Isobaric Vapor-Liquid Equilibria of the Ternary System Methylbutyl Ketone + Nonane + Cyclohexanol

Helle Kirss, Mati Kuus, and Enn Siimer*

Department of Material Science, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia

Isobaric vapor—liquid equilibria (VLE) were measured for the ternary system methylbutyl ketone + nonane + cyclohexanol and for the binary methylbutyl ketone + cyclohexanol. Boiling temperature (T)—liquid composition (x) relations were obtained at (26.66, 53.33, and 79.99) kPa by using a semi-microebulliometer. The modified Wilson model was used to correlate the binary T-x data and to predict VLE in the ternary system.

Introduction

Multicomponent vapor-liquid equilibrium (VLE) data are important in the design of equipment for separation processes, and it is necessary to test and develop models for the correlation and prediction of thermodynamic properties of mixtures. In previous work, we have reported vapor-liquid equilibria in the ternary systems o-xylene + amyl acetate + nonane, o-xylene + nonane + cyclohexanol,² hexan-2-one + o-xylene + nonane,³ toluene + pxylene + 1,2-dichloroethane,⁴ toluene + ethylbenzene +chlorobenzene,⁵ and toluene + ethylbenzene + amyl acetate.⁶ In this paper, we present vapor-liquid equilibria at pressures of (26.66, 53.33, and 79.99) kPa for the ternary system methylbutyl ketone + nonane + cyclohexanol. The study of the thermodynamics of this system is interesting from a scientific point of view because there exist two different polar components (ketone and alcohol) together with a nonpolar one (hydrocarbon). We have not found information for VLE of this ternary system and of the binary system methylbutyl ketone + cyclohexanol in the literature. For the other binaries, our VLE data have been published earlier.^{2,3} Our microcalorimetric experiments at 318.15 K showed that there are quite large positive excess enthalpies in the ternary system methylbutyl ketone + nonane + cyclohexanol and in all constituent binaries.⁷ For the correlation of binary VLE data and prediction of ternary VLE, the modified Wilson equation² was used as a model, giving in many cases the most reliable results.

Experimental Section

Materials. All substances were purified twice by vacuum rectification. Their purity, checked by gas chromatography, was better than 99.5 mass %. Densities $\rho/\text{kg}\cdot\text{m}^{-3}$ were measured with a capillary pycnometer, and refractive indices $n_{\rm D}$ were measured with an Abbé refractometer at 293.15 K. Measurements of normal boiling temperatures $T_{\rm b}/\text{K}$, densities, and refractive indices are compared with literature data in Table 1.

Apparatus and Procedure. The boiling temperature– liquid mole fraction T-x measurements were performed by means of a semi-microebulliometer. The experimental arrangement and the procedure of determining the T-xrelation were described previously.⁸ The uncertainties of the boiling-temperature measurements were estimated to

Table 1. Normal Boiling Temperatures $T_{\rm b}$, Densities ρ , and Refractive Indices $n_{\rm D}$ of Pure Components

		$T_{ m b}/{ m K}$		$ ho/{ m kg}{ m \cdot}{ m m}^{-3}$		$n_{ m D}$	
$\operatorname{component}$	<i>T</i> /K	exptl	lit	exptl	lit	exptl	lit
methylbutyl ketone	293.15	400.69	400.35 ^a	811.2	811.3^{b}	1.4008	1.4007^{b}
nonane cyclohexanol	$293.15 \\ 303.15$	$\begin{array}{c} 423.97 \\ 433.89 \end{array}$	423.95^a 434.25^a	$\begin{array}{c} 717.6\\941.6\end{array}$	717.6^{c} 941.6^{a}	$\begin{array}{c} 1.4055\\ 1.4621 \end{array}$	1.4054^{c} 1.4629^{a}

