ of the three amino acids glycine, L-alanine, and L-leucine and the apparent molar heat capacities $(C_{p2,\phi})$ of the two amino acids glycine and L-alanine in water and in various MgCl₂ (cosolute) aqueous solutions (having m_s molality of cosolute) have been obtained from the directly determined densities at (288.15, 298.15, and 308.15) K and the specific heat capacities from (298.15 to 328.15) K, employing the following equations, respectively

$$V_{2,\phi} = M/\rho - [(\rho - \rho_0) 1000/m\rho\rho_0]$$
(3)

$$C_{\rm p2,\phi} = MC_{\rm p} - [(C_{\rm p}^{\circ} - C_{\rm p})1000/m]$$
 (4)

where *M* is the molar mass of the solute, *m* is the molality of the amino acid, ρ and ρ_0 denote the densities of the

Figure 1. (a) Apparent molar volumes $(V_{2,\phi})$ of glycine vs molality of glycine (m) in (\blacklozenge) water and aqueous MgCl₂ solutions $(m_s = \Box, 0.05016; \blacktriangle, 0.10123; \times, 0.20109; *, 0.27158; <math>\diamondsuit, 0.39699; -, 0.40466; \diamondsuit, 0.60742; \blacksquare, 0.81527; \triangle, 0.81648$) at 288.15 K. (b) Apparent molar volumes $(V_{2,\phi})$ of glycine vs molality of glycine (m) in (\blacklozenge) water and aqueous MgCl₂ solutions $(m_s = \Box, 0.05027; \triangle, 0.09990; \times, 0.40358; \bigstar, 0.71553; \diamondsuit, 0.76311; +, 0.81462; *, 0.81468; -, 0.91811)$ at 298.15 K. (c) Apparent molar volumes $(V_{2,\phi})$ of glycine vs molality of glycine (m) in (\blacklozenge) water and aqueous MgCl₂ solutions $(m_s = \Box, 0.05255; \triangle, 0.10105; \times, 0.20259; *, 0.40598; \bigcirc, 0.82218)$ at 308.15 K.

solution and the solvent, and C_p and C_p are the specific heats of the solution and solvent, respectively.

The uncertainty¹¹ in the determination of $V_{2,\phi}$ has been evaluated and is on the order of (0.06 and 0.003) cm³·mol⁻¹ in the lower ($\leq 0.05 m$) and higher concentration ranges, respectively. The uncertainty in the $C_{p2,\phi}$ values lies within 2%. The $V_{2,\phi}$ and $C_{p2,\phi}$ values obtained for the various systems have been summarized in Tables 1 and 2 and illustrated (representative plots of $V_{2,\phi}$ or $C_{p2,\phi}$ versus mat different molalities (m_s) of MgCl₂ at various temperatures are given for glycine only) in Figures 1 and 2. The apparent molar volume at infinite dilution ($V_{2,\phi}^{\infty}$) (which is also equal to V_2^{∞} , the partial molar volume of the solute at

Table 1. Densities (ρ) and Apparent Molar Vo	lumes ($V_{2\phi}$) of Some	Amino Acids in Water	r and in Aqueous Magnesium
Chloride Solutions at (288.15, 298.15, and 308.	15) K		

	glycine			L-alanine			L-leucine	
m	ρ	$V_{2\phi}$	m	ρ	$V_{2\phi}$	m	ρ	$V_{2\phi}$
$\overline{\mathrm{mol}\mathbf{\cdot}\mathrm{kg}^{-1}}$	g•cm ⁻³	cm ³ ⋅mol ⁻¹	$\overline{\text{mol}\cdot\text{kg}^{-1}}$	g•cm ⁻³	$\overline{\mathrm{cm}^3\cdot\mathrm{mol}^{-1}}$	mol·kg ⁻¹	g•cm ^{−3}	cm ³ ⋅mol ⁻¹
				288.15 K				
0.071.00	$m_{\rm s}/{\rm mol}\cdot{\rm kg}^{-1}=0.0$	10.10	0.057.40	$m_{\rm s}/{\rm mol}\cdot{\rm kg}^{-1}=0.0$	50.70	0.000.47	$m_{\rm s}/{\rm mol}\cdot{\rm kg}^{-1}=0.0$	100 70
0.071 99	1.001 440	42.40	0.057 42	1.000 779	59.72	0.008 47	0.999 305	106.73
0.088 29	1.001 969	42.44	0.079 81	1.001 428	59.78	0.020 55	0.999 600	106.75
0.205 85	1.005 721	42.02	0.090.07	1.001 905	59.75	0.030 34	0.999 985	106.74
0.318 77	1.009 266	42.75	0.319 72	1.008 254	59.93	0.056.36	1.000 467	106.80
0.327 86	1.010 953	42.78	0.421 89	1.011 586	60.05	0.087 70	1.001 225	106.78
0.406 86	1.012 019	42.77				0.100 05	1.001 518	106.80
0.486 94	1.014 475	42.84						
0.507 47	1.015 099	42.86						
	$m_{\rm s}/{\rm mol}\cdot{\rm kg}^{-1} = 0.050$	16		$m_{\rm s}/{\rm mol}\cdot{\rm kg}^{-1} = 0.050$	17		$m_{\rm s}/{\rm mol}\cdot{\rm kg}^{-1} = 0.050$	16
0.048.10	$p = 1.003 \ 127 \ g \ cm$	42.69	0.059.61	(p = 1.003 110 g cm) 1.004 847	59.86	0.009.52	1.003389	107.92
0.079 84	1.005 692	42.80	0.090 31	1.005 727	59.92	0.019 09	1.003 618	107.23
0.183 41	1.008 989	42.82	0.182 93	1.008 359	60.02	0.037 38	1.004 056	107.05
0.297 18	1.012 561	42.89	0.263 21	1.010 593	60.14	0.046 97	1.004 238	107.09
0.404 99	1.015 875	43.01	0.347 58	1.012 918	60.20	0.070 15	1.004 822	107.14
0.500 67	1.018 /09	43.11	0.494 15	1.010 803	60.34	0.079 56	1.005 039	107.18
0.007 70	$m/mol_k a^{-1} = 0.101$	93	0.570 05	$m/mol_k a^{-1} = 0.100$	30	0.110 07	$m/mol k \sigma^{-1} = 0.100$	57
	$(\rho = 1.007 \ 0.001 \ \text{g} \cdot \text{cm}^{-1})$	-3)		$(\rho = 1.007 \ 108 \ \text{g} \cdot \text{cm})$	-3)		$(\rho = 1.007 \ 117 \ \text{g} \cdot \text{cm})$	-3)
0.052 59	1.008 749	43.21	0.053 45	1.008 626	60.38	0.010 02	1.007 316	110.56
0.093 16	1.010 027	43.25	0.104 57	1.010 064	60.41	0.018 52	1.007 511	109.27
0.185 69	1.012 945	43.16	0.202 99	1.012 818	60.39	0.040 33	1.008 025	107.97
0.304 81	1.010 625	43.20	0.291 84	1.015 200	60.41 60.42	0.048 79	1.008 235	107.56
0.400 01	1.019 095	43.37	0.353.03	1 019 599	60.42	0.004 81	1.008 913	107.02
0.002 00	1.000 000	10.12	0.593 22	1.023 310	60.56	0.101 21	1.009 452	107.26
	$m_{\rm s}/{\rm mol}\cdot{\rm kg}^{-1} = 0.201$	09		$m_{\rm s}/{\rm mol}\cdot{\rm kg}^{-1} = 0.403$	39		$m_{\rm s}/{\rm mol}\cdot{\rm kg}^{-1} = 0.403$	35
	$(\rho = 1.014 \ 915 \ \text{g} \cdot \text{cm})$	-3)		$(\rho = 1.030 \ 418 \ \text{g} \cdot \text{cm})$	-3)		$(\rho = 1.030\ 525\ g\cdot cm)$	-3)
0.049 21	1.016 448	43.65	0.051 02	1.031 714	62.47	0.009 45	1.030 683	111.52
0.096.69	1.047 930	43.57	0.102 08	1.033 065	61.88	0.021 27	1.030 917	109.91
0.192 40	1.020 805	43.72	0.210.38	1.035 877	61.87	0.047 41	1.031 442	108.99
0.381 42	1.026 527	43.91	0.369 05	1.039 895	61.71	0.087 34	1.032 246	108.56
0.518 76	1.030 587	43.96	0.483 63	1.042 736	61.74	0.092 79	1.032 358	108.50
			0.598 41	1.045 535	61.76			
	$m_{\rm s}/{\rm mol}\cdot{\rm kg}^{-1} = 0.271$	58 -3)		$m_{\rm s}/{\rm mol}\cdot{\rm kg}^{-1} = 0.404$	17		$m_{\rm s}/{\rm mol}\cdot{\rm kg}^{-1} = 0.812$	97 -3)
0 100 54	$(\rho = 1.020\ 0.94\ \text{g}\cdot\text{cm})$	°) 12.95	0.050.44	$(\rho = 1.030 \ 491 \ \text{g} \cdot \text{cm})$	°) 62.61	0.012.61	$(\rho = 1.060 \ 669 \ g \cdot cm)$	°) 112.65
0.200.27	1.026 222	43.92	0.097 11	1.032.907	62.88	0.017 95	1.060 918	111.33
0.302 85	1.029 258	44.12	0.204 17	1.035 743	61.91	0.036 64	1.061 236	109.86
0.391 41	1.031 933	44.01	0.288 22	1.037 895	61.82	0.048 31	1.061 437	109.46
0.488~09	1.034 743	44.12	0.415 10	1.041 178	61.57	0.070 67	1.061 783	109.54
			0.525 76	1.043 795	61.91	0.090 61	1.062 097	109.52
	$m/moleka^{-1} = 0.206$	60	0.308 04	$m/mol_k a^{-1} = 0.812$	65	0.094 55	1.002 135	105.51
	$(\rho = 1.030 \ 165 \ \text{g} \cdot \text{cm}^{-1})$	-3)		$(\rho = 1.060 \ 342 \ \text{g} \cdot \text{cm})$	-3)			
0.049 61	1.031 498	47.49	0.050 08	1.061 456	64.16			
0.096 71	1.032 992	45.21	0.092 69	1.062 429	63.86			
0.205 91	1.036 262	44.71	0.164 33	1.064 165	63.10			
0.295 87	1.038 983	44.41	0.296 69	1.067 214	63.01			
0.359 59	1.040 817	44.50	0.378 01	1.008 995	62.97			
0.635 22	1.048 673	44.62	0.533 05	1.072 512	62.99			
	$m_{\rm s}/{\rm mol}\cdot{\rm kg}^{-1} = 0.404$	66						
0.017	$(\rho = 1.030\ 233\ g\cdot cm^{-1})$	-3)						
0.015 32	1.030 655	46.86						
0.096 64	1.033 028	45.49						
0.202 13	1.030 210	44.70 44.86						
0.404 86	1.041 965	45.05						
	$m_{\rm s}/{\rm mol}\cdot{\rm kg}^{-1}=0.607$	42						
	$(\rho = 1.045 \ 416 \ \text{g} \cdot \text{cm}^{-1})$	-3)						
0.048 41	1.047 676	46.28						
0.097 36	1.048 160	45.90						
0.194 34	1.020 887	45.81 45.49						
0.262 34	1.055 337	45.48						
0.437 05	1.057 794	45.36						
	$m_{\rm s}/{ m mol}\cdot{ m kg}^{-1}=0.815$	27						
	$(\rho = 1.060\ 203\ \text{g}\cdot\text{cm}^{-1})$	-3)						
0.048 39	1.061 245	51.61						
0.101 69	1.002 910	40.95						
0.397 95	1.070 903	46.42						
0.502 09	1.073 665	46.36						
0.603 13	1.076 115	46.64						
	$m_{\rm s}/{\rm mol}\cdot{\rm kg}^{-1}=0.816$	48						
0.045.01	$(\rho = 1.059 \ 478 \ \text{g} \cdot \text{cm}^{-1})$	-3)						
0.045 21	1.060 556	49.55 47.15						
0.197 34	1.064.838	46.42						
0.316 36	1.068 111	46.17						
0.457 61	1.071 824	46.28						
0.493 97	1.072 886	46.09						

