$p\rho Tx$ Data for the Dimethyl Carbonate + Decane System

Jacobo Troncoso,[†] David Bessières,[‡] Claudio A. Cerdeiriña,[†] E. Carballo,[†] and Luis Romaní^{*,†}

Departamento de Física Aplicada, Facultad de Ciencias del Campus de Ourense, Universidad de Vigo, 32004 Ourense, Spain, and Laboratoire des Fluides Complexes, Groupe Haute Pression, CURS, B.P. 1155, Université de Pau et des Pays de l'Adour, 64013 Pau, France

Density data of the dimethyl carbonate + decane system are reported from T = 283.15 to 328.15 K and p = 0.1 to 40 MPa over the whole composition range. An automated measuring device, based on the vibrating tube principle, is used. Data are correlated through a temperature-dependent Tait equation that allows us to derive isothermal compressibilities and isobaric thermal expansivities. Excess quantities for molar volume, isothermal compressibility, and isobaric thermal expansivity are also given.

Introduction

Dialkyl carbonates have been proposed as alternative lubricants in low environmental impact air conditioners because of their miscibility with HFCs, favorable viscosity, and thermal stability.^{1–3} Besides their intrinsic interest, thermodynamic properties of the dialkyl carbonate + *n*-alkane mixtures allow us to obtain parameters for molecular models that are useful to predict thermophysical properties for HFCs + carbonate systems.^{4,5}

In this work, a study on the densities of the dimethyl carbonate + decane system from 283.15 to 328.15 K and 0.1 to 40 MPa is presented. The data were correlated as a function of temperature and pressure, allowing us to derive isobaric thermal expansivities and isothermal compressibilities. In addition, excess quantities for the above properties were calculated. The global volumetric behavior thus observed was compared to previous experimental $p\rho Tx$ studies on other dialkyl carbonate + alkane systems.^{6–9}

Experimental Section

Materials. Dimethyl carbonate (purity, 99 mol %) was supplied from Aldrich and decane (purity, 99 mol %) from Sigma. The stated purities of the chemicals were checked by gas chromatography analysis. Both liquids were degassed and dried over Fluka 0.4-nm molecular sieves before use. Mixtures were prepared by weighing to an uncertainty in a mol fraction of ± 0.0001 using a AE-240 balance.

Apparatus and Procedure. Densities were measured using an Anton-Paar DMA-512P high-pressure cell based on the vibrating-tube principle. Temperature and pressure control as well as data acquisition were fully automatized. The uncertainties in *T* and *p* were ± 0.01 K and ± 0.01 MPa, respectively. The details of the experimental device together with the calibration procedure have been explained in a previous paper.¹⁰ The uncertainty in density data was estimated to be about ± 0.0003 g·cm⁻³, whereas repeatability was quoted to ± 0.00003 g·cm⁻³.

Results and Discussion

Experimental densities were obtained within the working range in pressure and temperature steps of 2.5 MPa and 5 K, respectively. Selected data for pure liquids can be found in Table 1. Comparison with literature-recommended data for decane¹¹ results in an absolute mean difference of 0.00015 g·cm⁻³. For dimethyl carbonate, only two sources of data at high pressures are available.^{6,7} Good agreement is found between the data of ref 6 and ours (absolute mean difference of 0.00018 g·cm⁻³), whereas relatively large discrepancies are encountered with data of ref 7; therefore, we choose to take data of the former for further comparison on derived properties. In Table 2, data for the mixtures are shown. For each sample, they were fitted to the Tait equation with temperature-dependent parameters¹¹

$$\rho(p,T) = \frac{\rho(0.1,T)}{1 - c_0 \ln\left(\frac{B(T) + p}{B(T) + 0.1 \text{MPa}}\right)}$$
(1)

where c_0 is a temperature-independent parameter and B(T) is a polynomial of the form

$$B(T) = \sum_{i=0}^{2} b_{i} \left(\frac{T - T_{0}}{100} \right)^{i}$$
(2)

 $\rho(0.1, T)$ are the densities at 0.1 MPa, interpolated by a third-order polynomial form

$$\rho(0.1,T) = \sum_{i=1}^{4} a_i \left(\frac{T-T_0}{100}\right)^{i-1}$$
(3)

with $T_0 = 273.15$ K in all cases. The final values of the parameters together with standard deviations *s* of the fits are listed in Table 3.

