# Thermodynamic Investigation of the Azeotropic Binary Mixture Water + n-Propanol

## Zhaodong Nan<sup>\*,†</sup> and Zhi-Cheng Tan<sup>‡</sup>

Department of Chemistry, Qufu Normal University, Shandong Qufu 273165, PR China, and Thermochemistry Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China

Molar heat capacities of the azeotropic mixture in the binary system {water (x = 0.568) + *n*-propanol (x= 0.432 were measured with an adiabatic calorimeter in the temperature range from (80 to 320) K. The functions of the heat capacity with respect to the thermodynamic temperature were established. A glass transition was observed at 102.037 K. The solid-liquid-phase transition of the azeotropic mixture took place in the temperature range from (237.075 to 262.424) K. The corresponding enthalpy and entropy of the solid-liquid-phase transition were calculated to be 5.869 kJ·mol<sup>-1</sup> and 22.73 J·K<sup>-1</sup>·mol<sup>-1</sup>, respectively. The thermodynamic functions and the excess thermodynamic functions of the azeotropic mixture relative to a temperature of 298.15 K were derived on the basis of the relationships of the thermodynamic functions and the function of the measured heat capacity with respect to temperature.

### Introduction

Extensive thermodynamic studies have been carried out on aqueous solutions of *n*-propanol.<sup>1-3</sup> However, the heat capacities of azeotropic mixtures were not studied until recently.

Heat capacity is one of the most valuable thermophysical quantities to be considered when studying pure liquids and liquid mixtures. Accurate values are needed in many areas of physics, chemistry, and chemical engineering to establish energy balances, obtain entropy and enthalpy values, and study phase transitions. Moreover, the ascertainment of the heat capacity of liquids as a function of temperature is a source of important information concerning their molecular structure and is essential for checking the efficiency of estimation models used in industry.4

The binary system water + n-propanol shows a minimum boiling point azeotropic mixture at 360.1 K with a water mole fraction of 0.568.5 In this study, the molar heat capacity of the azeotropic mixture  $\{(0.568)water + (0.432)$ *n*-propanol} was measured by an adiabatic calorimeter in temperature range of (80 to 320) K. The thermodynamic functions of the azeotropic mixture were derived on the basis of the relationships of the thermodynamic functions and the function of the measured heat capacity with respect to temperature.

#### **Experimental Section**

Chemicals. The n-propanol used for the calorimetric study was purchased from Shenyang Chemical Agent Factory, and its purity was better than 99.8 wt %. The principal impurities were a carbonyl compound and an unsaturated compound, the contents of which were all

\* Corresponding author. E-mail: zdnan65@163.com. † Qufu Normal University.

smaller than 0.02%. The water used to prepare the azeotropic mixture was deionized and distilled twice. The azeotropic mixture consists of (0.568) water and (0.432)npropanol and was prepared by a weighing method, in which 0.568 and 0.432 are the molar fractions of water and *n*-propanol in the azeotropic mixture, respectively.

Apparatus and Procedures. The mass of the azeotropic mixture used for heat capacity measurements was 29.7902 g. Heat capacity measurements were carried out in a high-precision automatic adiabatic calorimeter described in detail elsewhere.<sup>6,7</sup> The principle of the calorimeter is based on the Nernst stepwise heating method. The calorimeter mainly consists of a sample cell, an adiabatic (or inner) shield, a guard (outer) shield, a platinum resistance thermometer, an electric heater, two sets of chromel-copper thermocouples, and a high-vacuum can. The sample cell was made of gold-plated copper and had an inner volume of 48 cm<sup>3</sup>. Eight gold-plated copper vanes of 0.2-mm thickness were put into the cell to promote heat distribution between the sample and the cell. The platinum resistance thermometer was inserted into the copper sheath, which was soldered in the middle of the sample cell. The heater wire was wound on the surface of the thermometer. The evacuated can was kept within ca. 1 imes $10^{-3}$  Pa during the heat capacity measurements so as to eliminate the heat loss due to gas convection. Liquid nitrogen was used as the cooling medium. One set of chromel-copper thermocouples was used to detect the temperature difference between the sample cell and the inner shield. Likewise, the other set of thermocouples was installed between the inner and outer shields. The temperature difference between the sample cell and the inner shield was  $\leq 0.5$  mK during the whole experimental process. The sample cell was heated by the standard discrete heating method. The temperature of the cell was alternatively measured. The temperature increment in a heating

