Dynamic Viscosities of 2-Pentanol with Alkanes (Octane, Decane, and Dodecane) at Three Temperatures T = (293.15, 298.15, and 303.15) K. New UNIFAC-VISCO Interaction Parameters

Begoña González, Angeles Dominguez, and Jose Tojo*

Chemical Engineering Department, Vigo University, 36200 Vigo, Spain

Raquel Cores

Language and Computer Systems Department, Vigo University, 36200 Vigo, Spain

In this work, the dynamic viscosities, densities, and speed of sound for the binary mixtures, 2-pentanol with several alkanes (octane, decane, and dodecane), at T = (293.15, 298.15, 303.15) K have been measured over the whole composition range and atmospheric pressure along with the properties of the pure components. Excess molar volumes, isentropic compresibility, deviations in isentropic compressibility, and viscosity for the binary systems at the above-mentioned temperatures were calculated and fitted to Redlich–Kister equation to determine the fitting parameters and the root-mean-square deviations. The UNIQUAC equation was used to correlate the experimental data. Predictions of the dynamic viscosities of these binary mixtures from UNIFAC–VISCO and ASOG–VISCO methods have been made. The interaction parameters within secondary alcohols with alkanes (OH_s/CH₂, OH_s/CH₃) have been determined for their application in the predictive UNIFAC–VISCO method.

1. Introduction

Among the physical properties of fluids needed to optimize the industrial process design, viscosity is one of the most important. In chemical industry, viscosity is necessary for hydraulic calculations, fluid transport through pipes and pore surfaces, and in many mass and energy transfers. As an extension of our work concerning dynamic viscosity of binary systems with alcohols,^{1–4} in this paper, we report experimental dynamic viscosity, density, and speed of sound data of the binary systems 2-pentanol with octane, decane, or dodecane at T = (293.15, 298.15, 303.15)K. The results were used to calculate excess molar volumes, isentropic compresibility, deviations in isentropic compresibility, and viscosity over the entire mole fraction range for the mixtures. The UNIFAC-VISCO^{5,6} and ASOG-VISCO7 methods have been applied to compare the difference between predicted and experimental dynamic viscosities.

To improve the results of the prediction of the UNIFAC– VISCO method, the interaction parameter CH_2 and CH_3 groups proposed by Chevalier et al.⁵ have been recalculated using bibliography data. As the interaction parameters (OH_s/CH_2 , OH_s/CH_3) had not been determined, we have used both our experimental and recent bibliography data to calculate them.

2. Experimental Section

Chemicals. The pure components were supplied by Fluka, except for 2-pentanol, which was supplied by Merck. The components were degassed ultrasonically and dried over Type 4Å molecular sieves, which were supplied by Aldrich, and kept in inert argon with a maximum content

 $\ensuremath{^*}\xspace{To}$ whom correspondence may be addressed. E-mail: jtojo@ uvigo.es.

Table 1.	Comparison	of Density, p	o, and Visco	sity, η , with
Literatu	re Data for P	ure Compon	ents at $T =$	303.15 K

	ρ/(g •α	cm^{-3})	$10^3 \eta$	/(Pa•s)
component	exp	lit	exp	lit
2-pentanol octane decane dodecane	0.80090 0.69449 0.72233 0.74127	$0.8010^a \\ 0.6945^b \\ 0.7224^c \\ 0.7415^b$	2.774 0.478 0.787 1.219	$2.77^{a} \ 0.478^{b} \ 0.786^{d} \ 1.218^{c}$

 a Riggio et al.
8 $\,^b$ Aminabhavi et al.
9 $\,^c$ Trenzado et al.
10 $\,^d$ Aminabhavi et al.
11 $\,^{11}$

in water of 2×10^{-6} by mass fraction. The maximum water contents of the liquids were using a Metrohm 737 KF coulometer. Their mass fraction purities were >98 mass % for 2-pentanol, 99.5 mass % for octane, and >99 mass % for decane and dodecane.

Apparatus and Procedure. Samples were prepared by mass using a Mettler AX-205 Delta Range balance with a precision of $\pm 10^{-5}$ g, covering the whole composition range of the mixture.

Kinematic viscosities were determined using an automatic viscosimeter Lauda PVS1 with two Ubbelhode capillary microviscosimeters of 0.4×10^{-3} m and 0.53×10^{-3} m diameter. Gravity fall is the principle of measurement on which this viscosimeter is based. The capillary is maintained in a D20KP LAUDA thermostat with a resolution of 0.01 K. The capillaries are calibrated and credited by the company. The uncertainty of the capillary diameter is ± 0.005 mm. To verify the calibration, the viscosity of the pure liquids were compared with data recently published (Table 1). The uncertainty for the viscosimeter is ± 0.001 mPa·s. The equipment has a control unit PVS1 (Processor Viscosity System) that is a PC-controlled instrument for the precise measurement of fall time, using standardized glass capillaries, with an accuracy of 0.01 s.