^a Dean.¹⁰ ^b Lide.¹¹ ^c TRC Thermodynamic Tables.¹²

Table 2. Isobaric Vapor-Liquid Equilibrium Data:Liquid-Phase Mole Fraction (x_1) and BoilingTemperatures (T) in the Binary System MethylbutylKetone + Cyclohexanol

	T_{i}	T/K at pressure P/kPa						
x_1	P = 26.66	P = 53.33	P = 79.99					
0.000	394.86	413.79	426.16					
0.153	384.27	404.77	417.90					
0.227	380.48	401.21	414.56					
0.357	374.48	395.33	408.76					
0.508	369.84	390.48	404.09					
0.625	367.10	387.50	400.97					
0.795	363.45	383.45	396.74					
0.899	361.51	381.40	394.58					
1.000	359.51	379.52	392.57					

be less than 0.05 K. The equilibrium pressure was measured with a mercury manometer. The absolute accuracy of these measurements is probably within 13 Pa. All mixtures were prepared by mass. The uncertainties of the mole fraction composition of a liquid mixture (x_i) were found to be less than 5×10^{-4} .

Results and Discussion

The experimental values of boiling-temperature measurements for the binary system methylbutyl ketone + cyclohexanol at three pressures (26.66, 53.33, and 79.99) kPa are reported in Table 2 and for all of the binaries at 79.99 kPa in Figure 1.

The T-x data of the binary systems were fit with the Wilson model,⁹ writing the expression for the activity coefficients as

$$\ln \gamma_i = -\ln(x_i - \Lambda_{ik}x_k) + x_k \left[\frac{\Lambda_{ik}}{x_i + \Lambda_{ik}x_k} - \frac{\Lambda_{ki}}{x_k + \Lambda_{ki}x_i}\right] \quad (1)$$

where γ_i is the activity coefficient of component *i* in the liquid phase. We have used the modified form of the Wilson

* Corresponding author. E-mail: enn.siimer@staff.ttu.ee.

10.1021/je040002p CCC: \$30.25
$$\hfill @$$
 2005 American Chemical Society Published on Web 02/01/2005

Figure 1. Boiling temperature–composition diagram for binaries at 79.99 kPa: \bigcirc , nonane (1) + cyclohexanol (2), line 1, Siimer et al.;² \square , methylbutyl ketone (1) + cyclohexanol (2), line 2, this work; \triangle , nonane (1) + methylbutyl ketone (2), line 3, Siimer et al.³

Table 3. Coefficients for the Antoine Vapor-Pressure Equation (kPa, K) (Eq 4)

component	A_i	B_i	C_i	region, K
methylbutyl ketone ^a	14.0050	3104.454	-69.962	359 to 401
nonane ^b	13.8546	3224.816	-74.824	380 to 424
cyclohexanol ^b	13.7219	2778.058	-128.724	395 to 426

^a Siimer et al., 2002.³ ^b Siimer et al., 2002.²

model,² considering the linear dependence of the parameters $(\lambda_{ij} - \lambda_{ii})$ on temperature. In this case, coefficients Λ_{ik} and Λ_{ki} can be expressed as

$$\Lambda_{ik} = \exp\left[a_{ik} + \frac{b_{ik}}{T}\right] \tag{2}$$

$$\Lambda_{ki} = \exp\left[a_{ki} + \frac{b_{ki}}{T}\right] \tag{3}$$

including in parameters a_{ik} and b_{ik} the molar volumes of components and the gas constant. Parameters a_{ik} and b_{ik} were calculated by the Newton iteration method.

The vapor pressures of pure components P_i needed for VLE calculations were calculated using the Antoine equation

$$\ln(P_i/kPa) = A_i - \frac{B_i}{T/K + C_i}$$
(4)

as given by us earlier,^{2,3} and the values of A_i , B_i , and C_i are also given in Table 3.