<sup>&</sup>lt;sup>‡</sup> Chinese Academy of Sciences.



**Figure 1.** Molar heat capacities of water: ○, this work; ●, ref 9.



**Figure 2.** Molar heat capacities of *n*-propanol:  $\bigcirc$ , this work;  $\bigcirc$ , Counsell et al.<sup>10</sup> in the liquid phase;  $\blacktriangle$ , Counsell et al.<sup>10</sup> in the glass phase.

period was (2 to 4) K, and the temperature drift was maintained at about  $10^{-3}$  K min<sup>-1</sup> in the equilibrium period. All of the data were automatically picked up through a data acquisition/switch unit (model 34970A, Aglient) and processed by a computer.

#### **Results and Discussion**

Heat Capacities of  $\alpha$ -Al<sub>2</sub>O<sub>3</sub>, Water, and n-Propanol. To verify the reliability of the adiabatic calorimeter, we measured the molar heat capacities for the reference standard material  $\alpha$ -Al<sub>2</sub>O<sub>3</sub>, water, and *n*-propanol. The deviations of our experimental results from the values in ref 8 were within  $\pm 0.2\%$  in a temperature range of (80 to 400) K for  $\alpha$ -Al<sub>2</sub>O<sub>3</sub>. Plots of molar heat capacities of water and *n*-propanol as a function of temperature are given in Figures 1 and 2. To compare the results of the heat capacities of water and *n*-propanol measured in our laboratory with those in refs 10 and 11, we give, in Figures 1 and 2, the data from heat capacities obtained from refs 9 and 10. The enthalpy  $\Delta_{trans}H_m$  and entropy  $\Delta_{trans}S_m$  of the phase transition were calculated according to the relationship<sup>11</sup> given by

$$\Delta_{\text{trans}} H_{\text{m}} = \frac{Q - n \int_{T_{\text{trans}}}^{T_1} C_{p,\text{m(S)}} \, \mathrm{d}T - n \int_{T_{\text{trans}}}^{T_2} C_{p,\text{m(L)}} \, \mathrm{d}T - \int_{T_1}^{T_2} C_0 \, \mathrm{d}T}{n}$$
(1)

Table 1. Data of the Transition Temperature, Enthalpy, and Entropy of the Solid-Liquid Phase Transition Determined in this Work

|                    | $T_{trong}$          | $\Lambda H_{\rm trong}$ | $\Delta S_{trops}$                 |
|--------------------|----------------------|-------------------------|------------------------------------|
|                    |                      |                         |                                    |
|                    | ĸ                    | kJ·mol <sup>1</sup>     | J·mol <sup>1</sup> ·K <sup>1</sup> |
| water              | $273.10\pm0.18$      | 6.005                   | $21.99\pm0.01$                     |
|                    | $273.15^{9}$         | $6.010^{9}$             |                                    |
| <i>n</i> -propanol | $148.75\pm0.01^{10}$ | $5.372 \pm 0.004^{10}$  |                                    |
| azeotropic mixture | $258.16 \pm 1.08$    | 5.869                   | $22.73 \pm 0.09$                   |
|                    |                      |                         |                                    |

and

$$\Delta_{\rm trans} S_{\rm m} = \frac{\Delta_{\rm trans} H_{\rm m}}{T_{\rm trans}} \tag{2}$$