At atmospheric pressure, *x*dimethyl carbonate + (1 - x)decane presents, below ambient temperature, partial miscibility of the upper critical solution temperature type, i.e., the *Tx* liquid–liquid equilibrium curve presents a maximum, corresponding to a critical point. The critical coordinates are $x_c = 0.668$ and $T_c = 287.27$ K, whereas the slope of the critical line dT_c/dp is equal to 0.176 K/MPa.¹² This implies that, for some mixtures, liquid–liquid-phase separation can be found within the working range. Unfor-

^{*} To whom correspondence may be addressed. Tel: (34) 988387213. Fax: (34) 988387001. E-mail: romani@uvigo.es.

[†] Universidad de Vigo.

[‡] Université de Pau et des Pays de l'Adour.

Table 1	Densities	• of the Pure I	iquids at Selected	Pressures n a	nd Temperatures T
I upic I.	Densities	p of the function	iquius at belette	i i i coourco p u	nu remperatures r

₀/g•cm ⁻³										
n/MDa	282 15 V	288 15 V	203 15 V	208 15 V	202 15 V	200 15 L	21215V	218 15V	393 15 V	328 15 V
pimpa	283.13 K	200.10 K	293.13 K	298.15 K	303.15 K	308.15 r	313.13 K	318.13K	323.13 K	328.13 K
				Dim	ethyl Carb	onate				
0.1	1.08317	1.07643	1.06976	1.06310	1.05641	1.04966	1.04286	1.03604	1.02921	1.02224
5	1.08733	1.08080	1.07422	1.06770	1.06117	1.05459	1.04794	1.04130	1.03463	1.02792
10	1.09139	1.08502	1.07838	1.07221	1.00582	1.05939	1.05291	1.04644	1.03995	1.03345
20	1.09554	1.06907	1.00270	1.07052	1.07029	1.00400	1.03707	1.05150	1.04504	1.03609
25	1 10279	1.09679	1.08083	1.08474	1.07433	1 07265	1 06660	1.05008	1 05458	1 04853
30	1.10639	1.10048	1.09450	1.08862	1.08275	1.07680	1.07082	1.06495	1.05907	1.05314
35	1.10985	1.10403	1.09819	1.09239	1.08660	1.08078	1.07493	1.06915	1.06339	1.05757
40	1.11317	1.10750	1.10174	1.09604	1.09035	1.08463	1.07887	1.07321	1.06756	1.06187
					Decane					
0.1	0 73740	0 73369	0 72994	0 72619	0 72246	0 71865	0 71479	0 71099	0 70717	0 70330
5	0.74081	0.73719	0.73353	0.72988	0.72623	0.72252	0.71883	0.71508	0.71140	0.70767
10	0.74417	0.74063	0.73708	0.73352	0.72998	0.72636	0.72276	0.71913	0.71555	0.71197
15	0.74739	0.74393	0.74050	0.73700	0.73355	0.73001	0.72652	0.72299	0.71949	0.71603
20	0.75049	0.74714	0.74376	0.74037	0.73698	0.73355	0.73014	0.72669	0.72328	0.71987
25	0.75352	0.75022	0.74692	0.74360	0.74029	0.73701	0.73361	0.73022	0.72690	0.72357
30	0.75643	0.75319	0.74998	0.74672	0.74346	0.74013	0.73695	0.73365	0.73037	0.72710
35	0.75927	0.75611	0.75294	0.74972	0.74654	0.74326	0.74017	0.73693	0.73371	0.73051
40	0.76202	0.75892	0.75579	0.75267	0.74950	0.74632	0.74325	0.74005	0.73693	0.73379
Table 2.	Densities o	of xDimethy	vl Carbonate	(1 - x)	ecane at	Selected F	ressures <i>n</i> :	and Temper	atures T	
	Densities p	or and intering	r cui bonate		, ,	2	ressures p			
					ρ/g	(∙cm ^{−3}				
<i>p</i> /MPa	288.15 K	293.15 K	298.15 k	X 303.15	5K 30	8.15 K	313.15 K	318.15K	323.15 K	328.15 K
-					v = 0.067	6				
0.1	0 7/107	0 73816	0 73/31	0 730	x = 0.007	0 79653	0 79958	0 71868	0 71471	0 71060