Table 1. (Continued)

	glycine			L-alanine			L-leucine		
m	ρ	$V_{2\phi}$	m	ρ	$V_{2\phi}$	m	ρ	$V_{2\phi}$	
mol·kg ⁻¹	g·cm ⁻³	cm ³ ⋅mol ⁻¹	mol⋅kg ⁻¹	g•cm ^{−3}	cm ³ ⋅mol ⁻¹	$\overline{\text{mol}\cdot\text{kg}^{-1}}$	g•cm ⁻³	cm ³ ⋅mol ⁻¹	
0.013 87 0.043 14 0.059 19 0.071 99 0.089 07 0.111 49	$m_{\rm s}/{\rm mol}\cdot{\rm kg}^{-1}=0.0$ 0.997 485 0.998 413 0.998 920 0.999 324 0.999 859 1.000 563	43.27 43.30 43.31 43.32 43.37 43.38	0.057 42 0.079 81 0.096 07 0.184 06 0.319 72 0.421 89	$\begin{array}{c} 298.15 \text{ K} \\ m_{s}/\text{mol}\cdot\text{kg}^{-1} = 0.0 \\ 0.998 \ 691 \\ 0.999 \ 327 \\ 0.999 \ 327 \\ 0.999 \ 788 \\ 1.002 \ 261 \\ 1.006 \ 146 \\ 1.008 \ 869 \end{array}$		0.011 05 0.026 55 0.047 09 0.060 09 0.087 36 0.089 83	$m_{\rm s}/{ m mol}\cdot{ m kg}^{-1}=0.0$ 0.997 306 0.997 674 0.998 155 0.998 468 0.999 093 0.999 151	107.62 107.60 107.69 107.66 107.74 107.73	
0.164 30	1.002 213	43.43							
0.286 85	1.005 980	43.56 43.70							
0.048 10 0.183 41 0.297 18 0.404 99 0.500 67 0.557 78	$\begin{array}{c} m_{\rm s} {\rm mol\cdot kg^{-1}} = 0.050\ 27\\ (\rho = 1.001\ 018\ {\rm g}\cdot {\rm cm^{-3}})\\ 1.002\ 528\\ 1.006\ 726\\ 1.010\ 175\\ 1.013\ 418\\ 1.016\ 251\\ 1\ 017\ 938 \end{array}$	46.59 43.68 43.84 43.89 43.96 43.98	0.059 61 0.090 31 0.182 93 0.263 21 0.347 58 0.494 15	$\begin{array}{l} m_{\rm s} / {\rm mol} \cdot {\rm kg}^{-1} = 0.050\ 2\\ (\rho = 1.001\ 018\ {\rm g} \cdot {\rm cm}^{-3}\\ 1.002\ 685\\ 1.003\ 548\\ 1.006\ 121\\ 1.008\ 298\\ 1.010\ 578\\ 1.014\ 454 \end{array}$	8) 60.97 60.88 60.85 60.94 60.97 61.04	0.009 52 0.019 09 0.037 38 0.046 97 0.070 15 0.079 56	$\begin{array}{l} n_s/\text{mol}\cdot\text{kg}^{-1}=0.050\ z\\ (\rho=1.001\ 02\ \text{g}\cdot\text{cm}^{-3}\\ 1.001\ 247\\ 1.001\ 247\\ 1.001\ 471\\ 1.001\ 886\\ 1.002\ 110\\ 1.002\ 644\\ 1\ 002\ 855\end{array}$	27)) 108.11 107.82 108.05 107.93 107.88 107.93	
0.337 70	1.017 556	45.56	0.576 63	1.016 269	61.13	0.110 57	1.002 555	107.83	
$\begin{array}{c} 0.108 \ 12 \\ 0.160 \ 60 \\ 0.222 \ 60 \\ 0.352 \ 20 \\ 0.530 \ 50 \\ 0.646 \ 00 \end{array}$	$\begin{array}{l} m_{\rm s}/{\rm mol\cdot kg^{-1}}=0.099~90\\ (\rho=1.004~890~{\rm gc}{\rm m}^{-3})\\ 1.008~224\\ 1.009~818\\ 1.011~712\\ 1.015~520\\ 1.020~656\\ 1.023~929 \end{array}$	44.02 44.10 44.21 44.44 44.64 44.73	$\begin{array}{c} 0.053 \; 45 \\ 0.104 \; 57 \\ 0.202 \; 99 \\ 0.298 \; 14 \\ 0.353 \; 03 \\ 0.451 \; 40 \\ 0.593 \; 22 \end{array}$	$\begin{array}{l} m_{\rm s} / {\rm mol} \cdot {\rm kg}^{-1} = 0.100\ 6\\ (\rho = 1.004\ 956\ {\rm g} \cdot {\rm cm}^{-3}\\ 1.006\ 434\\ 1.007\ 869\\ 1.015\ 460\\ 1.012\ 763\\ 1.014\ 542\\ 1.017\ 199\\ 1.020\ 779 \end{array}$	$\begin{array}{c}1\\61.18\\60.88\\61.04\\61.10\\61.18\\61.23\\61.28\end{array}$	0.010 02 0.018 52 0.040 33 0.048 79 0.064 81 0.078 25 0.101 21	$\begin{array}{l} n_s/\text{mol}\cdot\text{kg}^{-1}=0.100\ (\\ \rho=1.004\ 959\ \text{g}\cdot\text{cm}^{-1}\\ 1.005\ 165\\ 1.005\ 368\\ 1.005\ 368\\ 1.006\ 048\\ 1.006\ 048\\ 1.006\ 407\\ 1.006\ 704\\ 1.007\ 206 \end{array}$	79 3) 110.25 108.65 108.43 108.34 108.27 108.27 108.33	
0.055 58 0.102 88 0.204 17 0.303 15 0.371 20 0.499 36 0.628 04 0.762 02	$\begin{array}{c} m_{\rm s} {\rm (mol\cdot kg^{-1}=0.403~58}\\ (\rho=1.027~856~{\rm g}{\rm cm}^{-3})\\ 1.029~523\\ 1.030~908\\ 1.033~847\\ 1.036~621\\ 1.038~525\\ 1.042~085\\ 1.042~085\\ 1.049~279\\ 1.049~278 \end{array}$	44.57 44.82 44.99 45.28 45.42 45.44 45.42 45.44 45.42 45.48	$\begin{array}{c} 0.051 \ 02 \\ 0.102 \ 08 \\ 0.210 \ 58 \\ 0.288 \ 25 \\ 0.369 \ 05 \\ 0.483 \ 63 \\ 0.598 \ 41 \end{array}$	$\begin{array}{l} m_{\rm s} {\rm (mol\cdot kg^{-1}=0.404\ 3} \\ (\rho = 1.027\ 998\ {\rm g}\cdot {\rm cm}^{-3} \\ 1.029\ 251 \\ 1.030\ 579 \\ 1.033\ 335 \\ 1.035\ 240 \\ 1.037\ 265 \\ 1.039\ 999 \\ 1.042\ 749 \end{array}$	8 63.35 62.58 62.36 62.45 62.34 62.45 62.45 62.44	0.009 45 0.021 27 0.047 41 0.051 49 0.070 16 0.087 34 0.092 79	$\begin{array}{l} n_{\rm s}/{\rm mol}{\rm \cdot kg^{-1}} = 0.404~;\\ (\rho = 1.028~123~{\rm g}{\rm \cdot cm^{-1}}\\ 1.028~247~\\ 1.028~456~\\ 1.029~004~\\ 1.029~004~\\ 1.029~004~\\ 1.029~462~\\ 1.029~794~\\ 1.029~794~\\ 1.029~885~\\ \end{array}$	33 ³) 115.12 112.72 109.72 109.84 109.40 109.31 109.45	
0.052 16 0.107 10 0.195 49 0.296 19 0.410 00 0.197 10	$\begin{array}{c} m_{\rm s}/{\rm mol\cdot kg^{-1}}=0.711\ 55\\ (\rho=1.050\ 170\ {\rm g\cdot cm^{-3}})\\ 1.051\ 659\\ 1.053\ 177\\ 1.055\ 639\\ 1.058\ 379\\ 1.061\ 447\\ 1.063\ 782 \end{array}$	$\begin{array}{c} 45.52\\ 45.89\\ 45.93\\ 45.99\\ 46.05\\ 46.06\end{array}$	0.059 44 0.097 11 0.204 17 0.288 22 0.415 10 0.527 59 0.568 04	$\begin{array}{l} m_{\rm s}/{\rm mol\cdot kg^{-1}}=0.405\ 1\\ (\rho=1.028\ 128\ {\rm g\cdot cm^{-3}}\\ 1.029\ 494\\ 1.030\ 516\\ 1.033\ 149\\ 1.035\ 242\\ 1.038\ 389\\ 1.041\ 059\\ 1.042\ 321 \end{array}$	$\begin{array}{c} 4\\ 64.81\\ 63.24\\ 63.07\\ 62.86\\ 62.64\\ 62.68\\ 62.16\end{array}$	$\begin{array}{c} 0.010\ 08\\ 0.020\ 44\\ 0.030\ 82\\ 0.041\ 38\\ 0.048\ 22\\ 0.065\ 59\\ 0.077\ 86 \end{array}$	$\begin{array}{l} n_{s} (\mathrm{mol} \cdot \mathrm{kg}^{-1} = 0.818 \ \mathrm{(} \rho = 1.054 \ 509 \ \mathrm{g} \cdot \mathrm{cm}^{-1} \\ 1.054 \ 508 \ \mathrm{g} \cdot \mathrm{cm}^{-1} \\ 1.054 \ 715 \\ 1.054 \ 715 \\ 1.055 \ 008 \\ 1.055 \ 158 \\ 1.055 \ 546 \\ 1.055 \ 546 \\ 1.055 \ 744 \end{array}$	09 ³) 117.65 115.30 113.50 112.01 112.22 110.10 110.00	
0.048 39 0.096 08 0.169 89 0.306 67 0.396 16 0.515 09	$\begin{array}{c} m_{\rm s}/{\rm mol\cdot kg^{-1}}=0.763~11\\ (\rho=1.054~226~{\rm g\cdot cm^{-3}})\\ 1.055~542\\ 1.056~862\\ 1.058~905\\ 1.062~599\\ 1.064~991\\ 1.068~103 \end{array}$	46.69 46.41 46.22 46.27 46.29 46.35	$\begin{array}{c} 0.050 \ 08 \\ 0.092 \ 69 \\ 0.164 \ 33 \\ 0.296 \ 69 \\ 0.378 \ 61 \\ 0.489 \ 43 \\ 0.533 \ 05 \end{array}$	$\begin{array}{l} m_{\rm s}/{\rm mol\cdot kg^{-1}}=0.815\ 8\\ (\rho=1.057\ 703\ {\rm g\cdot cm^{-3}}\\ 1.058\ 686\\ 1.059\ 672\\ 1.061\ 358\\ 1.064\ 351\\ 1.066\ 157\\ 1.068\ 567\\ 1.069\ 579 \end{array}$	$\begin{array}{c} 4 \\ 66.62 \\ 65.11 \\ 64.12 \\ 63.80 \\ 63.78 \\ 63.73 \\ 63.60 \end{array}$				
0.049 03 0.099 91 0.165 49 0.278 40 0.400 85 0.479 64	$\begin{array}{c} m_{\rm s} {\rm mol} \cdot {\rm kg}^{-1} = 0.814\ 62\\ (\rho = 1.057\ 683\ {\rm g} \cdot {\rm cm}^{-3})\\ 1.058\ 944\\ 1.060\ 372\\ 1.062\ 194\\ 1.065\ 228\\ 1.068\ 512\\ 1.070\ 489 \end{array}$	47.93 46.82 46.41 46.42 46.48 46.54							
0.055 37 0.099 48 0.182 02 0.298 21 0.434 23 0.488 21	$\begin{array}{c} m_{\rm s}/{\rm mol\cdot kg^{-1}}=0.814\ 68\\ (\rho=1.057\ 542\ {\rm g\cdot cm^{-3}})\\ 1.058\ 964\\ 1.060\ 255\\ 1.063\ 515\\ 1.065\ 599\\ 1.069\ 196\\ 1.070\ 604 \end{array}$	$\begin{array}{c} 47.45\\ 46.49\\ 46.34\\ 46.47\\ 46.48\\ 46.48\\ 46.49\end{array}$							
0.048 62 0.105 45 0.220 27 0.320 67 0.423 26 0.487 21	$\begin{array}{l} m_{\rm s}/{\rm mol\cdot kg^{-1}}=0.918\ 11\\ (\rho=1.064\ 977\ {\rm g\cdot cm^{-3}})\\ 1.066\ 158\\ 1.067\ 670\\ 1.070\ 737\\ 1.073\ 394\\ 1.076\ 073\\ 1.064\ 977 \end{array}$	49.02 47.85 47.18 46.98 46.89 46.89							