where Q is the total amount of heat introduced into the sample cell; *n* the amount of the substance in the sample;  $T_{\text{trans}}$  is the phase-transition temperature,  $T_1$  is slightly below  $T_{\text{trans}}$ ;  $T_2$  is slightly above  $T_{\text{trans}}$ ; and  $C_{p,m(S)}$ ,  $C_{p,m(L)}$ , and  $C_0$  are the heat capacity in the solid and liquid states and heat capacity of the empty cell, respectively. The phase-transition temperatures and enthalpies of water and n-propanol are given in Table 1. For water, the overall measuring precision may be estimated to be  $\pm 0.3\%$  by means of the deviations of the experimental data from the smoothed values of the polynomial equations. By comparing the results of this research with those of another investigation,9 we have assessed the accuracy of the apparatus. The root-mean-square  $\sigma$  of the percentage deviation of the smoothed values from the reference<sup>9</sup> is used. The root-mean-square  $\sigma$  was calculated to be 0.4% for water from (80 to 370) K.<sup>12</sup> With the same method, the measuring precision may be estimated to be  $\pm 0.5\%$  by means of the deviations of the experimental data from the smoothed values of the polynomial equations. The rootmean-square  $\sigma$  of the smoothed values from the reference results<sup>10</sup> was calculated to be 0.4% for *n*-propanol from (150 to 320) K.

*Molar Heat Capacity of the Azeotropic Mixture.* The molar heat capacities of the azeotropic mixture were determined by using the adiabatic calorimeter in the temperature range from (80 to 320) K. The results of the molar heat capacities are listed in Table 2 and shown in Figure 3. No thermal anomaly was observed and no phase transition took place in the temperature ranges from (110 to 235) K and (262 to 320) K, respectively.

The values of the molar heat capacities of the azeotropic mixture were fit in the following polynomial expressions with the least-squares method.

For (110 to 235) K

$$C_{p,m} = 8.3558X^2 + 19.399X + 70.521 \tag{3}$$

where  $C_{p,m}/(J\cdot K^{-1}\cdot mol^{-1})$  is the molar heat capacity of the azeotropic mixture, T/K is thermodynamic temperature, X = (T/K - 172.5)/62.5 is the reduced temperature, and  $\delta = 0.583 J\cdot mol^{-1}\cdot K^{-1}$  is the standard deviation.

To facilitate fitting, temperature T was replaced by reduced temperature X,

$$X = \frac{T - \frac{T_{\max} + T_{\min}}{2}}{\frac{T_{\max} + T_{\min}}{2}}$$
(4)

where  $T_{\text{max}}$  and  $T_{\text{min}}$  are the maximum and the minimum temperatures in the experiment. Thus, X is always in the range of  $-1 \le X \le 1$ .