10	0.74137	0.73510	0.73431	0.738	40 0. 15 0'	72033	0.72076	0.72704	0.72336	0.71966
20	0 75573	0 75225	0 74875	0.765	$30 0^{\circ}$	74178	0.73828	0 73475	0.73125	0 72774
30	0.76188	0.75856	0.75523	0.751	90 0. ⁻	74849	0.74523	0.74184	0.73846	0.73512
40	0.76771	0.76448	0.76128	0.758	05	. 10 10	0.75165	0.74836	0.74515	0.74193
					v = 0.230	3				
0.1	0 76795	0 76384	0 75970	0 755	$\frac{x}{57} = 0.230$	5 75135	0 74710	0 74290	0 73881	0 73447
10	0.77545	0.77154	0.76762	0.763	68 0.°	75973	0.75575	0.75173	0.74790	0.74393
20	0.78240	0.77869	0.77495	0.771	21 0. ⁻	76745	0.76369	0.75987	0.75620	0.75249
30	0.78887	0.78531	0.78173	0.778	15 0.1	77452	0.77099	0.76735	0.76383	0.76025
40	0.79493	0.79149	0.78805	0.784	61 0.	77852	0.77772	0.77420	0.77085	0.76741
					v = 0.293	Λ				
0.1	0 78023	0 77599	0 77164	0 767	$36 0^{-1}$	76300	0 75866	0 75431	0 74994	0 74553
10	0.78782	0 78379	0 77968	0.707	58 0 [°]	77151	0.76750	0 76340	0 75930	0 75520
20	0.79487	0.79101	0.78710	0.783	23 0.1	77937	0.77554	0.77165	0.76780	0.76394
30	0.80143	0.79771		0.790	27 0.	78653	0.78296	0.77922	0.77553	0.77185
40	0.80754	0.80397	0.80040	0.796	82		0.78979	0.78619	0.78266	0.77913
					x = 0.405	5				
0.1	0.80452	0.79994	0.79537	0.790	78 0.100	78620	0.78163	0.77708	0.77241	0.76774
10	0.81234	0.80799	0.80365	0.799	32 0.	79499	0.79074	0.78645	0.78210	0.77774
20	0.81959	0.81546	0.81130	0.807	20 0.	80310	0.79907	0.79497	0.79090	0.78678
30	0.82632	0.82234	0.81838	0.814	45 0.3	81051	0.80672	0.80280	0.79887	0.79498
40	0.83265	0.82880	0.82500	0.821	19		0.81378	0.80998	0.80624	0.80250
					x = 0.502	0				
0.1	0.82972	0.82483	0.81995	0.815	09 0.3	81029	0.80545	0.80057	0.79568	0.79073
10	0.83773	0.83307	0.82844	0.823	86 0.3	81930	0.81481	0.81024	0.80566	0.80104
20	0.84478	0.84072	0.83629	0.831	94 0.3	82762	0.82333	0.81901	0.81472	0.81036
30		0.84780	0.84357	0.839	39 0 .3	83523	0.83119	0.82705	0.82291	0.81878
40		0.85444	0.85035	0.846	29		0.83842	0.83442	0.83050	0.82654
					x = 0.547	6				
0.1	0.84328	0.83817	0.83319	0.828	19 0.3	82317	0.81821	0.81318	0.80816	0.80307
10	0.85140	0.84656	0.84177	0.837	03 0.3	83233	0.82767	0.82296	0.81826	0.81356
20		0.85435	0.84977	0.845	25 0.3	84077	0.83631	0.83186	0.82741	0.82299
30		0.86157	0.85718	0.852	82 0.3	84852	0.84429	0.84000	0.83574	0.83150
40		0.86838	0.86411	0.859	91		0.85166	0.84753	0.84343	0.83936
		_			x = 0.588	3				
0.1		0.85108	0.84593	0.840	82 0.3	83571				
10		0.85946	0.85459	0.849	/4 0.	84495				
20		0.86728	0.86262	0.858	02 0.	85346				
30		0.87453	0.87004	0.865	b3 0.3 79	80127				
40			0.87698	0.872	16					
0.1	0.00171	0.00000	0 00000	0.007	x = 0.710	1	0.07400	0.00044	0.00000	0.05704
0.1	0.90171	0.89639	0.89082	0.885	21 0.1	8/957	0.87400	0.86841	0.86269	0.85701
10		0.90511	0.89975	0.894	40 0.3	88919	0.88394	0.8/862	0.8/327	0.86793
20 20		0.91324	0.90810	0.903	07 U.3 09 0.4	03003 00691	0.09300	0.00003	0.00293	0.07700
40		0.32002	0.91307	0.911	02 0.5 42	00021	0.90927	0.90462	0.89997	0.89522
10			0.02000	0.010				3.5 5 I GW	5.55001	0.00000