Table 2. Density, ρ , Speed of Sound, u, Dynamic Viscosity, η , Excess Molar Volumes, V^{E} , Isentropic Compressibilities, κ_s , Deviations in Isentropic Compressibilities, $\Delta \kappa_s$, and Viscosity Deviations, $\Delta \eta$, of 2-Pentanol(1) + Octane(2) Table 3. Density, ρ , Speed of Sound, u, Dynamic Viscosity, η , Excess Molar Volumes, V^{E} , Isentropic Compressibilities, κ_s , Deviations in Isentropic Compressibilities, $\Delta \kappa_s$, and Viscosity Deviations, $\Delta \eta$, of 2-Pentanol(1) + Decane(2)

	ρΙ	u/	η	$V^{\rm E}$	кd	$\Delta \kappa \swarrow$	$\Delta \eta /$
X	(g•cm ⁻³)	$(\mathbf{m} \cdot \mathbf{s}^{-1})$	(mÝa∙s)	$(cm^3 \cdot mol^{-1})$	(TPa^{-1})	(TPa^{-1})	(mPa∙s)
			T =	293.15 K			
0.0000	0.70257	1193	0.538	0	999	0	0
0.0509	0.70558	1190	0.548	0.156	1000	11	-0.166
0.1050	0.70915	1189	0.566	0.261	997	20	-0.336
0.1853	0.71498	1188	0.598	0.357	991	30	-0.582
0.2976	0.72378	1188	0.658	0.474	979	42	-0.911
0.3968	0.73240	1189	0.732	0.528	965	49	-1.180
0.4953	0.74191	1192	0.841	0.533	948	52	-1.412
0.5965	0.75273	1198	1.008	0.489	926	51	-1.596
0.6993	0.76497	1207	1.296	0.401	898	44	-1.664
0.7971	0.77792	1218	1.727	0.279	866	33	-1.571
0.8997	0.79282	1233	2.531	0.148	829	18	-1.122
0.9509	0.80083	1242	3.190	0.083	810	9	-0.641
1.0000	0.80904	1250	4.001	0	791	0	0
			T =	298.15 K			
0.0000	0.69854	1173	0.506	0	1041	0	0
0.0509	0.70148	1170	0.517	0.174	1042	12	-0.130
0.1050	0.70503	1169	0.530	0.283	1039	21	-0.267
0.1853	0.71084	1168	0.560	0.383	1032	32	-0.459
0.2976	0.71963	1168	0.613	0.501	1019	45	-0.717
0.3968	0.72824	1169	0.678	0.558	1004	52	-0.926
0.4953	0.73773	1172	0.770	0.563	986	56	-1.107
0.5965	0.74853	1178	0.915	0.521	963	55	-1.242
0.6993	0.76076	1187	1.147	0.431	933	48	-1.294
0.7971	0.77374	1199	1.495	0.304	900	36	-1.217
0.8997	0.78869	1214	2.133	0.163	860	19	-0.862
0.9509	0.79675	1223	2.635	0.090	839	10	-0.502
1.0000	0.80501	1232	3.273	0	818	0	0
			T =	303.15 K			
0.0000	0.69449	1152	0.478	0	1085	0	0
0.0509	0.69735	1149	0.486	0.193	1086	13	-0.109
0.1050	0.70087	1148	0.498	0.310	1083	23	-0.221
0.1853	0.70665	1147	0.525	0.414	1075	34	-0.379
0.2976	0.71543	1147	0.572	0.531	1062	48	-0.589
0.3968	0.72403	1149	0.629	0.589	1046	55	-0.760
0.4953	0.73350	1153	0.709	0.594	1026	59	-0.906
0.5965	0.74429	1158	0.826	0.552	1002	58	-1.021
0.6993	0.75650	1167	1.022	0.463	970	51	-1.062
0.7971	0.76948	1179	1.307	0.330	935	39	-1.001
0.8997	0.78449	1195	1.821	0.177	892	21	-0.723
0.9509	0.79259	1204	2.215	0.098	870	11	-0.446
1.0000	0.80090	1214	2.708	0	848	0	0

The kinematic viscosity, ν , is determined from the following relationship

$$\nu = k(t - y) \tag{1}$$

where y is the Hagenbach correction, t is the flow time, and k is the Ubbelhode capillary microviscosimeter constant, which is supplied by the company. The dynamic viscosity is determined from

$$\eta = \nu \rho \tag{2}$$

where η is the dynamic viscosity, ν is the kinematic viscosity, and ρ is the density. The densities and the speeds of sound of the pure liquids and mixtures were measured using an Anton Paar DSA-5000 digital vibrating tube densimeter. Uncertainty in density measurement is $\pm 2 \times 10^{-6}$ g·cm⁻³ and for the speed of sound is ± 0.1 m·s⁻¹.