Table 1. (Continued)

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \frac{V_{2\phi}}{\text{cm}^3 \cdot \text{mol}^{-1}} $ 0.0 44.02 43.97 43.98 44.12 44.10 44.12 44.10 44.12 44.19 052 55 cm^{-3}) 44.13 44.29	m 0.052 30 0.070 40 0.107 56 0.203 06 0.266 55 0.388 05 0.415 84 0.482 77	$\frac{\rho}{\text{g} \cdot \text{cm}^{-3}}$ 308.15 K ms/mol·kg ⁻¹ = 0.0 0.995 507 0.996 019 0.997 055 0.999 689 1.001 415 1.004 619 1.005 418 1.007 157	$\frac{V_{2\phi}}{\mathrm{cm}^3\cdot\mathrm{mol}^{-1}}$ 60.94 60.91 60.97 61.08 61.13 61.26 61.21	m 0.020 55 0.036 34 0.043 95 0.056 36 0.087 70 0.100 05	$\frac{\rho}{g \cdot cm^{-3}}$ m/mol·kg ⁻¹ = 0.0 0.994 505 0.994 863 0.995 035 0.995 379 0.996 009	$ \frac{V_{2\phi}}{\text{cm}^3 \cdot \text{mol}} $ 108.52 108.65 108.72 108.87
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} {\rm cm^{3} \cdot mol^{-1}} \\ \hline 0.0 \\ & 44.02 \\ & 43.97 \\ & 43.98 \\ & 44.12 \\ & 44.10 \\ & 44.12 \\ & 44.10 \\ & 44.12 \\ & 44.19 \\ \hline 0.52 55 \\ {\rm cm^{-3}} \\ & 44.13 \\ & 44.29 \\ \end{array}$	mol·kg ⁻¹ 0.052 30 0.070 40 0.107 56 0.203 06 0.266 55 0.388 05 0.415 84 0.482 77	$\begin{array}{r} g \cdot cm^{-3} \\ \hline 308.15 \text{ K} \\ m_s/mol \cdot kg^{-1} = 0.0 \\ 0.995 507 \\ 0.996 019 \\ 0.997 055 \\ 0.999 689 \\ 1.001 415 \\ 1.004 619 \\ 1.005 418 \\ 1.007 157 \end{array}$	cm ³ ·mol ⁻¹ 60.94 60.91 60.97 61.08 61.13 61.26 61.21	mol·kg ⁻¹ 0.020 55 0.036 34 0.043 95 0.056 36 0.087 70 0 100 05	$g \cdot cm^{-3}$ $m_s/mol \cdot kg^{-1} = 0.0$ $0.994\ 505$ $0.994\ 863$ $0.995\ 035$ $0.995\ 035$ $0.995\ 039$	cm ³ ·mol) 108.52 108.65 108.72 108.87
$\begin{array}{c} m_{s}/\mathrm{mol}\cdot\mathrm{kg}^{-1} \\ 0.052 \ 41 \\ 0.069 \ 46 \\ 0.995 \ 657 \\ 0.093 \ 36 \\ 0.996 \ 929 \\ 0.167 \ 57 \\ 0.999 \ 091 \\ 0.315 \ 73 \\ 1.003 \ 698 \\ 0.415 \ 03 \\ 1.006 \ 676 \\ 0.513 \ 43 \\ 1.009 \ 576 \\ \hline m_{s}/\mathrm{mol}\cdot\mathrm{kg}^{-1} = 0 \\ (\rho = 0.998 \ 143 \\ 0.999 \ 627 \\ 0.091 \ 65 \\ 1.000 \ 956 \\ 0.289 \ 06 \\ 1.006 \ 915 \\ 0.289 \ 06 \\ 1.006 \ 915 \\ 0.414 \ 74 \\ 1.010 \ 605 \\ 0.512 \ 36 \\ 1.013 \ 428 \end{array}$	$\begin{array}{c} 0.0 \\ & 44.02 \\ & 43.97 \\ & 43.98 \\ 44.12 \\ & 44.10 \\ & 44.12 \\ & 44.19 \\ \end{array}$	$\begin{array}{c} 0.052 \ 30 \\ 0.070 \ 40 \\ 0.107 \ 56 \\ 0.203 \ 06 \\ 0.266 \ 55 \\ 0.388 \ 05 \\ 0.415 \ 84 \\ 0.482 \ 77 \end{array}$	$\begin{array}{c} 308.15 \text{ K} \\ m_s/\text{mol}\cdot\text{kg}^{-1} = 0.0 \\ 0.995 507 \\ 0.996 019 \\ 0.997 055 \\ 0.999 689 \\ 1.001 415 \\ 1.004 619 \\ 1.005 418 \\ 1.007 157 \end{array}$	60.94 60.91 61.97 61.08 61.13 61.26 61.21	0.020 55 0.036 34 0.043 95 0.056 36 0.087 70 0 100 05	$m_s/\text{mol}\cdot\text{kg}^{-1} = 0.0$ 0.994 505 0.994 863 0.995 035 0.995 379 0.996 009) 108.52 108.65 108.72 108.87
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{r} 44.02\\ 43.97\\ 43.98\\ 44.12\\ 44.10\\ 44.12\\ 44.19\\ 052\ 55\\ ccm^{-3})\\ 44.13\\ 44\ 29\end{array}$	$\begin{array}{c} 0.052 \; 30 \\ 0.070 \; 40 \\ 0.107 \; 56 \\ 0.203 \; 06 \\ 0.266 \; 55 \\ 0.388 \; 05 \\ 0.415 \; 84 \\ 0.482 \; 77 \end{array}$	m ₂ morkg ¹ = 0.0 0.995 507 0.996 019 0.997 055 0.999 689 1.001 415 1.004 619 1.005 418 1.007 157	60.94 60.91 61.08 61.13 61.26 61.21	0.020 55 0.036 34 0.043 95 0.056 36 0.087 70 0 100 05	$m_{s} m_{01} kg^{-1} = 0.0$ $0.994 505$ $0.994 863$ $0.995 035$ $0.995 379$ $0.996 009$) 108.52 108.65 108.72 108.87
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{r} 44.02 \\ 43.97 \\ 43.98 \\ 44.12 \\ 44.10 \\ 44.12 \\ 44.19 \\ 052 55 \\ cm^{-3}) \\ 44.13 \\ 44.29 \end{array}$	$\begin{array}{c} 0.032 & 30\\ 0.070 & 40\\ 0.107 & 56\\ 0.203 & 06\\ 0.266 & 55\\ 0.388 & 05\\ 0.415 & 84\\ 0.482 & 77 \end{array}$	$\begin{array}{c} 0.995\ 307\\ 0.996\ 019\\ 0.997\ 055\\ 0.999\ 689\\ 1.001\ 415\\ 1.004\ 619\\ 1.005\ 418\\ 1.007\ 157\\ \end{array}$	$\begin{array}{c} 60.94 \\ 60.91 \\ 60.97 \\ 61.08 \\ 61.13 \\ 61.26 \\ 61.21 \end{array}$	$\begin{array}{c} 0.020 \ 53\\ 0.036 \ 34\\ 0.043 \ 95\\ 0.056 \ 36\\ 0.087 \ 70\\ 0 \ 100 \ 05\\ \end{array}$	0.994 303 0.994 863 0.995 035 0.995 379 0.996 009	108.52 108.65 108.72 108.87
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{r} 43.97 \\ 43.98 \\ 44.12 \\ 44.10 \\ 44.12 \\ 44.19 \\ 052 55 \\ ccm^{-3}) \\ 44.13 \\ 44.29 \end{array}$	$\begin{array}{c} 0.070\ 40\\ 0.107\ 56\\ 0.203\ 06\\ 0.266\ 55\\ 0.388\ 05\\ 0.415\ 84\\ 0.482\ 77\\ \end{array}$	$\begin{array}{c} 0.996 \ 0.19\\ 0.997 \ 0.55\\ 0.999 \ 689\\ 1.001 \ 415\\ 1.004 \ 619\\ 1.005 \ 418\\ 1.007 \ 157\end{array}$	60.91 60.97 61.08 61.13 61.26 61.21	0.036 34 0.043 95 0.056 36 0.087 70 0 100 05	0.994 863 0.995 035 0.995 379 0.996 009	108.6: 108.72 108.87
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{r} 43.98\\ 44.12\\ 44.10\\ 44.12\\ 44.19\\ \end{array}$	$\begin{array}{c} 0.107\ 56\\ 0.203\ 06\\ 0.266\ 55\\ 0.388\ 05\\ 0.415\ 84\\ 0.482\ 77\end{array}$	$\begin{array}{c} 0.997\ 055\\ 0.999\ 689\\ 1.001\ 415\\ 1.004\ 619\\ 1.005\ 418\\ 1.007\ 157\end{array}$	60.97 61.08 61.13 61.26 61.21	0.043 95 0.056 36 0.087 70 0.100 05	0.995 035 0.995 379 0.996 009	108.72 108.87
$\begin{array}{cccccccc} 0.167\ 57 & 0.999\ 091\\ 0.315\ 73 & 1.003\ 698\\ 0.415\ 03 & 1.006\ 676\\ 0.513\ 43 & 1.009\ 576\\ \hline\\ m_s/mol\cdotkg^{-1}=(\\ (\rho=0.998\ 143\\ 0.048\ 03 & 0.999\ 627\\ 0.091\ 65 & 1.000\ 956\\ 0.176\ 52 & 1.003\ 533\\ 0.289\ 06 & 1.006\ 915\\ 0.414\ 74 & 1.010\ 605\\ 0.512\ 36 & 1.013\ 428\\ \end{array}$	$\begin{array}{r} 44.12 \\ 44.10 \\ 44.12 \\ 44.19 \\ 0.52 55 \\ cm^{-3}) \\ 44.13 \\ 44.29 \end{array}$	$\begin{array}{c} 0.203 \ 0.6\\ 0.266 \ 55\\ 0.388 \ 05\\ 0.415 \ 84\\ 0.482 \ 77\end{array}$	$\begin{array}{c} 0.999\ 689\\ 1.001\ 415\\ 1.004\ 619\\ 1.005\ 418\\ 1.007\ 157\end{array}$	61.08 61.13 61.26 61.21	0.056 36 0.087 70 0.100 05	0.995 379 0.996 009	108.87
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{r} 44.10 \\ 44.12 \\ 44.19 \\ 052 55 \\ cm^{-3}) \\ 44.13 \\ 44.29 \\ \end{array} $	0.266 55 0.388 05 0.415 84 0.482 77	$\begin{array}{c} 1.001 \; 415 \\ 1.004 \; 619 \\ 1.005 \; 418 \\ 1.007 \; 157 \end{array}$	61.13 61.26 61.21	0.087 70	0.996 009	