Table 2 (Continued)

	ho/g·cm ⁻³									
<i>p</i> /MPa	288.15 K	293.15 K	298.15 K	303.15 K	308.15 K	313.15 K	318.15K	323.15 K	328.15 K 0	
	x = 0.7993									
0.1		0.93674	0.93088	0.92509	0.91930	0.91346	0.90756	0.90172	0.89568	
10		0.94544	0.93991	0.93441	0.92893	0.92344	0.91790	0.91240	0.90686	
20		0.95346	0.94828	0.94303	0.93783	0.93263	0.92738	0.92217	0.91693	
30			0.95606	0.95101	0.94602	0.94103	0.93602	0.93108	0.92610	
40				0.95841		0.94881	0.94400	0.93925	0.93448	
				X =	0.9062					
0.1	1.00468	0.99835	0.99218	0.98593	0.97975	0.97348	0.96713	0.96079	0.95430	
10	1.01319	1.00719	1.00124	0.99533	0.98947	0.98352	0.97756	0.97162	0.96560	
20	1.02119	1.01543	1.00974	1.00409	0.99848	0.99281	0.98716	0.98153	0.97583	
30	1.02863	1.02308	1.01762	1.01220	1.00683	1.00136	0.99597	0.99060	0.98517	
40	1.03561	1.0308	1.02501	1.01978		1.00935	1.00415		0.99379	

Table 3. Fitting Coefficients of Equation 1 for xDimethyl Carbonate +(1 - x)Decane and Standards Deviations s