In Table 4, the optimal values of parameters a_{ik} and b_{ik} , standard deviation, and mean relative error in the pressure as a result of correlation are presented. For the systems methylbutyl ketone + nonane and nonane + cyclohexanol, our earlier results^{2,3} are given. The standard deviation was calculated using eq 5

$$\sigma(P/kPa) = \left[\sum \frac{(P_{calcd} - P_{exptl})^2}{N - n}\right]^{1/2}$$
(5)

where N is the number of experimental points and n is the

Table 4. Fit Parameters of the Modified Wilson Equation and Calculated Standard Deviations (σP) and Absolute Mean Errors (ΔP) in Pressure for Binary Systems

	Wilson parameter values							
system	a_{12}	b_{12}	a_{21}	b_{21}	<i>σP</i> /kPa	$\Delta P / \%$		
methylbutyl ketone (1) + cyclohexanol (2)	2.17687	-839.958	-0.86126	195.303	0.25	0.31		
methylbutyl ketone $(1) +$ nonane $(2)^a$	1.70016	-728.735	-1.03432	155.701	0.19	0.22		
nonane $(1) +$ cyclohexanol $(2)^b$	0.05676	-314.903	3.58544	-1774.377	0.15	0.20		

^a Siimer et al., 2002.³ ^b Siimer et al., 2002.²

Table 5. Experimental Vapor-Liquid Equilibria Data for the Ternary System Methylbutyl Ketone (1) + Nonane (2) + Cyclohexanol (3) at Three Pressures and Values Calculated by the Modified Wilson Equation² Activity Coefficients (γ_1 , γ_2 , and γ_3), Vapor Mole Fractions (y_1 and y_2), Excess Gibbs Energy (G^E), Pressure (P_{calcd}), and Boiling Temperature (T_{calcd})