$\begin{array}{ccccccc} 0.415\ 03 & 1.006\ 676\\ 0.513\ 43 & 1.009\ 576\\ & m_{\rm s}/{\rm mol}\cdot{\rm kg}^{-1}=(\\ & (\rho=0.998\ 143)\\ 0.048\ 03 & 0.999\ 627\\ 0.091\ 65 & 1.000\ 956\\ 0.176\ 52 & 1.003\ 533\\ 0.289\ 06 & 1.006\ 915\\ 0.414\ 74 & 1.010\ 605\\ 0.512\ 36 & 1.013\ 428\\ \end{array}$	44.12 44.19 052 55 cm ⁻³) 44.13 44 29	0.388 05 0.415 84 0.482 77	1.004 619 1.005 418 1.007 157	61.26 61.21	0 100 05		108.91
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	44.19 052 55 ccm ⁻³) 44.13 44 20	0.415 84 0.482 77	1.005 418 1.007 157	61.21	0.100.00	0.996 261	109.15
$\begin{array}{c} m_{\rm s}/{\rm mol}\cdot{\rm kg}^{-1}=(\\ (\rho=0.998\ 143\\ .048\ 03 \\ .048\ 03 \\ .099\ 627\\ .091\ 65 \\ .176\ 52 \\ .1003\ 533\\ .289\ 06 \\ .1006\ 913\\ .414\ 74 \\ .010\ 605\\ .512\ 36 \\ .1013\ 428 \end{array}$	052 55 cm ⁻³) 44.13 44.20	0.482 77	1.007 157	01.21			
$\begin{array}{c} m_{\rm y} {\rm mol} \cdot {\rm kg}^{-1} = 0 \\ (\rho = 0.998 \ 143 \\ 0.999 \ 627 \\ 0.91 \ 65 \\ 1.000 \ 956 \\ 1.76 \ 52 \\ 1.003 \ 533 \\ 289 \ 06 \\ 1.006 \ 915 \\ .414 \ 74 \\ 1.010 \ 605 \\ .512 \ 36 \\ 1.013 \ 428 \end{array}$	052 55 cm ⁻³) 44.13 44 29			61.31			
$(\rho = 0.998 \ 143 \\ 0.999 \ 627 \\ 0.91 \ 65 \\ 1.76 \ 52 \\ 2.89 \ 06 \\ 4.14 \ 74 \\ 1.010 \ 605 \\ 5.12 \ 36 \\ 1.013 \ 428 \\ 1.014 \ 428 \ 428 \\ 1.014 \ 428$	cm ⁻³) 44.13 44.20		$m_{\rm s}/{\rm mol}\cdot{\rm kg}^{-1} = 0.050$	43	1	$m_{\rm s}/{\rm mol}\cdot{\rm kg}^{-1}=0.050$	42
.048 03 0.999 627 .091 65 1.000 956 .176 52 1.003 533 .289 06 1.006 915 .414 74 1.010 605 .512 36 1.013 428	44.13		$(\rho = 0.997 \ 978 \ \text{g} \cdot \text{cm})$	-3)		$(\rho = 0.997 \ 997 \ \text{g·cm})$)
.091 65 1.000 956 .176 52 1.003 533 .289 06 1.006 915 .414 74 1.010 605 .512 36 1.013 428	44 90	0.059~61	$0.999\ 649$	61.03	0.009 52	0.998 210	108.86
.176 52 1.003 533 .289 06 1.006 915 .414 74 1.010 605 .512 36 1.013 428	11.63	0.090 31	1.000 493	61.16	0.019 09	0.998 425	108.89
289 06 1.006 915 .414 74 1.010 605 .512 36 1.013 428	44.32	0.182 93	1.003 036	61.20	0.037 38	0.998 825	109.10
.414 74 1.010 605 .512 36 1.013 428	44.35	0 263 07	1 005 195	61.28	0.046.97	0 000 030	100.05
.512 36 1.013 428	44.40	0.203 07	1.003 133	01.20	0.040 37	0.000 500	100.00
.512 36 1.013 428	44.49	0.347 38	1.007 441	01.30	0.070 13	0.999 559	109.20
	44.59	0.494 15	1.011 311	61.36	0.079 56	0.999 742	109.22
639 27 1.017 006	44.74	0.576 63	1.013 280	61.67	0.110 57	1.000 401	109.33
$m_{\rm s}/{\rm mol}\cdot{\rm kg}^{-1} = 0$	$101\ 05$		$m_{\rm s}/{\rm mol}\cdot{\rm kg}^{-1} = 0.100$	92 -3)		$n_{\rm s}/{\rm mol}\cdot{\rm kg}^{-1} = 0.101$	09^{-3}
$\psi = 1.004.798$	·UII ") 44.07	0.050.45	$\psi = 1.001.907$ g·cm	01.00	0.010.00	1 005 105	110.07
.095 89 1.004 691	44.37	0.053 45	1.003 348	61.98	0.010 02	1.005 165	110.23
.172 72 1.006 999	44.49	0.104 57	1.004 751	61.65	0.018 52	1.005 368	108.63
.286 30 1.010 376	44.57	0.202 99	1.007 392	61.67	0.040 33	1.005 856	108.43
411.39 1.013.976	44.83	0.291.84	1.009.739	61.70	0.048 79	1.006.048	108.3
496 55 1 016 470	14.76	0 353 03	1 011 334	61 74	0.064.81	1 006 407	108.2
.450 55 1.010 470	44.70	0.333.03	1.011.034	01.74	0.004 01	1.000 407	100.2
		0.451 40	1.013 877	61.77	0.078 25	1.006 704	108.2
		0.593 22	1.017 479	61.81	0.101 21	1.007 206	108.3
$m_{\rm s}/{\rm mol}\cdot{\rm kg}^{-1} = 0$	20259		$m_{\rm s}/{\rm mol}\cdot{\rm kg}^{-1} = 0.104$	42	1	$n_{\rm s}/{\rm mol}\cdot{\rm kg}^{-1} = 0.405$	60 (-3)
(p - 1.009.543)	(III -)	0.050.51	(p = 1.002 150 g-cm)	-)	0.000 45	(p - 1.0250 fr g-cm)	-)
042 99 1.010 793	45.72	0.053 51	1.003 599	61.76	0.009 45	1.025 155	113.42
.108 12 1.012 788	44.77	0.097 65	1.004 789	61.78	0.021 27	1.025 379	111.44
165 58 1.014 507	44.73	0.200 47	1.007 529	61.83	0.047 41	1.025 871	110.6
313 79 1 018 801	44 99	0 266 92	1 009 284	61.83	0.051.49	1 025 940	110.69
207.01 1.021.179	45.00	0 404 00	1 012 870	61.84	0.070.16	1 026 204	110.49
.021170	45.05	0.404 55	1.012 875	01.04	0.070 10	1.020 294	110.4
.494 15 1.023 892	45.22	0.463 62	1.014 735	61.92	0.087 34	1.026 599	110.49
.607 91 1.027 115	45.21	0.487 97	1.014 955	61.97	0.093 79	1.026 696	110.51
$m_{\rm s}/{\rm mol}\cdot{\rm kg}^{-1} = 0$	405.98		$m_{\rm s}/{\rm mol}\cdot{\rm kg}^{-1} = 0.203$	46	1	$n_{\rm s}/{\rm mol}\cdot{\rm kg}^{-1} = 0.818$	21
(p - 1.024752)	(III ⁻)	0.040.70	(p - 1.009 098 g-cm)	-)	0.010.01	$(p - 1.034 308 \text{ g} \cdot \text{cm})$	-)
.048 /0 1.020 138	40.10	0.046 79	1.010 902	02.93	0.012 61	1.054 501	110.9/
.108 32 1.027 929	45.18	0.103 87	1.012 409	62.46	0.017 95	1.054 582	114.59
.177 53 1.029 925	45.28	$0.233\ 25$	1.015 809	62.15	0.036 64	1.054 850	112.53
.309 25 1.033 618	45.56	0.290 17	1.017 263	62.20	0.048 31	1.055 000	112.5
392 12 1 035 893	45 70	0 396 90	1 019 973	62 21	0 070 67	1 055 305	112 4
500 1F 1 029 700	45.70	0.330 30	1.013 575	02.21	0.070 07	1.055 505	112.4
.500 15 1.038 790 603 45 1.041 607	45.89	0.405 18	1.021 670	62.25	0.090.61	1.055 614	112.4
$m/mol_k g^{-1} = 0$	2001	01088 11	$m/mol_k a^{-1} = 0.405$	87	0.001.00	11000 011	11811
$(\rho = 1.053 \ 952$	cm^{-3}		$(\rho = 1.024 354 \text{ g} \cdot \text{cm})$	⁻³)			
045 91 1 055 131	48 31	0.051.02	1 025 564	64 31			
002.06 1.052.441	10.01	0.102.00	1.020.001	69.94			
	47.20	0.102.08	1.020 202	03.34			
.211 59 1.059 634	46.81	0.210 58	1.029 567	63.06			
.398 59 1.064 496	46.94	0.288 25	1.031 443	63.10			
.481 82 1.066 633	46.97	0.369 05	1.033 405	63.04			
574 16 1.069 012	46.94	0.482 63	1.036 050	63.20			
		0.598 41	1.038 730	63.19			
			$m_{\rm s}/{ m mol}\cdot{ m kg}^{-1} = 0.406$	48			
			$(\rho = 1.024 \ 855 \ g \cdot cm)$	-3)			
		0.059 44	1.026 285	63.93			
		0.097 11	1.027 209	63.71			
		0.204 17	1.029 915	63.02			
		0 288 22	1 021 02/	62 44			
		0.415 10	1.031 304	60.00			
		0.415 10	1.035 047	62.93			
		0.527 59	1.037 698	62.96			
		0.568 00	1.038 643	62.97			
			$m_{\rm s}/{\rm mol}\cdot{\rm kg}^{-1} = 0.819$ ($\rho = 1.053.787$ g/m	11 -3)			
		0.050.00	1 054 000	/ 60.10			
		0.050.08	1.054 638	09.18			
		0.092 69	1.055 637	66.45			
		0.164 33	1.057 572	65.23			
		0 296 69	1.060.206	64 66			
		0.270 21	1 069 097	61.00			
		0.370 01	1.004.037	04.41			
		0.489 43	1.064 289	64.57			
		0.378 61 0.489 43	1.062 037 1.064 289	64.41 64.57			