3. Results and Discussion

Dynamic viscosity, density, speed of sound, excess molar volume, isentropic compresibility (determined by means of the Laplace equation, $k_s = \rho^{-1}u^{-2}$), and deviation in isentropic compressibility for the systems 2-pentanol with octane, decane, or dodecane at 293.15, 298.15, and 303.15 K and atmospheric pressure are reported in Tables 2–4. The excess molar volumes, the deviations in isentropic compresibility, and viscosity deviations are calculated by

Y	$\rho/$	$\frac{u}{(m\cdot s^{-1})}$	$\eta/$ (mPa·s)	$V^{E/}$	$\frac{\kappa_{s}}{(TPa^{-1})}$	$\frac{\Delta \kappa_{\rm s}}{({\rm TPa}^{-1})}$	$\Delta \eta /$ (mPa·s)
	(g chi)	(111.5))	T = T	203 15 K	(III)	(III)	(IIII & 5)
0.0000	0.72989	1254	0.911	0	871	0	0
0.0487	0.73162	1251	0.914	0.123	874	7	-0.147
0.0987	0.73341	1248	0.912	0.265	875	12	-0.304
0.2043	0.73814	1243	0.956	0.403	876	22	-0.586
0.2996	0.74288	1239	0.989	0.518	876	30	-0.847
0.4006	0.74867	1236	1.084	0.588	875	36	-1.064
0.5017	0.75531	1233	1.149	0.619	871	40	-1.312
0.6002	0.76288	1232	1.300	0.585	863	41	-1.465
0.6985	0.77167	1233	1.531	0.502	852	37	-1.538
0.7992	0.78240	1237	1.914	0.338	836	29	-1.466
0.8996	0.79455	1242	2.626	0.195	815	17	-1.064
0.9500	0.80150	1246	3.205	0.103	803	8	-0.642
1.0000	0.80904	1250	4.001	0	791	0	0
			T =	298.15 K			
0.0000	0.72612	1235	0.845	0	903	0	0
0.0487	0.72776	1231	0.845	0.144	907	8	-0.118
0.0987	0.72953	1228	0.844	0.293	908	13	-0.241
0.2043	0.73423	1223	0.882	0.434	910	24	-0.459
0.2996	0.73894	1220	0.909	0.55	910	32	-0.664
0.4006	0.74470	1210	0.990	0.622	908	38	-0.828
0.3017	0.75002	1214	1.044	0.634	904	43	-1.019
0.6002	0.76759	1213	1.100	0.622	890	44	-1.130
0.0900	0.70730	1214	1.552	0.336	004 967	40	-1.100
0.7352	0.77029	1222	2 214	0.307	845	18	-0.815
0.0550	0.79743	1228	2 651	0.113	832	9	-0.513
1 0000	0.80501	1232	3 273	0.110	818	ő	0.001
1.0000	0.00001	1202	0.270 T-	202 15 K	010	Ū	0
0 0000	0 79933	1215	0 787	0	038	0	0
0.0000	0.72389	1213	0.779	0 165	942	g	-0 105
0.0987	0.72562	1209	0.782	0.310	943	14	-0.201
0.2043	0.73028	1204	0.810	0.468	945	26	-0.383
0.2996	0.73496	1200	0.842	0.586	945	$\tilde{34}$	-0.540
0.4006	0.74069	1197	0.883	0.658	943	41	-0.700
0.5017	0.74725	1194	0.952	0.689	938	46	-0.832
0.6002	0.75473	1193	1.053	0.659	930	47	-0.927
0.6985	0.76344	1194	1.201	0.574	918	43	-0.974
0.7992	0.77412	1198	1.439	0.397	900	34	-0.936
0.8996	0.78630	1204	1.888	0.230	877	20	-0.687
0.9500	0.79328	1209	2.244	0.123	862	10	-0.431
1.0000	0.80090	1214	2.708	0	848	0	0

the following equations

$$V^{E} = \sum_{i=1}^{N} x_{i} M_{i} (\rho^{-1} - \rho_{i}^{-1})$$
(3)

$$\Delta \kappa_{\rm s} = \kappa_{\rm s} - \sum_{i=1}^{N} x_i \kappa_{{\rm s},i} \tag{4}$$

$$\Delta \eta = \eta - \sum_{i}^{N} x_{i} \eta_{i} \tag{5}$$

where ρ and ρ_i are the density of the mixture and the density of the pure components, respectively, κ_s is the isentropic compressibility of the mixture, $\kappa_{s,i}$ is the isentropic compressibility of the pure components, x_i represents the mole fraction of the pure component, and η and η_i are the dynamic viscosity of the mixture and the pure component, respectively.

