Density, Viscosity, Refractive Index, and Speed of Sound for Binary Mixtures of Anisole with 2-Chloroethanol, 1,4-Dioxane, Tetrachloroethylene, Tetrachloroethane, DMF, DMSO, and Diethyl Oxalate at (298.15, 303.15, and 308.15) K

Jagadish G. Baragi, Mrityunjaya I. Aralaguppi,* Tejraj M. Aminabhavi, Mahadevappa Y. Kariduraganavar, and Arjumand S. Kittur

Department of Chemistry and Center of Excellence in Polymer Science, Karnatak University, Dharwad - 580 003, India

The density, viscosity, refractive index at (298.15, 303.15, and 308.15) K, and the speed of sound at 298.15 K in binary mixtures of anisole with 2-chloroethanol, 1,4-dioxane, tetrachloroethylene, tetrachloroethane, dimethyl formamide, dimethyl sulfoxide, and diethyl oxalate were measured over the entire mole fraction range of the binary mixtures. Using these data, the excess molar volume, deviations in viscosity, molar refraction, speed of sound, and isentropic compressibility were calculated. The computed quantities were fitted to the Redlich–Kister equation to derive the coefficients and estimate the standard error values.

Introduction

Anisole is a cyclic molecule used in a variety of applications in industrial sectors. Its interactions with different types of liquids such as 2-chloroethanol, 1,4-dioxane, tetrachloroethylene, tetrachloroethane, N,N-dimethyl formamide, dimethyl sulfoxide, and diethyl oxalate are important from a fundamental viewpoint. In continuation of our ongoing program of research¹⁻⁵ on the properties of binary mixtures containing anisole as one component with a variety of other liquids, we present here the experimental data on density, ρ , viscosity, η , and refractive index for the sodium D line, $n_{\rm D}$, of binary mixtures of anisole, + 2-chloroethanol, + 1,4-dioxane, + tetrachloroethylene, + tetrachloroethane, + dimethylformamide, + dimethylsulfoxide, or + diethyloxalate at (298.15, 303.15, and 308.15) K, along with those of the speed of sound, u, at T =298.15 K. From these data, the excess molar volume, $V^{\rm E}$, deviation in viscosity, $\Delta \eta$, deviation in molar refraction, ΔR , deviation in sound velocity, Δu , and deviation in isentropic compressibility, $\Delta k_{\rm s}$, have been computed, and the results are discussed in terms of the nature of molecular interactions between the mixing components. A large number of binary mixtures containing the above liquids as one of the components have been studied by different authors.⁶⁻¹⁶

Experimental Section

Materials. High-purity analytical reagent grade samples of DMF, tetrachloroethane, tetrachloroethylene and laboratory reagent grade samples of dimethylsulfoxide and diethyloxalate were procured from s.d. fine chemicals, Mumbai, India. Anisole, 2-chloroethanol, and 1,4-dioxane were extra pure grade samples procured from s.d. fine chemicals, Mumbai, India. The mol % purities of these liquids as determined by GC (HP 6890) using an FID detector were >99% and are reported in Table 1 along with a comparison of density and refractive index data measured at 298.15 K for pure liquids with literature values.

 $\ensuremath{^*}\ensuremath{\mathrm{To}}$ whom correspondence should be addressed. E-mail: aralaguppi@yahoo.com.

Binary mixtures were prepared by mass^{1,5,17} in specially designed conical flasks. Mass measurements accurate to ± 0.01 mg were performed on a digital electronic balance (Mettler, AE 240, Switzerland). A set of nine compositions were prepared for each mixture, and their physical properties were measured at the respective composition on the mole fraction scale from 0.1 to 0.9 in steps of 0.1 units. The possible uncertainty in the mole fraction was less than 0.0002 units.

Methods. Densities of liquids and liquid mixtures were measured within a precision of ± 0.0001 g.cm⁻³ using a capillary-type pycnometer of 10 cm³ volume and a capillary bore with an internal diameter of 1 mm. Doubly distilled, deionized, and degassed water with a specific conductance of $1 \times 10^{-4} \Omega^{-1}$ cm⁻¹ was used. Experimental details and calibration procedures of the pycnometer and measurements of the densities are the same as reported earlier.^{5,17,18}

Viscosities were measured using a Cannon Fenske viscometer (size 75, ASTM D 445, Industrial Research Glassware Ltd., Roselle, NJ). An electronic digital stopwatch with a readability of ± 0.01 s was used for the flow time measurements. The uncertainty in the measured viscosity values is ± 0.001 mPa·s.

Refractive indices of the liquids and the binary mixtures for the sodium D line were measured using a thermostatically controlled Abbe refractometer (Atago 3T, Japan). A minimum of three independent readings were taken for each composition, and the average value was considered in all of the calculations. The uncertainty in the refractive index data is ± 0.0001 units.