	dimethyl carbona	ate	decane	x = 0.0676	x = 0.2303
C0	0.088445		0.095624	0.093003	0.091719
b_0/MPa	120.2580		105.7950	101.3620	98.7657
$\dot{b_1}$ /MPa K ⁻¹	-93.1567		-68.1881	-63.7453	-66.6930
$\dot{b_2}/\mathrm{MPa}\cdot\mathrm{K}^{-2}$	23.1718		16.0410	10.5807	15.0099
$a_1/g \cdot cm^{-3}$	1.09659		0.74478	0.75330	0.77990
$a_2/g \cdot cm^{-3} \cdot K^{-1}$	-0.13506		-0.07341	-0.07465	-0.07762
$a_3/g \cdot cm^{-3} \cdot K^{-2}$	0.00778		-0.00367	-0.00511	-0.01540
$a_4/g \cdot cm^{-3} \cdot K^{-3}$	-0.01452				0.01147
s/g·cm ⁻³	0.00007		0.00003	0.00003	0.00003
	x = 0.2934	x=	0.4055	x = 0.5020	x = 0.5476
	0.000817	0.0	00562	0.000680	0.001227
L_0	0.050817	0.0	1613	100 2040	00 2257
$b_0/MP_2 K^{-1}$	-67 9574	-7 -7	4045 0 /616	-75 7084	-66 6482
$b_1/MPa \cdot K^{-2}$	15 0873	17	9183	21 0724	10 3786
$\frac{\partial p}{\partial t}$ with a K	0 79300	17.	1856	0 84486	0.85888
a_1/g cm a_2/g cm ⁻³ ·K ⁻¹	-0.08459	-0	09511	-0.10361	-0 10666
a_2/g cm K^{-2}	-0.00311	0.0	1969	0.02125	0.02013
$a_{4}/g \cdot cm^{-3} \cdot K^{-3}$	0.00011	-0	01398	-0.02120	-0.01947
s/g·cm ⁻³	0.00003	0.0	0002	0.00007	0.00003
	x = 0.5883	x = 0.6650	x = 0.7101	x = 0.7993	x = 0.9062
<i>C</i> 0	0.090128	0.090241	0.093183	0.088321	0.088788
b_0 /MPa	100.9348	100.4480	106.1020	104.4432	111.2940
b_1 /MPa K $^{-1}$	-76.0982	-68.3245	-81.0830	-76.6368	-81.1356
$b_2/\mathrm{MPa} extsf{\cdot}\mathrm{K}^{-2}$	18.1894 9.1196		22.9774	13.3895	12.9184
$a_1/g \cdot cm^{-3}$	0.87157 0.90178		0.91755	0.96072	1.02398
a_2/g ·cm $^{-3}$ ·K $^{-1}$	-0.10248 -0.12800		-0.10221	-0.12393	-0.13223
$a_3/g \cdot cm^{-3} \cdot K^{-2}$		0.05962	-0.02313	0.02528	0.02779
$a_4/g \cdot cm^{-3} \cdot K^{-3}$		-0.05459	0.01617	-0.02718	-0.03224
s/g∙cm ^{−3}	0.00006	0.00007	0.00007	0.00003	0.00003

tunately, reliable values for density in the heterogeneous region cannot be obtained with our experimental equipment.

Differentiation of eq 1 with respect to pressure and temperature yields isothermal compressibilities κ_T and isobaric thermal expansivities α_p , respectively. The details of the calculation have been explained previously.¹⁰ The uncertainty in the derived properties is estimated to be ± 40 TPa⁻¹ for κ_T and ± 0.03 kK⁻¹ for α_p . The values of κ_T and α_p for the pure liquids at selected pressures and temperatures are given in Table 4. Comparison with literature data for decane¹¹ results in an absolute mean deviation of 7 TPa⁻¹ for κ_T and 0.009 kK⁻¹ for α_p . The deviations with respect to literature⁶ for dimethyl carbonate were 11 TPa⁻¹ for κ_T and 0.012 kK⁻¹ for α_p .

Figure 1 shows excess molar volumes v^{E} at various temperatures and pressures obtained from the densities of pure liquids and mixtures. The uncertainty in this quantity is estimated to be about ± 0.03 cm³·mol⁻¹. Solid lines correspond to the fitted values against composition at the given [*p*, *T*] conditions. A Redlich–Kister polynomial was used to this end

$$Y^{E} = x(1-x) \sum_{i=1}^{n} A_{i}(2x-1)^{i-1}$$
 (4)

where *x* denotes the mol fraction of dimethyl carbonate, A_i values are the fitting parameters, and *Y* is equal to *v* in this case. Table 5 shows the final values of the parameters together with the standard deviations.