The binary deviations at several temperatures were fitted to a Redlich–Kister-type¹² equation

$$\Delta Q_{ij} = x_i x_j \sum_{p=0}^{M} B_p (x_i - x_j)^p$$
 (6)

where ΔQ_{ij} is the excess property, *x* is the mole fraction,

Figure 1. Excess molar volume, $V^{\mathbb{E}}$, from the Redlich–Kister equation plotted against mole fraction at \bigcirc , T = 293.15 K; \square , T = 298.15 K; \triangle , T = 313.15 K for the binary mixtures: a, 2-pentanol-(1) + octane(2); b, 2-pentanol(1) + decane(2); c, 2-pentanol(1) + dodecane(2).

 $B_{\rm p}$ is the fitting parameter, and *M* is the degree of the polynomic expansion, which was optimized using the F test.¹³ The fitting parameters are given in Table 5 together with the root-mean-square deviations. These are calculated from the values of the experimental and calculated property and the number of experimental data are represented by *z*_{exp}, *z*_{calc}, and *n*_{dat}, respectively

$$\sigma = \{\{\sum_{i}^{n_{\text{dat}}} (z_{\text{exp}} - z_{\text{calc}})^2\} / \{n_{\text{dat}}\}\}^{1/2}$$
(7)

Figures 1, 2, and 3 show the fitted curves for the excess molar volume and deviations in isentropic compresibility and viscosity values for binary mixtures of 2-pentanol with octane, decane, and dodecane at T = (293.15, 298.15,303.15) K. In Figure 1, the excess molar volumes are positive over the entire composition range, with a maximum at equimolar composition for the three systems. In Figure 2, the behavior for the deviations in isentropic compressibility is similar to that for excess molar volumes with positive values observed over the entire composition range. These figures show maxima at 0.6 mole fraction,

Table 4. Density, ρ , Speed of Sound, u, Dynamic Viscosity, η , Excess Molar Volumes, $V^{\rm E}$, Isentropic Compressibilities, $\kappa_{\rm s}$, Deviations in Isentropic Compressibilities, $\Delta \kappa_{\rm s}$, and Viscosity Deviations, $\Delta \eta$, of 2-Pentanol(1) + Dodecane(2)

	$\rho/$	u/	$\eta/$	$V^{E/}$	κ_{s}	$\Delta \kappa_s$	$\Delta \eta /$
X	(g·cm °)	(m·s ·)	(mPa·s)	(CIII ⁶ ·III0I ·)	(1Pa ·)	(1Pa -)	(mpa·s)
0.0000	0.74854	1297	1.454	295.15 K 0	794	0	0
0.0490	0.74965	1294	1.443	0.102	796	3	-0.136
0.0965	0.75077	1291	1.441	0.205	799	6	-0.258
0.2065	0.75381	1284	1.438	0.384	805	12	-0.542
0.2993	0.75686	1278	1.465	0.494	809	16	-0.751
0.3986	0.76067	1271	1.499	0.578	813	21	-0.970
0.5046	0.76560	1265	1.563	0.607	817	24	-1.176
0.5974	0.77070	1260	1.667	0.602	818	26	-1.308
0.7026	0.77776	1255	1.865	0.535	816	24	-1.378
0.8001	0.78582	1253	2.205	0.418	811	20	-1.287
0.8994	0.79590	1251	2.786	0.256	803	12	-0.959
0.9497	0.80207	1251	3.267	0.135	797	6	-0.606
1.0000	0.80904	1250	4.001	0	791	0	0
			T =	298.15 K			
0.0000	0.74490	1278	1.327	0	822	0	0
0.0490	0.74596	1275	1.316	0.116	825	3	-0.106
0.0965	0.74703	1271	1.312	0.230	828	6	-0.203
0.2065	0.75005	1265	1.307	0.413	834	13	-0.422
0.2993	0.75306	1259	1.330	0.525	838	17	-0.579
0.3980	0.70084	1232	1.300	0.61	843	26	-0.748
0.5040	0.70171	1240	1.400	0.041	040	20	-0.903
0.3974	0.70077	1241	1.407	0.037	047 846	26	-1.002
0.7020	0.77370	1230	1 900	0.371	841	20	-0.984
0.8994	0 79184	1232	2 347	0.430	832	13	-0.730
0.9497	0.79802	1232	2.717	0.146	826	7	-0.458
1.0000	0.80500	1232	3.273	0	818	Ó	0
			T =	303.15 K			
0.0000	0.74127	1259	1.219	0	851	0	0
0.0490	0.74226	1256	1.206	0.133	854	3	-0.089
0.0965	0.74330	1252	1.201	0.256	858	7	-0.168
0.2065	0.74625	1245	1.194	0.447	864	14	-0.346
0.2993	0.74923	1240	1.211	0.561	869	19	-0.473
0.3986	0.75297	1233	1.231	0.646	873	23	-0.608
0.5046	0.75779	1227	1.270	0.677	877	28	-0.733
0.5974	0.76279	1222	1.338	0.673	878	29	-0.810
0.7026	0.76972	121/	1.44/	0.607	8//	28	-0.864
0.8001	0.70771	1214	1.652	0.481	8/2	24	-0.811
0.8994	0.70290	1213	1.998	0.295	803 856	10	-0.020
1 0000	0.79369	1213	2.204 0 709	0.157	8/8	0	0.412
1.0000	0.00030	1	0.132	U	040	U	U

approximately, except 2-pentanol with octane, where the maximum lies at equimolar composition. For viscosity deviations (Figure 3), the sign is negative for all the binary systems, and the minima lie at 0.7 mole fraction approximately.