The speed of sound was measured using a variable-path single-crystal interferometer (Mittal Enterprises, model M-84, New Delhi). A crystal-controlled high-frequency generator was used to excite the transducer at a frequency of 1 MHz. Frequency was measured within an accuracy of 1 in 10^4 using a digital frequency meter. The interferometer cell was filled with the test liquid, and water was circulated around the measuring cell from a constant-temperature bath maintained at (298.15 ± 0.01) K. Details of the speed

Figure 1. Excess molar volume vs mole fraction of anisole with (\bullet) , 2-chloroethanol; (\blacksquare) , dioxane; (\blacktriangle) , tetrachloroethylene; (\times) , tetrachloroethane; (*), dimethylformamide; (\bullet) , dimethylsulfoxide; and (+), diethyloxalate at 298.15 K.

of sound measurements were given earlier,¹⁷ and the uncertainty in these data is ± 2 in 1000 m·s⁻¹.

In all of the property measurements, temperature was controlled within an accuracy of ± 0.01 K using a constanttemperature bath. A Julabo immersion cooler (FT 200, Julabo Labortechnik, Gmbh, Germany) was used to cool the water bath. This unit was installed at the intake of a heating circulator to draw the heat away from the circulating bath liquid. An immersion probe was connected to the instrument with a flexible and insulated tube, which maintained the constant temperature of the bath. All of the measurements were carried out at ambient pressure.

Results and Discussion

At least three independent readings of all of the physical property measurements on ρ , η , n_D , and u were taken for each composition, and the average of these experimental values is presented in Table 2.

From the density results, the excess molar volume, $V^{\rm E}$, has been calculated as

$$V^{\rm E} = V_m - V_1 x_1 - V_2 x_2 \tag{1}$$

Here, $V_{\rm m}$ is the molar volume of the mixture, V_1 and V_2 are the molar volumes of the respective pure components, and x_i represents the mole fraction of the *i*th component of the mixture. In a similar manner, the results of $\Delta \eta$, ΔR , Δu , and $\Delta k_{\rm s}$ have been calculated using the values of η , $n_{\rm D}$, and u from a general relationship

Figure 2. Effect of temperature on V^{E} for the anisole (1) + tetrachloroethane (2) mixture at (\blacklozenge), 298.15 K; (\blacksquare), 303.15 K; and (\blacktriangle), 308.15 K.

of the type used earlier.^{17,19}

$$\Delta Y = Y_{\rm m} - Y_1 x_1 - Y_2 x_2 \tag{2}$$

In the above equation, ΔY represents $\Delta \eta$, ΔR , Δu , and Δk_s , respectively, whereas $Y_{\rm m}$ represents the respective mixture properties, viz., the viscosity, η , molar refractivity, R (calculated from the Lorentz–Lorenz relation), speed of sound, u, and isentropic compressibility, $k_s (= 1/u^2 \rho)$ of the binary mixture; the symbol Y_i refers to the same properties for pure components of the mixture. To calculate ΔR and Δk_s , the volume fraction, $\phi_i(=x_i v_i / \sum_{i=1}^2 x_i v_i)$, was used,^{1,17} but to calculate $\Delta \eta$ and Δu , the mole fraction, x_i , was used.

All of the quantities $(V^{\rm E}, \Delta\eta, \Delta R, \Delta u, \text{ and } \Delta k_{\rm s})$ have been fitted to the Redlich-Kister ²³ equation by the method of least squares using the Marquardt algorithm²⁴ to derive the binary coefficients, A_j , and the standard deviation σ as follows.

$$V^{\rm E}(\Delta Y) = x_1 x_2 \sum_{j=1}^{k} A_j (x_2 - x_1)^{j-1}$$
(3)

In each case, the optimum number of coefficients, A_{j} , was determined from an examination of the variation of standard deviation σ as calculated by

$$\sigma = \left(\frac{\sum (Y_{\text{calcd}}^{\text{E}} - Y_{\text{obsd}}^{\text{E}})^2}{n - m}\right)^{1/2} \tag{4}$$

Here, n represents the number of measurements, and m is the number of coefficients used in fitting the data. The

Table 1. Comparison of Experimental Densities (ρ) and Refractive Indices (n_D) of Pure Liquids with Literature Values at 298.15 K

		ρ/k	$g \cdot m^{-3}$	n_{D}		
liquid	mol % purity	exptl	lit	exptl	lit	
anisole	>99.0	988.9	989.3^{20}	1.5148	1.5143^{21}	
2-chloroethanol	>99.0	1200.9	1200.0^{21}	1.4411	1.4416^{22}	
1,4-dioxane	>99.0	1028.3	1027.9^{20}	1.4181	1.4203^{21}	
tetrachloroethylene	>99.9	1614.7	1614.3^{20}	1.5036	1.5032^{21}	
tetrachloroethane	>99.0	1587.8	1586.6^{21}	1.4922	1.4924^{21}	
dimethyl formamide	>99.5	943.9	943.8^{21}	1.4288	1.4282^{21}	
dimethylsulfoxide	>99.0	1095.4	1095.3 21	1.4768	1.4765^{20}	
diethyl oxalate	>99.0	1072.3	1072.9^{21}	1.4084	1.4084^{21}	