 Table 2. Molar Heat Capacity and Temperature Drift

 Rate of the Azeotropic Mixture

| T       | $C_{p,\mathrm{m}}$                         | (dT/dt)                        | T       | $C_{p,\mathrm{m}}$                                               | (dT/dt)             |
|---------|--------------------------------------------|--------------------------------|---------|------------------------------------------------------------------|---------------------|
| К       | $\overline{J \cdot mol^{-1} \cdot K^{-1}}$ | $\overline{mK} \cdot min^{-1}$ | K       | $\overline{J\boldsymbol{\cdot}mol^{-1}\boldsymbol{\cdot}K^{-1}}$ | mK•min <sup>-</sup> |
| 80.271  | 33.870                                     | -1.42                          | 192.065 | 76.697                                                           | -0.13               |
| 82.790  | 33.960                                     | -2.14                          | 193.497 | 77.401                                                           | -1.05               |
| 85.261  | 35.031                                     | 0.84                           | 194.935 | 78.002                                                           | -0.98               |
| 87.677  | 36.125                                     | 1.36                           | 196.340 | 78.303                                                           | 0.98                |
| 90.044  | 37.194                                     | 0.87                           | 197.752 | 78.798                                                           | 0.98                |
| 92.365  | 38.528                                     | 1.05                           | 199.707 | 79.707                                                           | 0.62                |
| 94.654  | 39.654                                     | -1.02                          | 202.210 | 80.523                                                           | 0.38                |
| 96.900  | 40.812                                     | -0.78                          | 204.697 | 81.873                                                           | -0.68               |
| 99.098  | 42.737                                     | -1.44                          | 207.142 | 83.191                                                           | -0.86               |
| 101.195 | 47.111                                     | 4.15                           | 209.536 | 84.356                                                           | -0.98               |
| 103.092 | 55.027                                     | -6.26                          | 212.085 | 85.931                                                           | -0.72               |
| 104.883 | 57.436                                     | -4.12                          | 214.729 | 87.192                                                           | -0.98               |
| 106.661 | 57.958                                     | -1.24                          | 217.152 | 88.804                                                           | -0.92               |
| 108.421 | 58.191                                     | 0.64                           | 219.241 | 89.501                                                           | 0.02                |
| 110.177 | 58.452                                     | -0.76                          | 221.502 | 90.495                                                           | -1.02               |
| 111.923 | 58.765                                     | 0.88                           | 223.763 | 91.798                                                           | -0.78               |
| 113.662 | 58.903                                     | -0.17                          | 225.638 | 93.203                                                           | -1.80               |
| 115.394 | 59.224                                     | 1.04                           | 227.404 | 94.404                                                           | -0.78               |
| 110.044 | 09.372<br>E0 E49                           | -2.34                          | 229.121 | 96.192                                                           | -1.32               |
| 110.044 | 09.040                                     | -2.28                          | 202.220 | 97.790                                                           | -1.00               |
| 120.000 | 60.000                                     | -1.80                          | 204.001 | 100.521                                                          | -1.32               |
| 122.207 | 60 268                                     | -2.04                          | 237.073 | 110.427                                                          | -9.16               |
| 125.500 | 60.535                                     | -1.98                          | 209.091 | 115 293                                                          | _0.90               |
| 127 341 | 61 103                                     | 0.54                           | 243 702 | 120 744                                                          | -1.50               |
| 129.037 | 61 192                                     | 1 14                           | 245 785 | 126 903                                                          | -0.30               |
| 130.718 | 61.366                                     | -0.78                          | 247.786 | 133,498                                                          | -0.72               |
| 132.404 | 61.803                                     | -0.78                          | 249.675 | 144.582                                                          | -0.78               |
| 134.082 | 62.495                                     | -0.12                          | 251.441 | 159.139                                                          | -0.72               |
| 135.760 | 62.589                                     | 0.12                           | 253.072 | 178.581                                                          | -3.01               |
| 137.432 | 62.936                                     | 0.42                           | 254.556 | 202.474                                                          | -6.36               |
| 139.100 | 63.212                                     | 0.96                           | 255.891 | 229.648                                                          | -7.48               |
| 140.773 | 63.311                                     | 1.26                           | 257.085 | 260.744                                                          | -8.06               |
| 142.443 | 63.889                                     | 2.88                           | 258.166 | 289.323                                                          | -10.66              |
| 144.126 | 64.300                                     | -0.18                          | 259.239 | 274.021                                                          | -5.08               |
| 145.834 | 64.546                                     | 0.28                           | 260.547 | 177.555                                                          | -4.12               |
| 147.676 | 64.596                                     | 1.22                           | 262.424 | 106.611                                                          | -0.42               |
| 149.612 | 65.002                                     | -0.99                          | 264.631 | 107.350                                                          | 0.24                |
| 151.512 | 65.192                                     | 1.62                           | 266.824 | 108.315                                                          | -1.88               |
| 153.221 | 65.495                                     | 1.08                           | 269.021 | 109.169                                                          | 0.96                |
| 154.844 | 65.707                                     | -0.54                          | 271.190 | 109.878                                                          | 0.39                |
| 157.076 | 66.126<br>66.410                           | -2.01                          | 273.334 | 110.578                                                          | -0.74               |
| 150 525 | 66.410<br>67.916                           | -1.68                          | 275.499 | 111.101                                                          | -0.56               |
| 161 063 | 67.494                                     | 1.00                           | 271.037 | 119 699                                                          | 0.50                |
| 162 592 | 67 873                                     | -1.70                          | 213.131 | 112.028                                                          | 1.98                |
| 164 117 | 68 402                                     | 1.74                           | 283 945 | 114 173                                                          | -0.68               |
| 165 640 | 68 757                                     | -1.56                          | 286 004 | 114.170                                                          | -0.38               |
| 167.152 | 69.298                                     | 1.14                           | 288.064 | 115.381                                                          | -1.07               |
| 168.670 | 69.680                                     | 0.00                           | 290.078 | 116.090                                                          | -1.48               |
| 170.164 | 70.289                                     | -1.50                          | 292.068 | 116.596                                                          | 0.82                |
| 171.668 | 70.782                                     | -1.14                          | 294.062 | 117.181                                                          | -0.36               |
| 173.159 | 70.901                                     | -1.54                          | 296.025 | 117.949                                                          | -0.92               |
| 174.644 | 71.293                                     | 0.46                           | 298.019 | 118.533                                                          | -1.44               |
| 176.114 | 71.798                                     | -1.46                          | 300.046 | 119.167                                                          | -1.56               |
| 177.622 | 72.358                                     | 0.38                           | 302.068 | 119.939                                                          | -1.72               |
| 179.074 | 72.704                                     | -0.12                          | 304.118 | 120.614                                                          | -0.68               |
| 180.544 | 73.400                                     | -2.37                          | 306.151 | 121.223                                                          | -0.08               |
| 181.993 | 73.709                                     | -2.44                          | 308.184 | 121.921                                                          | -1.86               |
| 183.450 | 74.001                                     | 0.38                           | 310.211 | 122.561                                                          | -0.44               |
| 184.892 | 74.293                                     | 1.20                           | 312.236 | 123.003                                                          | -0.96               |
| 186.328 | 74.899                                     | -1.38                          | 314.262 | 123.589                                                          | 0.44                |
| 187.757 | 75.202                                     | -2.16                          | 316.273 | 124.290                                                          | 0.62                |
| 100 694 | 10.198                                     | -1.00                          | 910.277 | 124.811                                                          | 0.86                |
| 190.024 | 10.101                                     | -0.03                          |         |                                                                  |                     |