Figure 2. Deviations in isentropic compressibility, $\Delta \kappa_s$, from the Redlich–Kister equation plotted against mole fraction for the binary mixtures 2-pentanol(1) + octane(2) at \bigcirc , T = 293.15 K; \square , T = 298.15 K; \triangle , T = 313.15 K; 2-pentanol(1) + decane(2) at \bigtriangledown , T = 293.15 K; \diamondsuit , T = 298.15 K; \clubsuit , T = 298.15 K; \clubsuit , T = 293.15 K; \checkmark , T = 313.15 K; 2-pentanol(1) + dodecane(2) at \blacklozenge , T = 293.15 K; \blacktriangledown , T = 293.15 K; \clubsuit , T = 313.15 K; 2-pentanol(1) + dodecane(2) at \blacklozenge , T = 293.15 K; \blacktriangledown , T = 293.15 K; \bigstar , T = 313.15 K.

Table 5. Fitting Parameters and Root-Mean-Square Deviation, σ , for Binary Mixtures at T = (273.15, 298.15, 303.15) K

	2-Pentanol (1) + Octane (2)					
	B_0	B_1	B_2	B_3	B_4	σ
		T=2	93.15 K			
V ^E /(cm ³ ⋅mol ⁻¹)	2.1443	-0.3629	-0.7496	-0.5236	1.3797	0.004
$\Delta \kappa_{\rm s}/({\rm TPa^{-1}})$	208.86	24.02	-33.53	-54.97	40.87	0.17
10 ³ Δη/(Pa·s)	-5.6876	-4.1425	-2.7914	-2.0889	-1.1456	0.005
		T=2	98.15 K			
$V^{\mathbb{E}}/(\mathrm{cm}^3 \cdot \mathrm{mol}^{-1})$	2.2677	-0.3155	-0.6854	-0.6867	1.4853	0.004
$\Delta \kappa_{\rm s}/({\rm TPa}^{-1})$	222.89	27.86	-28.12	-58.00	38.27	0.16
$10^3 \Delta \eta / (Pa \cdot s)$	-4.4514	-3.1557	-2.0799	-1.6250	-0.9588	0.002
		T=3	03.15 K			
$V^{\mathbb{E}}/(\mathrm{cm}^3 \cdot \mathrm{mol}^{-1})$	2.3950	-0.2839	-0.5840	-0.8678	1.5844	0.005
$\Delta \kappa_{\rm s}/({\rm TPa^{-1}})$	237.30	31.14	-21.20	-62.91	34.45	0.18
$10^3 \Delta \eta / (Pa \cdot s)$	-3.6612	-2.5195	-1.4845	-1.6584	-1.4693	0.005
	2-P	entanol(1) + Decan	e(2)		

	B_0	B_1	B_2	B_3	B_4	σ			
		T=2	93.15 K						
V ^E /(cm ³ ⋅mol ⁻¹)	2.4798	-0.0501	-0.7287	-0.5978	1.0523	0.009			
$\Delta \kappa_{\rm s}/({\rm TPa^{-1}})$	160.15	50.58	-13.17	-36.55	21.82	0.15			
10 ³ Δη/(Pa·s)	-5.1884	-3.8450	-2.7753	-2.2106	-1.4906	0.008			
	T = 298.15 K								
$V^{E}/(cm^{3} \cdot mol^{-1})$	2.6232	0.0023	-0.6516	-0.7948	1.2062	0.009			
$\Delta \kappa_{s}/(TPa^{-1})$	171.38	57.60	-6.50	-43.38	23.56	0.17			
$10^3 \Delta \eta / (Pa \cdot s)$	-4.0280	-2.9527	-2.1721	-1.6679	-1.1407	0.007			
T = 303.15 K									
$V^{E}/(cm^{3} \cdot mol^{-1})$	2.7686	0.0297	-0.5328	-0.9571	1.3112	0.008			
$\Delta \kappa_{\rm s}/({\rm TPa}^{-1})$	182.40	62.91	2.44	-46.21	20.41	0.18			
$10^3 \Delta \eta / (Pa \cdot s)$	-3.3205	-2.2966	-1.5621	-1.7119	-1.5733	0.003			

2-Pentanol (1) + Dodecane (2)