In all cases (all excess properties at all [T,p] conditions), an almost parabolic dependence against composition is observed with the maximum being located around equimolar composition. As for other strongly polar (nonassociated) + long-chain alkane systems,^{13,14} both dipolar order of dimethyl carbonate and the orientational order of the alkane are broken upon mixing, resulting in a positive contribution to v^{E} . Since, normally, dispersive interactions between unlike molecules are weaker than those between like molecules, it is reasonable that they contribute positively to $v^{\text{E},15}$ It appears that these two positive contributions largely overcome the negative ones arising from packing effects. In respect to pressure and temperature dependencies, it is found that v^{E} increases with an increase

Table 4.	Isothermal	Compres	sibilities	s K _T and	Isobaric
Thermal	Expansiviti	ies α_p for	the Pure	e Liquid	S

$\kappa_{T}/\mathrm{TPa}^{-1}$										
	T =	T =	T =	T =	T =					
<i>p</i> /MPa	283.15	293.15 K	303.15 K	313.15 K	323.15 K					
	Dimethyl Carbonate									
10	741	799	862	932	1009					
20	694	745	800	860	925					
30	654	698	747	799	856					
]	Decane							
10	892	948	1009	1073	1142					
20	831	880	932	987	1045					
30	779	822	867	915	965					
	$\alpha_p/\mathbf{k}\mathbf{K}^{-1}$									
	T	T= $T=$ $T=$								
<i>p</i> /MPa	293.1	5 K 30	3.15 K	313.15 K	323.15 K					
		Dimeth	yl Carbona	ate						
0.1	1.2	50 1	.271	1.302	1.343					
10	1.18	86 1	.201	1.224	1.256					
20	1.13	31 1	.140	1.158	1.184					
30	1.08	83 1	.089 1.102		1.124					
40	1.04	41 1	.044	1.055	1.073					
Decane										
0.1	1.02	26 1	.047	1.068	1.090					
10	0.9	64 (.980	0.996	1.013					
20	0.9	11 (0.924	0.937	0.950					
30	0.8	67 ().877	0.887	0.898					
40	0.82	28 ().836	0.845	0.854					

in temperature and decreases with a increase in pressure (see Figure 1). These trends are in agreement with those previously found for this sort of system.⁸

Excess isothermal compressibilities $\kappa_T^{\rm E}$ and excess isobaric thermal expansivities $\alpha_p^{\rm E}$ were calculated using the Benson and Kiyohara criterion¹⁶

$$\varsigma^{\rm E} = \varsigma - \phi_1 \varsigma_1 + (1 - \phi_1) \varsigma_2 \tag{5}$$

Figure 1. Excess molar volumes v^{E} for *x*dimethyl carbonate + (1 – *x*)decane at temperature *T* and pressure *p*. (a) *p* = 0.1 MPa and •, *T* = 288.15 K; •, *T* = 308.15 K; •, *T* = 328.15 K. (b) *T* = 293.15 K and \bigcirc , *p* = 0.1 MPa; \triangle , *p* = 15 MPa; \diamondsuit , *p* = 30 MPa. The solid line indicates fitted values from eq 4.

where ϕ_1 is the volume fraction of dimethyl carbonate and ζ can be κ_T or α_p . Both were fitted to eq 4, the values of A_i and *s* being given in Table 5. Experimental data together with the fitted curves are represented in Figures 2 and 3. The uncertainty in these magnitudes was estimated in ± 6 TPa⁻¹ and ± 10 MK⁻¹, respectively.

As usual, the behavior of κ_T^E is very similar to that of v^E ; they are always positive, increasing with temperature and decreasing with pressure, in agreement with literature data.⁹ The excess isobaric thermal expansivity vs composition plot of Figure 3 reveals that this quantity is positive over the whole composition range, showing a parabolic shape. The pressure and temperature dependencies of α_p^E cannot be obtained with the present experimental device owing to the limited precision in the determination of α_p .