^{*a*} $m_{\rm s}$ = molality of MgCl₂ in water.

Table 2. Heat Capacities (C_p) and Apparent Heat Capacities ($C_{p2,\phi}$) of Glycine and L-Alanine in Water and in AqueousMagnesium Chloride Solutions at (298.15 to 328.15) K^a

		glyc	ine					L-ala	anine		
m	$C_{\rm p}$	$C_{\mathrm{p2},\phi}{}^{b}$	т	$C_{\rm p}$	$C_{\mathrm{p2},\phi}{}^b$	m	$C_{\rm p}$	$C_{\mathrm{p2},\phi}{}^b$	т	Cp	$C_{\mathrm{p2},\phi}{}^b$
mol·kg ⁻¹	$\overline{J \cdot K^{-1} \cdot g^{-1}}$	$\overline{\mathbf{J}\mathbf{\cdot}\mathbf{K}^{-1}\mathbf{\cdot}\mathbf{mol}^{-1}}$	mol·kg ⁻¹	$\overline{J \cdot K^{-1} \cdot g^{-1}}$	$\overline{J{\boldsymbol{\cdot}} K^{-1}{\boldsymbol{\cdot}} g^{-1}}$	mol·kg ⁻¹	$\overline{J \cdot K^{-1} \cdot g^{-1}}$	J·K ⁻¹ ·mol ⁻	¹ mol·kg ⁻¹	$\overline{J{\boldsymbol{\cdot}} K^{-1}{\boldsymbol{\cdot}} g^{-1}}$	$\overline{J \cdot K^{-1} \cdot g^{-1}}$
					298	15 K					
	<i>m</i> ₅/mol⋅kg ⁻¹	$= 0.050 \ 65 \ (c$	$C_{\rm p} = 4.149$ 9	84 J•K ^{−1} •g [−]	-1)			<i>m</i> _s /mol·kg ⁻	$^{1} = 0.050~65$		
0.054 91	4.137 778	88	0.958 91	3.921 351	56	0.048 10	4.141 335	189	0.149 20	4.117 028	146
0.095 50	4.127 489	74	1.459 10	3.826 006	65 79	0.064 91	4.138 127	186	0.188 90	4.107 089	139
0.190 80	4.101 858	03 53	1.924 10	3.747 191	12	0.005 11	4.133 904	155	0.475 90	4.041 873	133
0.177 11	1.001 001	00				0.149 00	4.116 539	142	1.932 30	3.788 342	150
	<i>m</i> ₅/mol·kg ⁻¹	= 0.07955($C_{p} = 4.1315$	53 J·K ⁻¹ ·g ⁻	·1)			<i>m</i> ./mol·kg ⁻	$^{1} = 0.07955$		
0.045 36	4.124 970	77	0.393 96	4.034 746	´57	0.047 39	4.123 635	200	0.376 10	4.052 033	149
0.068 71	4.114 611	62	0.580 49	3.990 492	57	0.067 37	4.119 555	189	0.946 84	3.943 472	154
0.098 01	4.107 144	59	0.963 31	3.907 169	60	0.094 37	4.112 018	159	1.457 04	3.863 607	160
0.198 39	4.082 112	57			1.	0.198 87	4.089 340	155	1.892.90	3.794 439	160
0.057.41	$m_{\rm s}/{\rm mol}\cdot{\rm kg}^{-1}$	= 0.099 39 (0)	$C_p = 4.1186$	68 J·K ⁻¹ ·g ⁻	⁻¹) 50	0.050.00	1 108 020	$m_{\rm s}/{\rm mol}\cdot{\rm kg}^{-}$	$^{1} = 0.09939$	1 021 286	152
0.057 41	4.105 509	79 78	0.55075	3.969 324	59 66	0.050 00	4.108 930	169	0.475 84	3 930 186	155
0.197 59	4.130 956	62	1.872 44	3.731 252	73	0.194 65	4.078 180	155	1.971 20	3.773 119	160
	$m/mol \cdot k \sigma^{-1}$	= 0.385.97 (6)	a = 3.941.2	73 I·K ⁻¹ ·σ ⁻	-1)			m/mol·kg-	1 = 0.385.97		
0.050 38	3.930 879	89	0.18876	3.900 041	, 74	0.075 00	3.929 839	198	0.361 04	3.877 866	170
0.062 09	3.928 453	88	0.378 80	3.861 928	80	0.095 43	3.923 603	164	0.942 33	3.784 662	171
0.070 32	3.926 548	85	0.56352	3.826 240	83	0.186 05	3.907 837	168	1.883 03	3.651 958	171
0.098 23	3.919 168	70	1.872 44	3.750 706	83						
					303.	15 K					
0.054.04			0.050.04	0.005 501	m _s /mol·kg ⁻	$^{1} = 0.0506$	5	101	0.4.40.00	4 4 4 9 4 7 9	4.40
0.054 91	4.137 433	98 72	0.958 91	3.925 521	62	0.048 10	4.140 039	181	0.149 20	4.116 173	146
0.095 50	4.120 400	73	1.459 10	3 751 328	09 75	0.064 91	4.130 130	165	0.188 90	4.100 572	138
0.477 11	4.032 849	59	1.02110	0.701 020	10	0.146 50	4.118 299	157	0.994 71	3.961 045	145
						0.149 00	4.115 865	144	1.932 30	3.801 048	159
				,	m₅/mol·kg-	$^{1} = 0.0795$	5				
0.045 36	4.119 268	76	0.393 96	4.035 648	63	0.047 39	4.121 692	195	0.376 10	4.050 324	149
0.068 71	4.112 988	63	0.580 49	3.992 301	63	0.067 37	4.117 255	180	0.946 84	3.944 176	155
0.098 01	4.105 650	61	0.963 31	3.914 824	71	0.094 37	4.110 565	162	1.457 04	3.861 921	160
0.198 39	4.081 383	62				0.198 87	4.088 346	157	1.892 90	3.805 605	168
0.057.41	4 104 474	70	0 500 75	0.001.000	m _s /mol·kg ⁻	$^{1} = 0.0993$	9	170	0 470 04	4 000 000	157
0.057 41	4.104 474	18 77	0.536 75	3.991 000	64 82	0.050 00	4.107 905	170	0.473 84	4.022 292	157
0.101 50	4.071 052	70	1.872 44	3.734 944	76	0.194 65	4.077 880	159	1.971 20	3.774 887	162
					m/moleka=	1 - 0.2850	7				
0.050.38	3.932.038	86	0.188 76	3.902 128	79	-0.3859 0.07500	3.931.358	201	0.361.04	3,880,206	173
0.062 09	3.929 488	84	0.378 80	3.864 402	84	0.095 43	3.924 900	164	0.942 33	3.788 949	175
0.070 32	3.927 755	84	0.563 52	3.830 414	89	0.186 05	3.909 606	171	1.883 03	3.660 476	176
0.098 23	3.919 972	64	1.872 44	3.756 641	88						
					308.	15 K					
0.054.01	4 1 0 0 0 0 0	110	0.050.01	0.000.400	m _s /mol·kg ⁻	$^{1} = 0.0506$	5	105	0 1 40 00	4 1 1 0 1 0 4	1.47
0.054 91	4.138 208	116	0.958 91	3.930 429	67 75	0.048 10	4.140 046	195	0.149 20	4.116 194	147
0.095 50	4.133 837	83 79	1.439 10	3 758 060	79	0.065 11	4.139 210	160	0.188 90	4.107 309	140
0.477 11	4.035 321	65	1102110	01100 000		0.146 50	4.117 330	151	0.994 71	3.965 571	152
						0.149 00	4.116 161	147	1.932 30	3.809 837	164
				i.	m _s /mol·kg ⁻	$^{1} = 0.0795$	5				
0.045 36	4.119 418	84	0.393 96	4.036 488	66	0.047 39	4.121 793	199	0.376 10	$4.051\ 202$	152
0.068 71	4.113 466	71	0.580 49	3.994 020	66	0.067 37	4.117 914	191	0.946 84	3.949 211	161
0.098 01	4.106 310	69	0.963 31	3.915 772	12	0.094 37	4.110 891	166	1.457 04	3.870 628	167
0.196 39	4.002 400	00				0.190 07	4.000 000	156	1.692 90	3.002 077	100
0.057.41	1 102 649	00	0 526 75	2 002 594	m _s /mol·kg ⁻	$^{1} = 0.0993$	9 1 109 165	170	0 472 94	1 091 079	161
0.057 41	4.103 042	90 89	0.53675	3.993 384	69 86	0.050 00	4.108 105	178	0.473 84	4.024 072	101
0.107 50	4.070 139	66	1.872 44	3.743 985	82	0.107 74	4.078 380	162	1.971 20	3.785 864	169
					m/mol.ka-	1 - 0.385.0	7				
0.050 38	3.936 245	88	0.188 76	3.906 116	78	-0.07500	3.935 530	202	0.361 04	3.883 760	172
0.062 09	3.933 115	76	0.378 80	3.867 939	82	0.095 43	3.928 644	161	0.942 33	3.791 240	172
0.070 32	3.931 739	82	0.563 52	3.832 513	85	0.186 05	$3.913\ 339$	169	1.883 03	3.659 518	174
0.098 23	3.924 173	65	1.872 44	3.757 534	83						
					313	15 K					
0.05.0		4.5.4	0.050.03	0.00/00-	m _s /mol·kg ⁻	$^{1} = 0.0506$	5	4.00	0.4.40.00		
0.054 91	4.139 147	131	0.958 91	3.934 330	71	0.048 10	4.139 938	180	0.149 20	4.117 250	154
0.196 86	4.104 572	82	1.924 10	3.721 129	81	0.065 11	4.135 031	160	0.475 90	4.048 264	149
0.477 11	4.037 727	70			~-	0.146 50	4.118 007	155	0.994 71	3.968 576	151
						0.149 00	4.117 415	155	1.932 30	3.813 153	166

Table 2. (Continued)