		. ,		. ,		
	B_0	B_1	B_2	B_3	B_4	σ
		T = 29	93.15 K			
$V^{E}/(cm^{3}\cdot mol^{-1})$	2.4424	0.2097	0.0986	0.1326	0.1015	0.003
$\Delta \kappa_{\rm s}/({\rm TPa}^{-1})$	96.47	49.08	-0.50	-11.43	3.75	0.10
10 ³ Δη/(Pa·s)	-4.6806	-3.2661	-1.9985	-2.3620	-2.1345	0.009
		T = 29	98.15 K			
$V^{E}/(cm^{3}\cdot mol^{-1})$	2.5752	0.2653	0.2517	-0.0056	0.1199	0.003
$\Delta \kappa_{\rm s}/({\rm TPa^{-1}})$	103.01	56.02	9.93	-13.88	-0.72	0.13
$10^3 \Delta \eta / (Pa \cdot s)$	-3.5923	-2.4976	-1.6175	-1.7111	-1.4742	0.007
		T = 30)3.15 K			
$V^{E}/(cm^{3}\cdot mol^{-1})$	2.7207	0.2808	0.3926	-0.0985	0.1801	0.003
$\Delta \kappa_{\rm s}/({\rm TPa}^{-1})$	109.45	60.65	20.21	-12.46	-5.93	0.14
$10^3 \Lambda n/(Pa \cdot s)$	-2 9188	-1.9335	-12152	-1 8627	-1.8528	0.009

Table 6. UNIQUAC Parameters and Root-Mean-Square Deviations, σ

systems	$\tau_{12}/(J\cdot mol^{-1})$	$\tau_{21}/(J \cdot mol^{-1})$	σ
2-pentanol + octane 2-pentanol + decane 2-pentanol + dodecane	$-323.977 \\ -614.978 \\ -487.827$	455.028 551.024 452.374	$0.436 \\ 0.411 \\ 0.570$

4. Correlation and Prediction

The UNIQUAC¹⁴ equation is used for calculating of the excess molar free energy of activation for flow, ΔG^{*E} , which

Figure 3. Dynamic viscosity, η , from the Redlich–Kister equation plotted against mole fraction at T = 293.15 K (\bigcirc), T = 298.15 K (\square) and T = 313.15 K (\triangle), for the binary mixtures: a)2-pentanol-(1)+octane(2), b) 2-pentanol(1)+decane(2) and c) 2-pentanol-(1)+dodecane(2).

is related to the viscosity by

$$\ln(\nu M) = \sum_{i} x_{i} \ln(\nu_{i} M_{i}) + \Delta G^{*E}/RT$$
(8)

The correlation has been performed with experimental data using the UNIQUAC equation for minimizing the following

Table 7. Experimental Data Used for Calculating New Interaction Parameters

binary systems	range <i>T</i> /K	no. data points	interaction parameters
pentane with hexane, heptane, octane, nonane, decane, hexadecane ^a	298.15	54	CH ₂ /CH ₃
hexane with heptane, octane, decane ^b	293.15	27	
heptane with octane, decane ^b	293.15	18	
octane with decane ^a	293.15	9	
3-methylpentane with decane, hexadecane ^{c}	298.15	14	
2-methylpentane with hexadecane ^c	298.15	7	
2,2-dimethylpentane with decane, hexadecane ^c	298.15	14	
2,2-dimethylhexane with decane, hexadecane ^{b,c}	298.15	14	
2-propanol with octane, decane, dodecane ^d	293.15 - 303.15	117	CH ₂ /OH _S and CH ₃ /OH _S
2-butanol with octane, decane, dodecane ^e	293.15 - 303.15	117	
2-pentanol with octane, decane, dodecane ^f	293.15 - 303.15	117	

Figure 4. Viscosity deviations, $\Delta \eta$, from the UNIQUAC equation plotted against mole fraction at \bigcirc , T = 293.15 K; \square , T = 298.15 K; \triangle , T = 313.15 K for the binary mixtures: a, 2-pentanol(1) + octane(2); b, 2-pentanol(1) + decane(2); c, 2-pentanol(1) + dodecane(2).

 Table 8. UNIFAC-VISCO Interaction New Parameters

α_{mn}	-CH2-	CH3-	-OH _s -
-CH2- CH3- -OH _s -	$0 \\ -872.51 \\ 6478.42$	$194.26 \\ 0 \\ -263.12$	$1270.60 \\ 4802.35 \\ 0$

objective function (OF)

$$OF = \sum \left| \frac{\{G_{calc}^{*E}\}/\{RT\} - \{G_{exp}^{*E}\}/\{RT\}}{G_{exp}^{*E}/RT} \right|$$
(9)

Figure 5. Predicted values of dynamic viscosities, η , from the UNIFAC–VISCO using Chevalier parameters (long-dashed line), UNIFAC–VISCO using new parameters (solid line), and ASOG–VISCO (dashed line) methods plotted against mole fraction at \bigcirc , T = 293.15 K (experimental data); \Box , T = 298.15 K (experimental data); \bigtriangleup , T = 303.15 K (experimental data) for the binary mixtures: a, 2-pentanol(1) + octane(2); b, 2-pentanol(1) + decane-(2); c, 2-pentanol(1) + dodecane(2).

where $G_{\text{calc}}^{^{*}\text{E}}$ is the excess molar free energy calculated and $G_{\text{exp}}^{^{*}\text{E}}$ is the excess molar free energy experimental. The fitting parameters (τ_{12}, τ_{21}) together with the root-mean-square deviations (σ) are reported in Table 6.