Table 5. Fitting Parameters A_i of Equation 4 and Standard Deviations s at Selected pressures p and Temperatures T for xDimethyl Carbonate + (1-x)Decane

			v ^E /cm ³ ⋅mol ⁻¹			
	<i>T</i> = 288.15 K	<i>T</i> = 308.15 K	<i>T</i> = 328.15 K	T = 293.15 K	T = 293.15 K	<i>T</i> = 293.15 K
	p = 0.1 MPa	p = 0.1 MPa	p = 0.1 MPa	p = 0.1 MPa	p = 15 MPa	p = 30 MPa
$A_1/\mathrm{cm}^3\cdot\mathrm{mol}^{-1}$	5.211	6.245	7.159	5.526	4.927	4.493
A_2 /cm ³ ·mol ⁻¹	-0.644	-0.208	0.415	-0.428	-0.500	-0.733
A_3 /cm ³ ·mol ⁻¹	-0.020	0.086	0.306	-0.374	-0.478	-1.518
A_4 /cm ³ ·mol ⁻¹	-0.119	-0.527	-1.968	-0.610	-0.339	-0.155
A_5 /cm ³ ·mol ⁻¹	4.048	3.109	3.386	4.430	4.612	5.821
s/cm³∙mol ⁻¹	0.03	0.015	0.015	0.03	0.03	0.02
			$\kappa_T E/TPa^{-1}$			
	T = 293.15 K	T = 303.15 K	T = 31	3.15 K	<i>T</i> = 293.15 K	T = 293.15 K
	p = 5 MPa	p = 5 MPa	p=5	MPa	p = 17.5 MPa	p = 30 MPa
A_1/TPa^{-1}	278	343.3	43	1.6	210	167
A_2/TPa^{-1}	119	107.4	206.7		86	79
A_3/TPa^{-1}	179	125.7	235.7		133	99
A_4/TPa^{-1}	-114	-38.6	-128.1		-47	-33
A_5/TPa^{-1}	-204	-112.2	-18	5.4	-156	-133
			$\alpha_p E / 10^{-3} k K^{-1}$			
					<i>T</i> = 308.15 K	
					p = 0.1 MPa	
	A_{1}/MK^{-1}				271	
	A_2/MK^{-1}				155	
	A_3/MK^{-1}				-52	
	$A_4/{ m MK}^{-1}$				-130	
	A_5/MK^{-1}				78	
	s/MK^{-1}				5	

Figure 2. Excess isothermal compressibilities κ_T^E for *x*dimethyl carbonate + (1 - x)decane at temperature *T* and pressure *p*. (a) *p* = 5 MPa and \bullet , *T* = 293.15 K; \bullet , *T* = 308.15 K; \bullet , *T* = 323.15 K. (b) *T* = 293.15 K and \bigcirc , *p* = 5 MPa; \triangle , *p* = 17.5 MPa; \diamond , *p* = 30 MPa. The solid line indicates fitted values from eq 4.

Figure 3. Excess isobaric thermal expansivities α_p^E at 308.15 K and 0.1 MPa for the system *x*dimethyl carbonate + (1 - x)decane. The solid line indicates fitted values from eq 4.

Literature Cited

- Takeno, T.; Mizui, K.; Takahata, K. Proceedings of the International Compressor Engineering Conference, Purdue, IN, 1992; pp 1045–1054.
- (2) Takahata, K.; Tanaka, M.; Hayashi, T.; Sakamoto, N. Proceedings of the 1994 International Refrigeration Conference at Purdue, Purdue University: West Lafayette, IN, 1994; pp 141–146.
- (3) Hayashi, T.; Tanaka, M.; Takehuchi, K.; Takahata, K. Proceedings of thye 1996 International Refrigeration Conference at Purdue, Purdue University: West Lafayette, IN, 1996; pp 285–290.