experimental data		calculated values								
liq m frac	uid ole tion	boiling temp	activity coefficients		vapor mole fractions		Gibbs energy	pres- sure	boiling temp	
<i>x</i> ₁	x_2	$\frac{T_{\rm exptl}}{\rm K}$	γ1	γ_2	γ3	<i>y</i> 1	y_2	$G^{\rm E}/{ m J}$ mol ⁻¹	$\overline{\frac{P_{ ext{calcd}}}{ ext{kPa}}}$	$\frac{T_{\rm calcd}}{\rm K}$
P = 79.99 kPa										
0.425	0.424	398.51	1.129	1.282	1.607	0.573	0.334	757.1	79.77	398.61
0.345	0.344	401.32	1.092	1.462	1.335	0.487	0.336	837.3	79.90	401.36
0.225	0.225	406.30	1.087	1.853	1.119	0.362	0.323	741.6	80.05	406.28
0.284	0.569	401.32	1.224	1.152	1.834	0.448	0.437	758.1	80.07	401.29
0.184	0.368	405 73	1 1 1 1 4	1 498	1 260	0 298	0 4 1 9	917.0	80.14	405.67
0 128	0.256	408.88	1 103	1 818	1 115	0.225	0.389	790 7	79.91	408.92
0 154	0.564	405.04	1 207	1 202	1 613	0.267	0.509	900.7	79 54	405 24
0.580	0.280	396.29	1.060	1 479	1 4 4 9	0.690	0.238	642.9	79 54	396.49
0.753	0.165	394 94	1.000	1 688	1 / 00	0.000	0.200	1206	79.66	30/ 38
0.100	0.105	405.83	1 373	1.000	2 9 9 1 1	0.012	0.150	619.1	80.01	105 82
0.120	0.744	300.85	1.070	1.007	1 9 9 9	0.201	0.000	600 /	79.51	400.02
0.402	0.220	404.90	1.004	1.004	1 100	0.000	0.240	691 7	00.01	404.11
0.554	0.107	404.20	1.009	1.900	1.109	0.490	0.240	051.7	00.21	404.11
				<i>P</i> =	= 53.33	3 kPa				
0.425	0.424	385.05	1.138	1.310	1.690	0.580	0.333	795.7	52.98	385.26
0.345	0.344	387.95	1.104	1.507	1.377	0.497	0.341	885.3	53.29	387.98
0.225	0.225	392.84	1.112	1.941	1.133	0.378	0.335	789.2	53.44	392.78
0.284	0.569	387.68	1.241	1.169	1.948	0.458	0.435	800.7	53.13	387.80
0.184	0.368	392.19	1.136	1.552	1.285	0.310	0.431	970.1	53.29	392.21
0.128	0.256	395.48	1.135	1.910	1.125	0.237	0.408	836.3	53.41	395.44
0.154	0.564	391.58	1.228	1.226	1.680	0.277	0.514	954.0	53.04	391.76
0.580	0.280	383.01	1.063	1.521	1.519	0.695	0.239	673.9	52.91	383.26
0 753	0 165	381.14	1 023	1 744	1 482	0.815	0 151	448.0	53 14	381 25
0.128	0 744	392.12	1 407	1 065	2 396	0 267	0.596	660 1	53 32	392.13
0.452	0.226	386.40	1 063	1 757	1 269	0.604	0 250	743.6	52.80	386 72
0.334	0.167	390.67	1.000	2 074	1 1 2 5	0.514	0.200	678.7	53.40	390.63
0.001	0.101	000.01	1.000	2.011	1.120	0.011	0.210	010.1	00.10	000.00
				<i>P</i> =	= 26.66	5 kPa				
0.425	0.424	364.67	1.151	1.355	1.820	0.595	0.333	845.3	26.46	364.89
0.345	0.344	367.52	1.125	1.577	1.441	0.517	0.347	947.4	26.65	367.53
0.225	0.225	372.28	1.153	2.078	1.154	0.406	0.354	851.5	26.82	372.12
0.284	0.569	367.16	1.267	1.198	2.125	0.475	0.432	856.5	26.59	367.24
0.184	0.368	371.62	1.173	1.636	1.323	0.332	0.449	1037.7	26.64	371.65
0.128	0.256	374.83	1.190	2.054	1.140	0.261	0.440	895.1	26.70	374.79
0.154	0.564	371.13	1.263	1.266	1.781	0.295	0.524	1023.2	26.60	371.20
0.580	0.280	362.85	1.069	1.589	1.628	0.705	0.240	713.2	26.49	363.03
0.753	0.165	361.42	1.025	1.833	1.596	0.820	0.152	470.7	26.93	361.15
0.128	0.744	371.14	1.459	1.079	2.697	0.284	0.591	716.4	26.53	371.29
0.452	0.226	365.91	1.076	1.854	1.324	0.623	0.256	800.8	26.27	366.32
0.334	0.167	370.00	1.118	2.221	1.152	0.544	0.261	741.4	26.66	370.01

number of parameters used. In determining parameters a_{ik} and b_{ik} , we used n = 4.

The isobaric VLE data for the ternary system are given in Table 5. Experimental T-x data are presented together with calculated values of activity coefficients, vapor compositions, excess Gibbs energy, temperatures, and total pressures predicted by the modified Wilson equation using

Figure 2. Boiling temperature isotherms calculated with the modified Wilson equation for the ternary system methylbutyl ketone (1) + nonane (2) + cyclohexanol (3) at 79.99 kPa.

the binary parameters from Table 4. Mean (absolute) deviations between experimental and calculated temperature and pressure were equal to 0.12 K and 0.18 kPa, respectively, and standard deviation of pressure was 0.25 kPa. Isotherms of the boiling point at a pressure of 79.99 kPa calculated using the modified Wilson equation are presented as (395, 400, 405, 410, and 415) K curves on the Gibbs triangle in Figure 2.

We reported earlier that binaries of nonane + cyclohexanol² and nonane + methylbutyl ketone³ form azeotropes at nonane mole fractions of 0.665 and 0.053 (at a pressure of 79.99 kPa), respectively, as can also be seen from Figure 1. The binary methylbutyl ketone + cyclohexanol has a relatively weak deviation from ideality.