For (262 to 320) K,

 $C_{nm} = -0.3859X^2 + 9.4104X + 116.360$  (5)

where X = (T/K - 291)/29 and  $\delta = 0.092 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$ .

Thermodynamic Data of Glass and Phase Transitions. It can be seen from Figure 3 that the heat capacity jump was found in the temperature range from (99.098 to 103.092) K. To see clearly the change in the heat capacities,



**Figure 3.** Molar heat capacities of (0.568) water + (0.432)n-propanol. The inset shows the glass transition of the azeotropic mixture.



**Figure 4.** Temperature drift rate during the determination of the heat capacity of the azeotropic mixture.

the inset was used in Figure 3. The heat capacity changes clearly before and after the glass-transition temperature.<sup>13</sup> Then, the glass transition took place in the temperature range from (99.098 to 103.092) K. The curves of the temperature drift rate with respect to temperature were shown in Figure 4, and the values of the temperature drift rates were given in Table 2. Figure 4 shows that the temperature drift rate became larger during the glass transition. The temperature drift rates are determined to be less than  $\pm 2 \text{ mK} \cdot \text{min}^{-1}$  at other temperatures, except that the temperature of the phase transition shows that the adiabatic conditions were better. Therefore, the experimental results are accurate and reliable. The temperature of the glass transition of the mixture was determined to be 102.037 K, which corresponds to the maximum of the molar heat capacity drift rate.