Table 9. Root-Mean-Square Deviation, σ , of Dynamic Viscosity Resulting by the Prediction Using UNIFAC-VISCO (New Parameters), UNIFAC-VISCO (Chevalier Parameters) and ASOG-VISCO Methods for the Binary Mixtures (2-Pentanol + Alkane) at Several Temperatures

systems	<i>T</i> /K	σ UNIFAC–VISCO (new parameters)	σ UNIFAC–VISCO (Chevalier parameters)	σ ASOG–VISCO
2-pentanol (1) + octane (2)	293.15	18.2	45.8	22.0
1 · · · · · · · ·	298.15	15.3	41.9	18.6
	303.15	13.0	38.6	15.9
2-pentanol (1) + decane (2)	293.15	15.9	59.2	18.0
1 · · · · · · · ·	298.15	13.5	55.0	15.1
	303.15	11.3	51.7	12.8
2-pentanol (1) + dodecane (2)	293.15	13.5	70.4	13.6
L	298.15	11.1	65.8	11.6
	303.15	9.5	61.9	10.3

Figure 4 shows the viscosity correlated by the UNIQUAC equation. It can be seen that this equation fitted fairly well the experimental data at several temperatures.

Predictions using the UNIFAC–VISCO and ASOG– VISCO methods have been determined. These predictive methods have been applied to compare the difference between predicted and experimental dynamic viscosities.

The new parameters of the UNIFAC–VISCO method corresponding to secondary alcohols with alkanes have been calculated. These parameters have been determined from experimental values of dynamic viscosities applying the Nelder and Mead¹⁵ equation for minimizing the following OF

$$OF = \frac{1}{N} \sum_{i=1}^{N} \frac{|\eta_{i,exp} - \eta_{i,calc}|}{\eta_{i,exp}}$$
(10)

where *N* is the number of experimental data and $\eta_{i,exp}$ and $\eta_{i,calc}$ are the experimental and calculated dynamic viscosities, respectively.

The results of the prediction of these systems is not good when we use the interaction parameters of the Chevalier's UNIFAC–VISCO method. Then, to improve the results of the prediction of the UNIFAC–VISCO method for the systems secondary alcohols–alkanes, we first have recalculated the interaction parameter within CH_2 and CH_3 groups. Table 7 shows the experimental data used for calculating new interaction parameters pointing out the corresponding binary systems employed.

The interaction parameters (α_{mn}) are summarized in Table 8. The predictions applying UNIFAC–VISCO using new parameters were compared with the predictions applying UNIFAC–VISCO using Chevalier parameters and ASOG–VISCO methods.

Table 9 shows root-mean-square deviations of dynamic viscosity (σ) resulting by the prediction using UNIFAC–VISCO with Chevalier parameters, UNIFAC–VISCO with the new and review parameters, and ASOG–VISCO methods for the binary mixtures 2-pentanol with alkanes at *T* = (293.15, 298.15, 303.15) K.

Figure 5 shows graphically the experimental dynamic viscosities and the predicted values by applying the UNI-FAC-VISCO using Chevalier parameters, UNIFAC-VISCO using new parameters, and ASOG-VISCO for the binary mixtures 2-pentanol(1) + octane(2), 2-pentanol(1) + decane(2), and 2-pentanol(1) + dodecane(2) at T = (293.15, 298.15, 303.15) K.

5. Conclusions

The correlation of the experimental data had been determined using the UNIQUAC equation. Very good results have been obtained with this equation.

The interaction parameters between CH_2/CH_3 were recalculated, and with the experimental data, the interaction parameters of CH_2/OH_s and CH_3/OH_s were determined.

Prediction of the dynamic viscosities of these mixture from UNIFAC-VISCO using new parameters, UNIFAC-VISCO using Chevalier parameters, and ASOG-VISCO methods have been determined. The UNIFAC-VISCO using new parameters and ASOG–VISCO methods predict in a similar way the behavior of these mixtures.