As seen from Figure 2, for the ternary system there exists quite a strong deviation from Raoult's law. This is not surprising, considering the binary VLE data and the quite remarkable positive excess enthalpies in this system,⁷ both proving the strong interaction between different component molecules.

Literature Cited

- Kirss, H.; Siimer, E.; Kuus, M.; Kudryavtseva, L. Isobaric Vapor– Liquid Equilibria in the System o-Xylene + Amyl Acetate + Nonane. J. Chem. Eng. Data 2001, 46, 147–150.
- (2) Siimer, E.; Kirss, H.; Kuus, M.; Kudryavtseva, L. Isobaric Vapor-Liquid Equilibrium for the Ternary System o-Xylene + Nonane + Cyclohexanol. J. Chem. Eng. Data 2002, 47, 52–55.
- (3) Siimer, E.; Kirss, H.; Kuus, M.; Kudryavtseva, L. Isobaric Vapour-Liquid Equilibria of the Ternary System Hexan-2-one + o-Xylene + Nonane. Proc. Est. Acad. Sci., Chem. 2002, 51, 1, 19–28.
- (4) Kirss, H.; Kuus, M.; Siimer, E.; Kudryavtseva, L. Isobaric Vapour-Liquid Equilibria of the Ternary System Toluene + p-Xylene + 1,2-Dichloroethane. Proc. Est. Acad. Sci. Chem. 2002, 51, 4, 215– 224.
- Kuus, M.; Kirss, H.; Siimer, E.; Kudryavtseva, L. Thermodynamics of Ternary Liquid Mixtures Containing Toluene, Ethylbenzene, and Chlorobenzene. J. Chem. Eng. Data 2003, 48, 898–903.
 Kirss, H.; Kuus, M.; Siimer, E. Isobaric Vapor–Liquid Equilibria
- (6) Kirss, H.; Kuus, M.; Siimer, E. Isobaric Vapor-Liquid Equilibria of the Ternary System Toluene + Ethylbenzene + Amyl Acetate. J. Chem. Eng. Data 2004, 49, 465-467.
 (7) Kirss, H.; Kuus, M.; Siimer, E.; Kudryavtseva, L. Excess Enthal-
- Kirss, H.; Kuus, M.; Siimer, E.; Kudryavtseva, L. Excess Enthalpies for the Ternary System Cyclohexanol + Hexan-2-one + (1,2-Dimethylbenzene or Nonane) at 318.15 K. *ELDATA: Int. Electron. J. Phys.-Chem. Data* **1998**, *4*, 195–206.
 Mihkelson, V.; Kirss, H.; Kudryavtseva, L.; Eisen, O. Vapor-Liquid
- (8) Mihkelson, V.; Kirss, H.; Kudryavtseva, L.; Eisen, O. Vapor-Liquid Equilibrium T-x Measurements by a Semi-Micro Method. Fluid Phase Equilib. 1977/1978, 1, 201–209.
- (9) Wilson, G. M. Vapor-Liquid Equilibrium XI. A New Expression for the Excess Free Energy of Mixing. J. Am. Chem. Soc. 1964, 86, 127-130.
- (10) Dean, J. A. Lange's Handbook of Chemistry, 14th ed.; McGraw-Hill: New York, 1992.
- (11) CRC Handbook of Chemistry and Physics, 78th ed.; Lide, D. R., Ed.; CRC Press: Boca Raton, FL, 1997.
- (12) TRC Databases for Chemistry and Engineering: Thermodynamic Tables, version 1996-2S; Thermodynamic Research Center: Texas A&M University System: College Station, TX, 1996.

Received for review January 20, 2004. Accepted November 23, 2004. Financial support of this work by the Estonian Ministry of Education and Science under theme no. 0351456s00 is gratefully acknowledged.

JE040002P