The molar heat capacity reaches its maximum in the temperature range from (237.076 to 262.424) K, as shown in Figure 3. The phase transition took place in this temperature range. The temperature drift rate is given in Figure 4. The temperature drift rate reached its minimum in the same temperature range corresponding to that of the phase transition. This may be because the azeotropic mixture needed to absorb energy during the phase transition. Thus, the temperature drift rate became negative. The phase-transition temperatures were determined to be

 Table 3. Data of the Thermodynamic Functions of the

 Azeotropic Mixture

| T      | $C_{p,\mathrm{m}}$              | $[H_{\rm (T)}-H_{\rm (298.15\ K)}]$ | $[S_{(T)} - S_{(298.15 \text{ K})}]$ |
|--------|---------------------------------|-------------------------------------|--------------------------------------|
| K      | $J \cdot mol^{-1} \cdot K^{-1}$ | $kJ mol^{-1}$                       | $J \cdot mol^{-1} \cdot K^{-1}$      |
| 110    | 59.478                          | -17.762                             | -71.10                               |
| 120    | 60.122                          | -17.164                             | -66.49                               |
| 130    | 61.193                          | -16.558                             | -62.25                               |
| 140    | 62.693                          | -15.939                             | -58.35                               |
| 150    | 64.620                          | -15.303                             | -54.75                               |
| 160    | 66.975                          | -14.645                             | -51.43                               |
| 170    | 69.758                          | -13.962                             | -48.36                               |
| 180    | 72.969                          | -13.249                             | -45.51                               |
| 190    | 76.608                          | -12.501                             | -42.86                               |
| 200    | 80.674                          | -11.715                             | -40.37                               |
| 210    | 85.168                          | -10.886                             | -38.04                               |
| 220    | 90.091                          | -10.01                              | -35.82                               |
| 230    | 95.440                          | -9.083                              | -33.71                               |
| 240    |                                 |                                     |                                      |
| 250    |                                 | phase transition                    |                                      |
| 260    |                                 | -                                   |                                      |
| 270    | 109.343                         | -3.214                              | -10.98                               |
| 280    | 112.735                         | -2.101                              | -7.05                                |
| 290    | 116.035                         | -0.956                              | -3.15                                |
| 300    | 119.243                         | 0.220                               | 0.71                                 |
| 310    | 122.360                         | 1.428                               | 4.55                                 |
| 320    | 125.385                         | 2.667                               | 8.35                                 |
| 298.15 | 118.657                         | 0.000                               | 0.00                                 |
|        |                                 |                                     |                                      |

258.166 K, which corresponds to the solid-liquid-phase transition of the azeotropic mixture.

Thermodynamic investigations have been carried out in our laboratory on azeotropic mixtures composed of water and cyclohexane<sup>14</sup> and ethanol and benzene.<sup>15</sup> The solid– liquid phase transitions, which correspond to pure compounds such as water and cyclohexane and ethanol and benzene, were found in the azeotropic systems, but in the binary system of water and *n*-propanol, only one kind of solid–liquid-phase transition was observed. The reason may be that the hydrogen bond of the bulk is strong enough to retain the hydrogen bond connectivity throughout the entire bulk, called the "mixing scheme" in the azeotropic mixture composed of water and *n*-propanol.<sup>2</sup> This leads the compounds composed of the azeotropic mixture to melt at the same temperature.

The enthalpies and entropies of the phase transition were calculated according to eqs 1 and 2. The data are given in Table 1.

**Thermodynamic Functions of the Azeotropic Mixture.** The thermodynamic functions of the azeotropic mixture were calculated on the basis of the function of the molar heat capacity with respect to the thermodynamic temperature and the relationships of the thermodynamic functions. The results are given in Table 3.