Literature Cited

- (1) Canosa, J.; Rodríguez, A.; Tojo, J. Dynamic Viscosities of the Binary Mixtures (Methyl Acetate or Methanol + 2-Methyl-2butanol) and the Ternary Mixtures (Methyl Acetate + Methanol + 2-Propanol, or 2-Butanol, or 2-Methyl-2-butanol) at T = 298.15 K. J. Chem. Thermodyn. 2000, 32, 551–565.
- (2) Canosa, J.; Rodríguez, A.; Tojo, J. Speeds of Sound and Dynamic Viscosities of the Ternary Mixtures Methyl Acetate + Methanol + 1-Butanol or 1-Pentanol and Their Corresponding Binary Mixtures at 298.15 K. J. Chem. Eng. Data. 2000, 45, 471–477.
- (3) Gonzalez, B.; Dominguez, A.; Tojo, J. Viscosities, Densities and Speeds of Sound of the Binary Systems: 2-Propanol with Octane, or Decane, or Dodecane at T = (293.15, 298.15, and 303.15) K. J. Chem. Thermodyn. 2003, 35, 939–953.
- (4) Gonzalez, B.; Dominguez, A.; Tojo, J. Dynamic Viscosities of 2-Butanol with Alkanes (C₈, C₁₀ and C₁₂) at Several Temperatures. *J. Chem. Thermodyn.*, in press.
- (5) Chevalier, J. L.; Petrino, P. J.; Gaston-Bonhomme, Y. H. Estimation Method for the Kinematic Viscosity of a Liquid-Phase Mixture. *J. Chem. Eng. Sci.* **1988**, *43*, 1303–1309.
- (6) Gaston-Bonhomme, Y.; Petrino, P.; Chevalier, J. L. UNIFAC-VISCO Group Contribution Method for Predicting Kinematic Viscosity: Extension and Temperature Dependence. J. Chem. Eng. Sci. 1994, 49, 1799–1806.
- (7) Tochigi, K.; Yoshino, K.; Rattan, V. K. *The Sixteenth European Conference on Thermophysical Properties*, September 1–4, 2002; London, 2002.
- (8) Riggio, R.; Martinez, H. E.; Solimo, H. N. Densities, Viscosities, and Refractive Indexes for the Methyl Isobutyl Ketone + Pentanols Systems. Measurements and Correlations. *J. Chem. Eng. Data* **1986**, *31*, 235–238.
- (9) Aminabhavi, T. M.; Virupaxagouda, B. P. Density, Refractive Index, and Speed of Sound in Binary Mixtures of 2-Ethoxyethanol with Dimethyl Sulfoxide, N,N'-Dimethylformamide, N,N'-Dimethylacetamide at Different Temperatures. J. Chem. Eng. Data 1997, 42, 641–646.
- (10) Trenzado, J. L.; Matos, J. S.; Segade, L.; Carballo, E. Densities, Viscosities, and Related Properties of Some (Methyl Ester + Alkane) Binary Mixtures in the Temperature Range from 283.15 to 313.15 K. *J. Chem. Eng. Data.* **2001**, *46*, 974–983.
- (11) Aminabhavi, T. M.; Patil, V. B.; Aralaguppi, M. I. Density, Viscosity, and Refractive Index of the Binary Mixtures of Cyclohexane with Hexane, Heptane, Octane, Nonane, and Decane at (298.15, 303.15, and 308.15) K. J. Chem. Eng. Data 1996, 41, 521-525.
- (12) Redlich, O.; Kister, A. T. Thermodynamics of Nonelectrolyte Solutions. Algebraic Representation of Thermodynamic Properties and the Classification of Solutions. *Ind. Eng. Chem.* **1948**, 40, 345–348.
- (13) Bevington, P. Data Reduction and Error Analysis for the Physical Sciences, McGraw-Hill: NY, 1969.
- (14) Abrams, D. S.; Prausnitz, J. M. Statistical Thermodynamics of Liquid Mixtures: A New Expression for the Excess Energy of Partly or Completely Miscible Systems. *AIChE J.* **1975**, *21*, 116– 128.
- (15) Nelder, J. A.; Mead, R. A Simplex Method for Function Minimization. *Comput. J.* **1965**, *7*, 308–313.
- (16) Aucejo, A.; Burguet, M. C.; Muñoz, R.; Marqués, J. L. Densities, Viscosities, and Refractive Indices of Some *n*-Alkane Binary Liquid Systems at 298.15 K. *J. Chem. Eng. Data.* 1995, 40, 141– 147.
- (17) Cooper, E. F.; Asfour, A. A. Densities and Kinematic Viscosities of Some C6–C16 *n*-Alkane Binary Liquid Systems at 293.15 K. *J. Chem. Eng. Data.* **1991**, *36*, 285–288.
- (18) Aucejo, A.; Burguet, M. C.; Muñoz, R.; Marqués, J. L. Densities, Viscosities, and Refractive Indices of the Binary Liquid Systems *n*-Alkanes + Isomers of Hexane at 298.15 K. *J. Chem. Eng. Data.* **1995**, *40*, 871–874.

Received for review October 21, 2003. Accepted June 1, 2004. JE034208M