	glycine						L-alanine					
т	Ср	$C_{\mathrm{p2},\phi}{}^b$	т	Ср	$C_{\mathrm{p2},\phi}{}^b$	m	Ср	$C_{\mathrm{p2},\phi}{}^b$	т	Ср	$C_{\mathrm{p2},\phi}{}^b$	
$mol \cdot kg^{-1}$	$\overline{J.K^{-1}.g^{-1}}$	$\overline{J.K^{-1}.mol^{-1}}$	mol.kg ⁻¹	$\overline{J.K^{-1}.g^{-1}}$	$\overline{J.K^{-1}.g^{-1}}$	mol.kg ⁻¹	$\overline{J.K^{-1}.g^{-1}}$	$\overline{J.K^{-1}.mol^{-1}}$	$\overline{mol.kg^{-1}}$	$\overline{J.K^{-1}.g^{-1}}$	$\overline{J.K^{-1}.g^{-1}}$	
					313.15 K (Continued)					
0.045.26	4 120 006	05	0 202 06	1 014 652	n _s /mol∙kg [−] 70	$^{1} = 0.0795$	1 1 2 2 0 5 6	206	0 276 10	4 056 800	165	
0.045 50	4.120 900	93 77	0.580 49	4.014 055	70	0.047 39	4.122 950	194	0.946 84	4.050 890	163	
0.098 01	4.107 609	74	0.963 31	3.918 325	74	0.094 37	4.112 184	171	1.457 04	3.872 246	168	
0.198 39	4.084 208	73				0.198 87	4.091 449	168	1.892 90	3.806 419	168	
				1	ms/mol·kg ⁻	$^{1} = 0.099$ 3	9					
0.057 41	4.104 154	93	0.536 75	3.996 196	79	0.050 00	4.108 799	182	0.473 84	4.026 439	165	
0.101 30	4.096 116	91 72	1.108 10	3.878 189	75 84	0.107 74 0.194 65	4.097 928	179	0.960 78	3 790 229	100	
0.107 00	1.071 002	12	1.07% 11	0.7 10 0 10	m/mol·ka-	1 = 0.385 0	1.000 100	100	1.071 20	0.100 220	171	
0.050 38	3.937 337	101	0.188 76	3.908 347	¹¹ _S /1101 Kg 88	0.075 00	3.936 845	212	0.361 04	3.888 857	185	
0.062 09	3.934 815	96	0.378 80	3.872 182	93	0.095 43	3.930 294	173	0.942 33	3.803 690	187	
0.070 32	3.933 079	95 77	0.563 52	3.839 067	96 05	0.186 05	3.915 881	181	1.883 03	3.676 922	184	
0.098 23	3.923 807	//	1.872 44	3.767 003	95	4 - 17						
				,	318. m/mol·ka-	15 K 1 = 0.050 f	5					
0.054 91	4.139 954	134	0.958 91	3.938 305	75	0.048 10	4.141 121	191	0.149 20	4.117 585	152	
0.095 50	4.128 283	86	1.459 10	3.848 180	82	0.064 91	4.136 355	163	0.188 90	4.108 831	150	
0.196 86	4.104 617	79	1.924 10	3.767 131	84	0.065 11	4.135 902	157	0.475 90	4.051 773	155	
0.47711	4.040 102	74				0.146 50	4.118 233	152	0.994 /1	3.9/2 6/0	165	
					m/mol.kg=	1 - 0.0705		155	1.002 00	5.020 025	170	
0.045 36	4.122 176	102	0.393 96	4.042 202	77	-0.0793	4.124 023	208	0.376 10	4.058 663	168	
0.068 71	4.115 987	82	0.580 49	4.001 307	76	0.067 37	4.119 875	193	0.946 84	3.957 710	169	
0.098 01	4.109 214	80	0.963 31	3.918 325	79	0.094 37	4.113 265	172	1.457 04	3.880 438	173	
0.198 39	4.086 045	77				0.198 87	4.092 688	169	1.892 90	3.812 389	171	
0.057.41	1 104 675	100	0 526 75	2 008 212	n₅/mol∙kg [−]	$^{1} = 0.0993$	39	195	0 472 84	1 026 840	166	
0.101 36	4.097 055	98	1.108 16	3.891 302	87	0.107 74	4.109 248	183	0.473 84	3.942 538	168	
0.197 59	4.073 415	79	1.872 44	3.756 728	89	0.194 65	4.080 030	167	1.971 20	3.798 884	176	
				1	m₅/mol∙kg [−]	$^{1} = 0.385$ 9)7					
0.050 38	3.941 073	102	0.188 76	3.913 260	95	0.075 00	3.940 911	218	0.361 04	3.891 628	183	
0.062 09	3.938 992	105	0.378 80	3.877 639	98	0.095 43	3.933 756	171	0.942 33	3.805 096	184	
0.070 32	3.937 621	90	1.872 44	3.771 915	98 97	0.160 05	3.919707	102	1.003 03	3.000 029	165	
					323	15 K						
				1	n₅/mol∙kg ⁻	$^{1} = 0.0506$	5					
0.054 91	4.141 747	136	0.958 91	3.944 938	81	0.048 10	4.142 228	179	0.149 20	4.119 788	155	
0.095 50	4.130 367	90	1.459 10	3.853 556	85	0.064 91	4.138 381	169	0.188 90	4.111 295	154	
0.190 80	4.107 138	84 79	1.924 10	5.774 090	00	0.005 11	4.137 740	161	0.475 90	4.055 194	152	
01111 11	11011 200					0.149 00	4.120 013	156	1.932 30	3.812 844	164	
				1	n₅/mol∙kg-	$^{1} = 0.0795$	5					
0.045 36	4.124 244	112	0.393 96	4.045 745	82	0.047 39	4.125 653	208	0.376 10	4.062 726	171	
0.068 71	4.118 059	89 86	0.580 49	4.006 335	82 84	0.067 37	4.121 392	192	0.946 84	3.962 119	172	
0.198 39	4.088 679	82	0.303 31	5.525 750	04	0.198 87	4.094 446	170	1.892 90	3.835 880	185	
				,	n₅/mol∙kg-	$^{1} = 0.099$ 3	9					
0.057 41	4.106 415	105	0.536 75	4.005 265	86	0.050 00	4.111 392	188	$0.473\ 84$	4.030 795	170	
0.101 36	4.099 305	101	1.108 16	3.895 713	90	0.107 74	4.100 275	179	0.960 78	3.948 066	171	
0.197 59	4.076 587	85	1.872 44	3.764 833	93	0.194 65	4.082 986	172	1.971 20	3.800 381	176	
0 050 28	2 045 160	110	0 199 76	2 010 700	n₅/mol∙kg [−]	$^{1} = 0.3859$	17	991	0 261 04	2 000 251	107	
0.050 38	3.943 169	119	0.188 70	3.886 051	109	0.075 00	3.938 562	183	0.301 04	3.821 530	197	
0.070 32	3.941 927	116	0.563 52	3.854 686	112	0.186 05	3.925 566	194	1.883 03	3.702 985	196	
0.098 23	3.934 333	89	1.872 44	3.789 424	112							
					328.	15 K	-					
0.054.01	1 1 1 9 504	122	0.058.01	2 050 925	n _s /mol∙kg [−] 97	$^{1} = 0.0506$	5 1146 607	101	0 140 20	1 191 780	162	
0.095 50	4.131 768	95	1.459 10	3.863 369	07 92	0.046 10	4.140 097	172	0.149 20	4.113 453	163	
0.196 86	4.108 875	88	1.924 10	3.786 006	94	0.065 11	4.139 062	166	0.475 90	4.059 774	161	
0.477 11	4.048 090	85				0.146 50	4.122 674	165	0.994 71	3.982 705	166	
					,	0.149 00	4.121 979	164	1.932 30	3.838 108	179	
0.045.90	1 195 007	110	0 303 06	1 010 717	ms/mol·kg-	$^{1} = 0.0795$	1 1 2 6 0 9 0	207	0 276 10	1 066 551	101	
0.045 30	4.123 807	94	0.580 49	4.011 211	89	0.047 39	4.123 514	207	0.376 10	3.969 229	179	
0.098 01	4.113 241	91	0.963 31	3.936 470	90	0.094 37	4.117 821	189	1.457 04	3.892 898	181	
0.198 39	4.091 359	89				0.198 87	4.099 151	187	1.892 90	3.842 010	188	

Table 2. (Continued)

		glyci	ne					L-alar	nine		
m	Cp	$C_{\mathrm{p2},\phi}{}^b$	т	Cp	$C_{\mathrm{p2},\phi}{}^b$	т	Cp	$C_{\mathrm{p2},\phi}{}^b$	т	Cp	$C_{\mathrm{p2},\phi}{}^b$
mol·kg ⁻¹	$J.K^{-1}.g^{-1}$	$J.K^{-1}.mol^{-1}$	mol.kg ⁻¹	$J.K^{-1}.g^{-1}$	$\overline{J.K^{-1}.g^{-1}}$	mol.kg ⁻¹	$\overline{J.K^{-1}.g^{-1}}$	$J.K^{-1}.mol^{-1}$	mol.kg ⁻¹	$J.K^{-1}.g^{-1}$	$\overline{\mathrm{J.K^{-1}.g^{-1}}}$
					328.15 K (Continued)					
					m _s /mol·kg	$^{1} = 0.099 \ 3$	9				
0.057 41	4.107 729	109	0.536 75	4.007 721	89	0.050 00	4.112 617	189	0.473 84	4.033 287	173
0.101 36	4.100 540	101	1.108 16	3.907 406	100	0.107 74	4.101 658	181	0.960 78	3.951 336	175
0.197 59	4.078 687	90	$1.872\ 44$	3.776 414	99	0.194 65	4.084 725	175	1.971 20	3.809 961	181
					m₅/mol∙kg-	$^{1} = 0.385 9$	7				
0.050 38	3.947 974	101	0.188 76	3.921 167	100	0.075 00	3.947 845	219	0.361 04	3.900 984	190
0.062 09	3.945 520	98	0.378 80	3.887 420	106	0.095 43	3.941 354	179	0.942 33	3.818 953	193
0.070 32	3.943 162	88	0.563 52	3.856 416	110	0.186 05	3.927 757	188	1.883 03	3.696 230	190
0.098 23	3.937 091	84	1.872 44	3.786 912	109						

^a m_s = molality of MgCl₂ in water. ^b $C_{p2,\phi}^{\circ}$ of glycine in water = (28, 35, 42, 47, 52, 55, and 57) J·K⁻¹·mol⁻¹at (298.15, 303.15, 308.15, 313.15, 318.15, 323.15, and 328.15) K. $C_{p2,\phi}^{\circ}$ of L-alanine in water = (135, 140, 148, 153, 156, 157, and 158) J·K⁻¹·mol⁻¹ at (298.15, 303.15, 308.15, 313.15, 318.15, 323.15, and 328.15) K.

infinite dilution) of a solute in a given system was determined by least-squares fitting of the $V_{2,\phi}$ data to the equation

$$V_{2,\phi} = V_2^{\infty} + am + bm^2 \tag{5}$$

where *a* and *b* are fitting parameters. The $V_{2,\phi}$ data at concentrations of amino acids $\,\leq\,$ 0.05 mol·kg^{-1}, being associated with a larger uncertainty of the order of 0.06 cm³·mol⁻¹, have not been taken into account for estimating the V_2° values. However, the $V_{2,\phi}$ versus *m* dependence was almost linear at the lower concentrations of MgCl₂, and only a first-order polynomial was sufficient to fit the data. The values of V_2° and the constants *a* and *b*, along with the standard deviations obtained for the various systems, are summarized in Table 3. The partial molar heat capacities at infinite dilution $(C_{p2,\phi}^{\infty})$ have not been calculated due to a complex dependence of $C_{p2,\phi}$ upon *m*. The V_2^{∞} values for amino acids in water determined presently agree very well with the literature values.^{5,12-14} No data are available for comparison in MgCl₂ solutions. Plots of $V_{2,\phi}$ versus m_s (Figure 1) show a peculiar $V_{2,\phi}$ dependence on the change in concentration of MgCl₂ which has been confirmed by repeating the experiments in some cases at concentrations of MgCl₂ near $m_s \simeq 0.4$, where overlapping results have been obtained. It may further be seen that in the case of glycine in MgCl₂ solutions, for concentrations up to $\simeq 0.4 m_{\rm s}$ and at 288.15 K, $V_{2,\phi}$ values increase more or less linearly with the concentration of amino acid. The dependence flattens off with $m_{\rm s}$, which is well exhibited by the values of the parameter *a*, which changes sign from positive to negative. Similar behavior is observed at the other two temperatures, but the reversal occurs now at higher MgCl₂ concentration. More or less similar behavior has been observed for the three amino acids at the three temperatures studied. The different concentrations of MgCl₂ where reversal of behavior occurs leads to the speculation that factors contributing to the $V_{2,\phi}$ variation with m_s of amino acids remains temperature and MgCl₂ concentration specific. Grossly, $V_{2,\phi}$ values of amino acids in most of the cases increase with the increase in concentration of amino acids for lower concentrations of MgCl₂ whereas a slight decrease has been observed at higher concentrations of the electrolyte. This is in contrast to the conclusion reached by Soto et al.¹⁵ for $V_{2,\phi}$ of glycine in the presence of KCl, NaCl, KNO₃, and NaNO₃ over almost similar concentrations of electrolytes where the $V_{2,\phi}$ of glycine for all the four electrolytes increases as the

concentration of either glycine or the electrolyte increases. The plots of $C_{p2,\phi}$ versus m for glycine and L-alanine (Figure 2) also show peculiar behavior of the $C_{p2,\phi}$ values of the amino acids around $\approx 0.40 m_s$, as observed in the case of $V_{2,\phi}$ values. The changes again appear to be temperature and MgCl₂ concentration specific. These results suggest that the thermodynamic properties of the amino acids in the presence of individual electrolytes may show different behavior, and thus, experimental determination of such properties is a prerequisite to arrive at any generalization. From the partial molar volumes (V_2°) in water and in aqueous MgCl₂ solutions the corresponding partial volumes of transfer ($\Delta_t V_2^{\circ}$) have been calculated as follows:

$$\Delta_t V_2^{\infty}(\text{water} \rightarrow \text{aqueous MgCl}_2) = V_2^{\infty}(\text{in aqueous MgCl}_2) - V_2^{\infty}(\text{in water})$$
(6)

The values for $\Delta_t V_2^{\infty}$ are summarized in Table 4 and illustrated in Figures 3-5. $\Delta_t V_2^{\infty}$ values are positive for all the amino acids and increase with the increase in the concentration of the cosolute. The transfer heat capacity values at infinite dilution $(C_{p2,\phi})$ have not been calculated, but however, on comparing the $C_{p2,\phi}$ values for glycine and L-alanine in various solutions of MgCl₂ with $C_{p2,\phi}^{\infty}$ values in water¹⁶ (included in Table 2), it is clear that the $C_{p2,\phi}^{\infty}$ values are higher in the presence of MgCl₂ for these amino acids. It may be seen that the $\Delta_t V_2^{\infty}$ values decrease with temperature from (288.15 to 308.15) K for glycine, whereas L-alanine and L-leucine behave differently because of contributions characterized by an opposite temperature dependence.