*Excess Thermodynamic Functions of the Azeotropic Mixture.* The excess molar heat capacity of the binary system of (x) water +(1 - x)n-propanol was calculated by the following equation

$$C_{p,m}^{\rm E} = C_{p,m} - (x)C_{p,m,1}^* - (1-x)C_{p,m,2}^*$$
(6)

where  $C_{p,m,1}^*$  and  $C_{p,m,2}^*$  are the molar heat capacities of water and *n*-propanol, respectively, and  $C_{p,m}$  is the molar heat capacity of a mixture at the mole fraction of water *x*. The values of  $C_{p,m}^{\rm E}$  were calculated in the liquid phase and are listed in Table 4 and shown in Figure 5. Positive  $C_{p,m}^{\rm E}$ indicates more structure in the solution.<sup>16</sup>

Our present result of  $C_{p,\mathrm{m}}^{\mathrm{E}} = 13.685 \text{ J}\cdot\text{mol}^{-1}\cdot\text{K}^{-1}$  is roughly in agreement with  $C_{p,\mathrm{m}}^{\mathrm{E}} = 13.580 \text{ J}\cdot\text{mol}^{-1}\cdot\text{K}^{-1}$  at 298.15 K, which was calculated from the literature.<sup>1</sup>



Figure 5. Excess molar heat capacities of the azeotropic mixture.

 Table 4. Excess Thermodynamic Functions of the

 Azeotropic Mixture

| Т      | $C^{\mathrm{E}}_{p,\mathrm{m}}$                                                             | $[H_{\rm m}^{\rm E}(T)-H_{\rm 298.15\;K}^{\rm E}]$ | $[S^{\rm E}_{ m m}(T) - S^{\rm E}_{298.15~{ m K}}]$ |
|--------|---------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------|
| K      | $\overline{\mathbf{J}\boldsymbol{\cdot}\mathbf{mol}^{-1}\boldsymbol{\cdot}\mathbf{K}^{-1}}$ | $J \cdot mol^{-1}$                                 | $J \cdot mol^{-1} \cdot K^{-1}$                     |
| 280    | 10.908                                                                                      | -224.49                                            | -0.583                                              |
| 285    | 11.745                                                                                      | -167.86                                            | -0.436                                              |
| 290    | 12.550                                                                                      | -107.10                                            | -0.277                                              |
| 295    | 13.281                                                                                      | -42.48                                             | -0.109                                              |
| 300    | 13.896                                                                                      | 25.52                                              | 0.065                                               |
| 305    | 14.352                                                                                      | 96.21                                              | 0.241                                               |
| 310    | 14.606                                                                                      | 168.70                                             | 0.418                                               |
| 315    | 14.615                                                                                      | 241.86                                             | 0.592                                               |
| 320    | 14.338                                                                                      | 314.37                                             | 0.762                                               |
| 298.15 | 13.685                                                                                      | 0                                                  | 0                                                   |

The function of the excess molar heat capacity of the mixture with respect to the temperature was established as follows:

$$C_{p,m}^{\rm E} = -0.4546X^3 - 1.2734X^2 + 2.1696X + 13.896 \quad (7)$$

where X = (T/K - 300)/20 and  $\delta = 0.000 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$ .

From eq 7, it can be derived that  $C_{p,m}^{E}$  reaches a maximum value of 14.644 J·mol<sup>-1</sup>·K<sup>-1</sup> at T = 312.719 K. The larger value of  $C_{p,m}^{E}$  shows that there are more interactions between the molecules in the system. The deviation of the solution from the ideal one is the largest at this temperature.

The other excess thermodynamic functions of the azeotropic mixture such as the excess enthalpy and excess entropy were derived according to the relationships of the thermodynamic functions and the function of the excess molar heat capacity with respect to the thermodynamic temperature. The results are listed in Table 4.