- (4) García, J.; Lugo, L.; Comuñas, M. J. P.; López, E. R.; Fernández, J. Experimental Excess Volumes of Organic Carbonate + Alkane Systems. Estimation of the Parameters of the Nitta-Chao Model for This Kind of Binary Mixture. *J. Chem. Soc., Faraday Trans.* **1998**, *94*, 1707–1712.
- (5) García, J.; López, E. R.; Fernández, J.; Legido, J. L. Prediction of Enthalpies of Mixing and Vapor-Liquid Equilibria for Mixtures Containing Organic Carbonates + n-Alkanes Using Several Versions of the UNIFAC model. *Thermochim. Acta* **1996**, *286*, 321–332.
- (6) Comuñas, J. P.; Baylaucq, A.; Boned, C.; Fernández, J. High-Pressure Measurements of the Viscosity and Density of Two Polyethers and Two Dialkyl Carbonates. *Int. J. Thermophys.* 2001, 22 (3), 749–767.
- (7) Lugo, L.; Comuñas, M. J. P.; López, E. R.; Fernández, J. (p, V_m, T, x) Measurements of Dimethyl Carbonate + Octane Binary Mixtures I. Experimental Results, Isothermal Compressibilities and Internal Pressures. *Fluid Phase Equilib.* **2001**, *186*, 235– 255.
- (8) Lugo, L.; Comuñas, M. J. P.; López, E. R.; Fernández, J. (*p*, *V*_m, *T*, *x*) Measurements of Dimethyl Carbonate + Octane Binary Mixtures II. Excess Molar Volumes. *Fluid Phase Equilib.* **2002**, *199*, 135–145.
- (9) Lugo, L.; Comuñas, M. J. P.; López, E. R.; García, J.; Fernández, J. Pressure and Temperature Dependence of the Excess Thermodynamic Properties of Binary Dimethyl Carbonate + Octane Mixtures. *Can. J. Chem.* **2003**, *81*, 840–849.
- (10) Troncoso, J.; Bessières, D.; Cerdeiriña, C. A.; Carballo, E.; Romaní, L. Automated Measuring Device of (*p*, *ρ*, *T*) Data. Application to the 1-Hexanol + *n*-Hexane System. *Fluid Phase Equilib.* **2003**, *208*, 141–154.
- (11) Cibulka, I.; Hnedkovsky L. Liquid Densities at Elevated Pressures of *n*-Alkanes from C₅ to C₁₆: A Critical Evaluation of Experimental Data. *J. Chem. Eng. Data* **1996**, *41*, 657–668.
- (12) Rebelo, L. P. N.; Najdanovic-Visak, V.; Visak, Z.; Nunes da Ponte, M.; Troncoso, J.; Cerdeiriña, C. A.; Romaní, L. Two Ways of Looking at Prigogine and Defay's Equation. *Phys. Chem. Chem. Phys.* **2002**, *4*, 2251–2259.
- (13) Lainez, A.; Rodrigo, M. M.; Wilhelm, E.; Grolier, J.-P. E. Thermodynamics of Liquid Mixtures Containing *n*-Alkanes and Strongly Polar Components: V^E and C_p^E of Mixtures with Either Pyridine or Piperidine. *J. Sol. Chem.* **1992**, *21*, 49–65.
- (14) Tovar, C. A.; Carballo, E.; Cerdeiriña, C. A.; Paz Andrade, M. I.; Romaní, L. Thermodynamic Properties of Polyoxyethylenglycol Dimethyl Ether + n-Alkane Mixtures. *Fluid Phase Equilib.* 1997, 136, 223–234.
- (15) Treszczanowicz, A.; Kiyohara, O.; Benson, G. C. Excess Volumes for *n*-Alkanols + *n*-Alkanes IV. Binary Mixtures of Decan-1-ol + *n*-pentane, + *n*-hexane, + *n*-octane, + *n*-decane, and + *n*hexadecane. J. Chem. Thermodyn. **1981**, 13, 253–260.
- (16) Benson, G. C.; Kiyohara, O. Evaluation of Excess Isentropic Compressibilities and Isochoric Heat Capacities. J. Chem. Thermodyn. 1979, 11, 1061–1064.

Received for review November 12, 2003. Accepted April 21, 2004. This work is part of Research Project PGIDT00PXI38305PR. The authors are indebted to the Secretaría Xeral de Investigación e Desenvolvemento (Xunta de Galicia) for financial support.

JE0342320