Franks et al.¹⁷ have shown that the partial molar volume of a nonelectrolyte is a combination of two types of contributions

$$V_{\rm int} = V_{\rm vw} + V_{\rm void} \tag{7}$$

Shahidi et al.¹⁸ further modified the above equation to

$$V_2^{\circ} = V_{\rm vw} + V_{\rm void} - V_{\rm shrinkage} \tag{8}$$

where $V_{\rm vw}$ is the van der Waals volume, $V_{\rm void}$ is the volume associated with the void or empty space, and $V_{\rm shrinkage}$ is the volume due to shrinkage caused by the interaction of hydrogen bonding groups present in the solute with water molecules. Assuming that $V_{\rm vw}$ and $V_{\rm void}$ are not significantly affected by the presence of MgCl₂, a positive $\Delta_t V_2^{\circ}$ can therefore be attributed to a decrease in the shrinkage

Figure 2. (a) Apparent molar heat capacity ($C_{p2,\phi}$) of glycine vs molality of glycine (*m*) in aqueous MgCl₂ solutions ($m_s = \blacksquare$, 0.05065; ●, 0.07955; ▲, 0.09939; ▼, 0.38597) at 298.15 K. (b) Apparent molar heat capacity ($C_{p2,\phi}$) of glycine vs molality of glycine (*m*) in aqueous MgCl₂ solutions ($m_s = \blacksquare$, 0.05065; ●, 0.07955; ▲, 0.09939; ▼, 0.38597) at 303.15 K. (c) Apparent molar heat capacity ($C_{p2,\phi}$) of glycine vs molality of glycine (m) in aqueous MgCl₂ solutions ($m_s = \blacksquare$, 0.05065; ●, 0.07955; ▲, 0.09939; ▼, 0.38597) at 318.15 K. (f) Apparent molar heat capacity ($C_{p2,\phi}$) of glycine vs molality of glycine (m) in aqueous MgCl₂ solutions ($m_s = \blacksquare$, 0.05065; ●, 0.07955; ▲, 0.09939; ▼, 0.38597) at 323.15 K. (g) Apparent molar heat capacity ($C_{p2,\phi}$) of glycine vs molality of glycine (m) in aqueous MgCl₂ solutions ($m_s = \blacksquare$, 0.05065; ●, 0.07955; ▲, 0.09939; ▼, 0.38597) at 328.15 K.

Table 3.	Standard Partia	l Molar Vol	lume (V_2°) for	Amino Acids i	n Water a	nd Aqueous 1	Magnesium	Chloride S	Solutions a	t
(288.15, 2	98.15, and 308.15	5) K ^a	~							

	288.15 H	K			298.15 K			308.15 K			
ms	V_2°			ms	V_2°			ms	V_2°		
mol·kg ⁻¹	cm ³ ⋅mol ⁻¹	а	b	mol·kg ⁻¹	cm ³ ⋅mol ⁻¹	а	b	$\overline{\mathrm{mol}\mathbf{\cdot}\mathrm{kg}^{-1}}$	cm ³ ⋅mol ⁻¹	а	b
					Glycine						
0.0	42.37 ^b (0.04)	1.01		0.0	43.27 ^b (Ö.02)	0.94		0.0	43.98 ^b (0.04)	0.39	
	42.48 ^c				43.26 ^c				43.79 ^e		
	42.54^{d}				43.20 ^d				43.80 ^d		
0.050 16	42.69 (0.04)	0.77		0.050 27	43.56 (0.03)	0.80		0.052 55	44.14 (0.05)	0.90	
0.101 23	43.16 (0.06)	0.47		0.099 90	43.90 (0.04)	1.35		0.101 05	44.29 (0.07)	1.09	
0.201 09	43.57 (0.06)	0.83		0.403 58	45.10 (0.06)	0.83		0.202 59	44.63 (0.06)	1.07	
0.271 58	43.81 (0.07)	0.66		0.715 53	46.20 (0.08)	0.66		0.405 98	45.50 (0.37)	0.54	
0.396 69	44.96 (0.27)	-0.93		0.763 11	46.75 (0.11)	-3.34	5.15	0.822 18	47.05 (0.23)	-0.26	
0.404 66	45.33 (0.35)	-1.18		0.814 62	46.66 (0.18)	-0.43					
0.607 42	46.03 (0.13)	-1.60		0.841 68	46.93 (0.39)	-1.19					
0.815 27	47.40 (0.08)	-4.77	5.70	0.918 11	47.63 (0.44)	-1.93					
0.816 48	47.95 (0.16)	-9.64	12.40								
					L-Alanine	9					
0.0	59.67 ^b (0.03)	0.86		0.0	$60.42^{b}(0.05)$	0.14		0.0	$60.88^{b}(0.03)$	0.89	
	59.67 ^c				60.47 ^c				61.01 ^e		
	59.90 ^d				60.40 ^d				60.90 ^d		
0.050 17	59.83 (0.03)	1.02		0.050 28	60.85 (0.06)	0.40		0.050 43	61.05 (0.09)	0.64	0.52
0.100 39	60.35 (0.04)	0.26		0.100 61	61.08 (0.27)	0.48		0.10092	61.77 (0.12)	-0.04	
0.403 39	61.94 (0.08)	-0.86	0.93	0.404 38	63.33 (0.23)	-5.28	6.60	0.104 42	61.77 (0.03)	0.04	0.64
0.404 17	61.82 (0.17)	0.01		0.405 14	63.44 (0.16)	-1.89		0.203 46	62.60 (0.22)	-0.08	
0.813 65	63.96 (0.33)	-2.36		0.815 84	65.75 (0.24)	-9.99	11.63	0.405 87	64.31 (0.29)	-6.96	8.88
								0.406 48	64.48 (0.25)	-9.84	13.03
								0.819 11	67.34 (0.26)	-14.60	16.84
					I-Leucine	2					
0.0	$106\ 71^{b}(0\ 02)$	1 74	-947	0.0	107 59 ^b (0 03)	1 65		0.0	108 40 ^b (0 07)	6 93	
0.0	106.71^{f} (0.02)	1.74	0.17	0.0	107.00 (0.00) 107.70 ^e	1.00		0.0	108.41 ^e	0.00	
	100.71				107.70^{f}				100.11		
0.050 16	107.53 (0.27)	-5.64		0.050 27	108.02 (0.11)	-1.76		0.050 42	108.84 (0.04)	4.87	
0.100 57	109.10 (0.43)	-21.25	0.43	0.100 79	109.42 (0.58)	-14.94		0.101 09	110.45 (0.12)	-23.77	163.76
0.403 35	111.07 (0.06)	-62.10	374.76	0.404 33	112.52 (0.85)	-39.64		0.405 60	113.95 (0.39)	-105.57	752.70
0.812 97	113.78 (0.39)	-135.21	973.09	0.818 09	116.50 (0.62)	-91.05		0.818 21	118.24 (0.73)	-188.09	1373.66

 a m_s = molality of MgCl₂; parentheses contain standard deviations. b Present work. c Reference 13. d Reference 5. e Reference 12. f Reference 14.

			-,, -		,
288	.15 K	298	.15 K	308	.15 K
ms	$\Delta_{\rm t} V_2^{\circ}$	ms	$\Delta_{\rm t} V_2^{\circ}$	ms	$\Delta_{ m t} V_2^{\circ}$
$\overline{\text{mol}\cdot\text{kg}^{-1}}$	$\overline{\text{cm}^3 \cdot \text{mol}^{-1}}$	mol·kg ⁻¹	$\overline{\mathrm{cm}^3\cdot\mathrm{mol}^{-1}}$	$mol \cdot kg^{-1}$	cm ³ ⋅mol ⁻¹
		Gly	cine		
0.050 16	0.32	0.050 27	0.29	0.052 55	0.16
0.101 23	0.79	0.099 90	0.63	0.101 05	0.31
0.201 09	1.20	0.403 58	1.83	0.202 59	0.65
0.271 58	1.44	0.715 53	2.93	0.405 98	1.52
0.396 69	2.59	0.763 11	3.48	0.822 18	3.07
0.404 66	2.96	0.814 62	3.39		
0.607 42	3.66	0.814 68	3.66		
0.815 27	5.03	0.918 11	4.36		
0.816 48	5.58				
		L-Al	anine		
0.050 17	0.16	0.050 28	0.43	0.050 43	0.17
0.100 39	0.68	0.100 61	0.66	0.100 92	0.89
0.403 39	2.27	0.404 38	2.91	0.104 42	0.89
0.404 17	2.15	0.405 14	3.02	0.203 46	1.72
0.813 65	4.29	0.815 84	5.33	0.405 87	3.43
				0.406 48	3.60
				0.819 11	6.46
		L-Le	eucine		
0.050 16	0.82	0.050 27	0.43	0.050 42	0.44
0.100 57	2.39	0.100 79	1.83	0.101 09	2.05
0.403 35	4.36	0.404 33	4.93	0.405 60	5.55
0.812 97	7.07	0.818 09	8.91	0.818 21	9.84

Table 4. Partial Molar Volume of Transfer $(\Delta_t V_2^\circ)$ of Amino Acids from Water to Aqueous Magnesium Chloride Solutions at (288.15, 298.15, and 308.15) K

volume in the presence of aqueous solutions of $MgCl_2$. Because of the stronger interactions of Mg^{2+} and Cl^- with COO^- and $NH^+{}_3$ in the amino acids, the electrostriction of

Figure 3. Standard volumes of transfer $(\Delta_t V_2^{\circ})$ of glycine vs molality (m_s) at different temperatures: \diamond , 288.15 K; \Box , 298.15 K; Δ , 308.15 K.

neighboring water molecules due to these charged centers will be reduced, which will result in a reduction in the shrinkage volume.

The increase of V_2^{∞} values with the increase in temperature may also be attributed to the reduction in electrostriction with temperature. This also gets support from the volumetric and compressibility studies of glycine and DLalanine in aqueous sodium sulfate solutions by Wadi and Ramasami, who report that the hydration number of amino acids decreases with increasing temperature and concentration of sodium sulfate.¹⁹ The increase in the positive V_2^{∞} values of the studied amino acids with the increase in the

Figure 4. Standard volumes of transfer $(\Delta_t V_2^{\circ})$ of L-alanine vs molality (m_s) at different temperatures: \diamond , 288.15 K; \Box , 298.15 K; Δ , 308.15 K.

Figure 5. Standard volumes of transfer $(\Delta_t V_2^{\circ})$ of L-leucine vs molality (m_s) at different temperatures: \diamond , 288.15 K; \Box , 298.15 K; Δ , 308.15 K.

concentration of MgCl₂ may further be attributed to the formation of noncovalent ion pairs between the charged groups of the amino acids and the cation (Mg²⁺) and the anion (Cl⁻) of the electrolyte. This increases the apparent molar volume of the amino acid and decreases the electrostriction of water around amino acids in the presence of MgCl₂. Further, the formation of the ion pairs also decreases the hydrophobicity of amino acid molecules arising from the interactions of the hydrocarbon portion of amino acids with water molecules.¹⁵

Apart from the ion-charged group interactions between Mg^{2+} and COO^- and between Cl^- and $NH^+{}_3$ centers as discussed above, another type of interactions such as ion-nonpolar group interactions between Mg^{2+} or Cl^- ions and nonpolar groups of the amino acids may occur in amino acid + magnesium chloride + water ternary systems. According to the cosphere overlap model developed by Gurney,²⁰ the ion-charged group interactions would lead

to a positive $\Delta_t V_2^{\circ}$, whereas ion–nonpolar group interactions will result in negative $\Delta_t V_2^{\circ}$ values. Since positive $\Delta_t V_2^{\circ}$ values were observed for all the amino acids studied, we can conclude that the contributions of ion-charged group interactions to $\Delta_t V_2^{\circ}$ dominate over the second type of interactions especially for the infinitely dilute solutions. Owing to the higher charge and small size of Mg²⁺ ions, the $\Delta_t V_2^{\circ}$ values for the amino acids are higher than the corresponding values in aqueous NaCl solutions.²¹ The higher $C_{p2,\phi}$ values for these amino acids in MgCl₂ than those in water are also indicative of strong interactions between charged centers of amino acids and ions of MgCl₂.