### **Literature Cited**

- Ogawa, H.; Murakami, S. Excess isobaric heat capacities for water + alkanol mixtures at 298.15 K. *Thermochim. Acta* 1986, 109, 145–154.
- (2) Koga, Y. Fluctuations in aqueous methanol, ethanol, and propanol-1-ol: amplitude and wavelength of fluctuation. Can. J. Chem. 1999, 77, 2039-2045.
- (3) Benson, G. C.; D'Arcy, P. J.; Kiyohara, O. Thermodynamics of aqueous mixtures of nonelectrolytes. Isobaric heat capacities of water-n-alcohol mixtures at 25 °C. J. Solution Chem. 1980, 9, 931-938.
- (4) Páramo, R.; Zouine, M.; Casanova, C. New Batch Cells Adapted to Measure Saturated Heat Capacities of Liquids. J. Chem. Eng. Data 2002, 47, 441–448.

- (5) Demirel, Y. Estimation of the entropy of vaporization at the normal boiling point for azeotropic mixtures containing water, alcohol or acetic acid. Thermochim. Acta 1999, 339, 79-85.
- Tan, Z. C.; Sun, G. Y.; Sun, Y.; Yin, A. X.; Wang, W. B.; Ye, J. C.; Zhou, L. X. An adiabatic low-temperature calorimeter for heat (6)capacity measurement of small sample. J. Therm. Anal. 1995, 45, 59-67.
- (7) Tan, Z. C.; Zhou, L. X.; Chen, S. X.; Yin, A. X.; Sun, Y.; Ye, J. C.; Wang, X. K. An adiabatic calorimeter for heat-capacity measure-
- ments from 80 to 400 K. *Sci. Sin., Ser. B* **1983**, *26*, 1014–1026. (8) Archer, D. G. Thermodynamic properties of synthetic sapphire  $(\alpha$ -Al<sub>2</sub>O<sub>3</sub>), standard reference material 720 and the effect of temperature-scale differences on thermodynamic properties. J. Phys. Chem. Ref. Data 1993, 22, 1441-1453.
  (9) David, R. L. CRC Handbook of Chemistry and Physics, 80th ed.;
- CRC Press: Boca Raton, FL, 1999; Chapter 6-6.
   Counsell, J. F.; Lees, E. B.; Martin, J. F. Thermodynamic properties of organic oxygen compounds. Part XIX. J. Chem. Soc. A 1968, 1819–1923.
- (11) Tan, Z. C.; Xue, B.; Lu, S. W.; Meng S. H.; Yuan, X. H.; Song, Y. J. Heat capacities and thermodynamic properties of Fenpropathrin (C<sub>22</sub>H<sub>23</sub>O<sub>3</sub>N). J. Therm. Anal. Calorim. 2001, 63, 297-308.
- (12) Nan, Z.; Tan, Z. C. Low-temperature heat capacities and derived thermodynamic functions of cyclohexane. J. Therm. Anal. Calorim. 2004, 76, 955-963.

- (13) Liu, Z. H.; Hatakeyama, T. Handbook of Analytical Chemistry, 2nd ed.; Chemical Industry Press: Beijing, 2000; p 64.
- (14) Nan, Z.; Jiao, Q. J.; Tan, Z. C.; Sun, L. X. Thermodynamic investigation of the azeotropic system- The binary system of (water + cyclohexane). Thermochim. Acta 2003, 407, 41-48.
- (15) Nan, Z.; Jiao, Q. J.; Tan, Z. C.; Sun, L. X. Thermodynamic investigation of the binary system of ethanol + benzene. Thermochim. Acta 2003, 406, 151-159.
- (16) Cerdeiriña, C. A.; Tovar, C. A.; Carballo, E.; Romaní, L.; Delgado, M. C.; Torres, L. A.; Costas, M. Temperature Dependence of the Excess Molar Heat Capacities for Alcohol-Alkane Mixture. Experimental Testing of the Predictations from a Two-State model. J. Phys. Chem. B 2002, 106, 185-191.

Received for review December 8, 2003. Accepted October 20, 2004. This work was financially supported by the National Natural Science Foundation of China under NSFC no. 20073047. This supported by the China Postdoctoral Science project was Foundation.

JE0342668