The transfer volumes of the amino acids can also be expressed by the McMillan Mayer theory²² of solutions, which permits the formal separation of the effects due to interactions between the pairs of solute molecules and those due to interactions between three or more solute molecules by the following equation.

$$\Delta_{\rm t} V_2^{\circ} = 2 V_{\rm AB} m_{\rm s} + 3 V_{\rm ABB} m_{\rm s}^{2} + \dots \tag{9}$$

where A stands for the amino acids and B stands for MgCl₂ V_{AB} and V_{ABB} are the pair and triplet volumetric interaction parameters. Using the above equation, volumetric interaction parameters were calculated and are given in Table 5. The data reveal that all pair volumetric interaction parameters V_{AB} are positive for the three amino acids studied and are larger than the corresponding V_{ABB} values. This shows that the interactions between the amino acids and $MgCl_2$ are mainly pair interactions. Further, V_{AB} decreases from L-leucine to L-alanine to glycine at (298.15 and 308.15) K whereas the order is different at 288.15 K, that if, from L-leucine to glycine to L-alanine, which is again indicative of a different temperature dependence of the contributions to V_2° . It may also be seen that V_{AB} decreases with temperature in the case of glycine whereas it increases or remains almost constant in the cases of L-alanine and L-leucine, respectively.

The V_2° values for the amino acids studied in water and in aqueous MgCl₂ solutions (at rounded molalities of MgCl₂ $m_s = 0.1, 0.2, ...$) at different temperatures were fitted by the method of least squares using the equation

$$V_2^{\infty} = \alpha + \beta T + \gamma T^2 \tag{10}$$

where α , β , and γ are constants and T is the temperature. The $(\partial V_2^{\infty}/\partial T)_P$ and $(\partial^2 V_2^{\infty}/\partial T^2)_P$ parameters were then determined from the above equation and are illustrated in Figures 6 and 7. The values of $(\partial V_2^{\infty}/\partial T)_P$ and $(\partial^2 V_2^{\infty}/\partial T^2)_P$ for the amino acids studied presently are 0.0805 cm³·mol⁻¹·K⁻¹, -0.0019 cm⁶·mol⁻²·K⁻² for glycine; 0.0605 cm³·mol⁻¹·K⁻¹, -0.0029 cm⁶·mol⁻²·K⁻² for L-alanine; and 0.0845 cm³·mol⁻¹·K⁻¹, -0.0007 cm⁶·mol⁻²·K⁻² for L-leucine, respectively, in water, which agree very well with the literature values¹² (0.0630 cm³·mol⁻¹·K⁻¹, -0.0017 cm⁶·mol⁻²·K⁻² for glycine; 0.0620 cm³·mol⁻¹·K⁻¹, -0.0016 cm⁶·mol⁻²·K⁻² for L-alanine; and 0.0840 cm³·mol⁻¹·K⁻¹, -0.0016 cm⁶·mol⁻²·K⁻² for L-alanine; and 0.0840 cm³·mol⁻¹·K⁻¹, -0.0003 cm⁶·mol⁻²·K⁻² for L-leucine). It may be seen

Table 5. Pair and Triplet Interaction Coefficients for Some Amino Acids in Aqueous Magnesium Chloride Solutions at(288.15, 298.15, and 308.15) K

		V _{AB} /cm ³ ⋅mol ⁻² ⋅kg		$V_{ m ABB}/ m cm^3\cdot mol^{-3}\cdot kg^2$				
amino acid	288.15 K	298.15 K	308.15 K	288.15 K	298.15 K	308.15 K		
glycine L-alanine L-leucine	3.155 2.861 7.561	2.0720 3.9899 7.0670	1.7096 4.5239 7.4857	$0.0631 \\ -0.1859 \\ -2.6806$	$0.1309 \\ -0.5863 \\ -1.3342$	$0.1335 \\ 0.4589 \\ -1.6199$		

Figure 6. $(\partial V_2^{\infty} / \partial T)_P$ vs m_s for amino acids in aqueous magnesium chloride solutions at 298.15 K.

(Figures 6 and 7) that $(\partial V_2^{\circ}/\partial T)_P$ for glycine decreases with $m_{\rm s}$ of MgCl₂ and becomes negative at $\approx 0.6 m_{\rm s}$ while for both L-alanine and L-leucine it increases: the increase is non-linear in the case of L-alanine and linear in the case of L-leucine. This may well be correlated with the increasing hydrophobicity from L-alanine to L-leucine molecules. The second-order dependence, that is, $(\partial^2 V_2^{\circ}/\partial T^2)_P$, is not much pronounced and it changes from the slightly negative side to the positive side for glycine and L-alanine while for L-leucine it shows the opposite behavior.

Hepler²³ proposed a method by which qualitative information on hydration of solutes could be obtained from the thermal expansion of aqueous solution by using the relation

$$\left(\partial C_{\mathbf{p}2}^{\infty} / \partial P\right)_{T} = -T \left(\partial^{2} V_{2}^{\infty} / \partial T^{2}\right)_{P}$$
(11)

According to this, the left side of the above equation should be positive for structure-breaking solutes, and

Figure 7. $(\partial^2 V_2^{\circ} / \partial T^2)_P$ vs m_s for amino acids in aqueous magnesium chloride solutions at 298.15 K.

therefore, structure-breaking solutes possess negative $(\partial^2 V_2^{\circ}/\partial T^2)_P$ values. Similarly, the positive values of $(\partial^2 V_2^{\circ}/\partial T^2)_P$ should be associated with the structure-making solutes. Although this method has its limitations, even then this equation is helpful for distinguishing between polar and ionic solutes and those for which hydrophobic hydration is dominant.²³ $(\partial^2 V_2^{\circ}/\partial T^2)_P$ values for the presently studied amino acids in water are negative, which suggests that these solutes are structure breakers. Thus, the negative values of $(\partial^2 V_2^{\circ}/\partial T^2)_P$ show the dominance of ionic NH⁺₃ and COO⁻ functional groups in solute–water interactions in these amino acids. However, it is difficult to rationalize presently the sign and magnitude of $(\partial^2 V_2^{\circ}/\partial T^2)_P$ for the amino acids studied in the presence of MgCl₂.

Literature Cited

 Shen, J.-L.; Li, Z.-F.; Wang, B.-H.; Zhang, Y.-M. Partial Molar Volumes of Some Amino Acids and a Peptide in Water, DMSO, NaCl and DMSO/NaCl Aqueous Solutions. J. Chem. Thermodyn. 2000, 32, 805–819.

- (2) Millero, F. J.; Lo Surdo, A.; Shin, C. The Apparent Molal Volumes and Adiabatic Compressibilities of Aqueous Amino Acids at 25 °C. J. Phys. Chem. 1978, 82, 784–792.
- (3) Chalikian, T. V.; Sarvazyan, A. P.; Breslauer, K. J. Partial Molar Volumes, Expansibilities, and Compressibilities of α,ω- Aminocarboxylic Acids in Aqueous Solutions Between 18 and 55 °C. *J. Phys. Chem.* **1993**, *97*, 13017–13026.
- Hackel, M.; Hinz, H.-J.; Hedwig, G. R. A New Set of Peptidebased Group Heat Capacities for use in Protein Stability Calculations. J. Mol. Biol. 1999, 291, 197–213.
 Kharakoz, D. P. Volumetric Properties of Proteins and Their
- (5) Kharakoz, D. P. Volumetric Properties of Proteins and Their Analoges in Diluted Water Solutions.1. Partial Volumes of Amino Acids at 15 °C–55 °C. *Biophys. Chem.* **1989**, *34*, 115–125.
- (6) Jencks, W. P. Catalysis in Chemistry and Enzymology, McGraw-Hill: New York, 1969; p 351.
 (7) Frausto da Silva, J. J. R.; Williams, R. J. P. The Biological
- (7) Frausto da Silva, J. J. R.; Williams, R. J. P. The Biological Chemistry of the Elements (The Inorganic Chemistry of Life); Oxford University Press Inc.: New York, 1993.
- (8) Banipal, P. K.; Banipal, T. S.; Lark, B. S.; Ahluwalia, J. C. Partial Molar Heat Capacities and Volumes of Some Mono-, Di- and Tri-Saccharides in Water at 298.15, 308.15 and 318.15 K. *J. Chem. Soc., Faraday Trans.* 1997, *93* (1), 81–87.
 (9) Lo Surdo, A.; Alzola, E. M.; Millero, F. J. PVT Properties of
- (9) Lo Surdo, A.; Alzola, E. M.; Millero, F. J. PVT Properties of Concentrated Aqueous Electrolytes: Densities and Apparent Molar Volumes of NaCl, MgCl₂ and MgSO₄ Solutions from 0.1 mol·kg⁻¹ to Saturation and from 273.15 to 323.15 K. J. Chem. Thermodyn. **1982**, 14, 1469–1483.
- (10) Archer, D. G. Thermodynamic properties of the sodium chloride + water system. II. Thermodynamic properties of NaCl(aq), NaCl.2H₂O(cr), and phase equilibria. *J. Phys. Chem. Ref. Data* **1992**, *21*, 793–829.
- (11) Horne, R. A. Water and Aqueous Solutions, Structure, Thermodynamics, and Transport Processes; Willey-Interscience: New York, 1972.
- (12) Banipal, T. S.; Kapoor, P. Partial Molal Volumes and Expansibilities of Some Amino acids in Aqueous Solutions. J. Indian Chem. Soc. 1999, 76, 431–437.

- (13) Duke, M. M.; Hakin, A. W.; Mckay, R. M.; Preuss, K. E. The Volumetric and Thermochemical Properties of Aqueous Solutions of L-Valine, L-Alanine and L-Isoleucine at 288.15, 298.15, 313.15 and 328.15 K. *Can. J. Chem.* **1994**, *72*, 1489–1494.
- (14) Hakin, A. W.; Duke, M. M.; Klassen, S. A.; Mckay, R. M.; Preuss, K. E. Apparent Molar Heat Capacities and Volumes of Some Aqueous Solutions of Aliphatic Amino Acids at 288.15, 298.15, 313.15 and 328.15 K. Can. J. Chem. 1994, 72, 362–368.
- (15) Soto, A.; Arce, A.; Khoshkbarchi, K. M. Effect of Cation and Anion of an Electrolyte on Apparent Molar Volume, Isentropic Compressibility and Refractive Index of Glycine in Aqueous Solutions. *Biophys. Chem.* **1999**, *76*, 73–82.
- (16) Kishore, N. Unpublished results.
- (17) Franks, F.; Qucickenden, M. A.; Reid, D. S.; Watson, B. Calorimetric and Volumetric Studies of Dilute of Aqueous Cyclic Ether Derivatives. *Trans. Faraday Soc.* **1970**, *66*, 582–589.
- (18) Shahidi, F.; Farell, P. G. Partial Molar Volumes of Some α-Amino Carboxylic Acids in Water. J. Chem. Soc., Faraday Trans. 1 1981, 77, 963–968.
- (19) Wadi, R. K.; Ramasami, P. J. Partial Molal Volumes and Adiabatic compressibilities of Transfer of Glycine and DL-Alanine from Water to Aqueous Sodium Sulfate at 288.15, 298.15 and 308.15 K. J. Chem. Soc., Faraday Trans. **1997**, *93*, 243–247.
- (20) Gurney, R. W. *Ionic Processes in Solution*, McGraw-Hill: New York, 1953.
- (21) Bhat, R.; Ahluwalia, J. C. Partial Molar Heat Capacities and Volume of Transfer of Some Amino Acids and Peptides from Water to Aqueous Sodium Chloride Solution at 298.15 K. J. Phys. Chem. 1985, 89, 1099–1105.
- (22) Mcmillan, W. G. The Statistical Thermodynamics of Multicomponent Systems. J. Chem. Phys. 1945, 13, 276–305.
- (23) Hepler, L. Thermal Expansion and Structure in Water and Aqueous Solutions. *Can. J. Chem.* **1969**, *47*, 4613–4617.

Received for review September 2, 2003. Accepted January 23, 2004.

JE034168M