Table 2. Experimental Density (ρ) , Viscosity (η) , Refractive Index (n_D) , and Speed of Sound (u) of the Binary Mixtures at Different Temperatures

x_1	$\rho/{\rm kg}{\cdot}{\rm m}^{-3}$	η /mPa•s	$n_{ m D}$	$u/{ m m}\cdot{ m s}^{-1}$	x_1	$\rho/{\rm kg}{\cdot}{\rm m}^{-3}$	η /mPa·s	n_{D}	$u/m \cdot s^{-1}$	x_1	$\rho/{\rm kg}{\cdot}{\rm m}^{-3}$	η /mPa·s	n_{D}	$u/m \cdot s^{-1}$
					A	nisole (1)	+ 2-Chlor	oethanol	(2)					
0	1200.9	3 104	1 4411	1358	0 3950	1088 7	= 298.10 1 583	n 1 4767	1382	0 7970	1015 9	1 087	1 5034	1402
0.1030	1165.8	2.600	1.4495	1365	0.4900	1068.8	1.418	1.4836	1388	0.8980	1010.0	1.007	1.5094	1406
0.2090	1134.5	2.130	1.4610	1372	0.5900	1049.8	1.269	1.4899	1392	1.0	988.9	0.992	1.5148	1410
0.3130	1107.6	1.778	1.4712	1378	0.6900	1032.5	1.155	1.4978	1397					
						T	= 303.15	K						
0	1192.5	2.669	1.4380		0.3950	1083.9	1.452	1.4745		0.7970	1010.0	1.004	1.5011	
0.1030	1158.6	2.334	1.4793		0.4900	1064.3	1.289	1.4807		0.8980	996.1	0.936	1.5067	
0.2090	1129.0	1.943	1.4586		0.5900	1044.8	1.158	1.4879		1.0	984.1	0.919	1.5124	
0.3130	1102.5	1.631	1.4684		0.6900	1027.5	1.064	1.4951						
0	1107 1	0.947	1 4990		0.2050	1079 P	= 308.15	K 1 4799		0 7070	1000 0	0.001	1 4000	
0 1030	1152.0	2.347	1.4520		0.3950	1070.0	1.520	1.4720		0.7970	002.5	0.921	1.4999	
0.1030	1100.0 1123.7	1.000	1 4564		0.4900	1038.3	1.100	1.4770		1.0	979 4	0.853	1.5041 1.5092	
0.3130	1097.5	1.485	1.4652		0.6900	1023.0	0.972	1.4923		110	01011	01000	1.000	
						Anisole (1) + 1,4-D	ioxane (2)					
0.0	1028.3	1 4 1 5	1 4 1 8 1	1345	0 3980	1009 7	= 298.15 1 120	n 1 4647	1378	0 8028	995 1	1 032	1 5009	1401
0.0982	1023.3	1.342	1.4320	1355	0.5046	1005.5	1.072	1.4750	1385	0.9005	991.9	1.011	1.5084	1405
0.1990	1018.4	1.267	1.4434	1364	0.6044	1001.8	1.048	1.4840	1390	1.0	988.9	0.992	1.5148	1410
0.2960	1014.0	1.190	1.4538	1371	0.7057	998.3	1.042	1.4925	1396					
						T	= 303.15	К						
0.0	1023.1	1.171	1.4176		0.3980	1004.6	1.028	1.4628		0.8028	990.5	0.957	1.4982	
0.0982	1017.9	1.185	1.4295		0.5046	1000.6	0.994	1.4720		0.9005	987.4	0.941	1.5054	
0.1990	1013.2	1.128	1.4408		0.6044	996.9	0.976	1.4814		1.0	984.1	0.919	1.5124	
0.2960	1008.6	1.074	1.4514		0.7057	993.5	0.969	1.4899						
						Т	= 308.15	K						
0.0	1017.8	1.068	1.4141		0.3980	999.8	0.936	1.4603		0.8028	985.4	0.883	1.4956	
0.0982	1012.9	1.028	1.4270		0.5046	995.7	0.917	1.4700		0.9005	982.4	0.870	1.5025	
0.1990	1008.2 1003.9	0.990 0.957	1.4305		0.8044 0.7057	992.1 988.6	$0.904 \\ 0.897$	1.4709		1.0	979.4	0.600	1.5092	
					Anis	sole $(1) + $	Tetrachlo	roethyler	ne (2)					
0.0	1014 7	0.901	1 5090	1090	0 4004	1250 O	= 298.15	K	1150	0.0000	1105.0	0.025	1 5 1 9 4	1914
0.0	1614.7 1549.6	0.861	1.5036	1038	0.4024	1350.9	0.861	1.5075	1105	0.8036	1105.0	0.935	1.5124	1314
0.0979	1040.0	0.854	1.5044	1005	0.0044	1200.9	0.874	1.5060	1190	0.0974	1049.2 988 9	0.901	1.5155	1309
0.3035	1405.4 1413.9	0.854	1.5055 1.5065	1034 1127	0.0043 0.7033	1225.5 1165.1	0.892	1.5111	1252 1271	1.0	300.3	0.332	1.5140	1410
						Т	= 303.15	ĸ						
0.0	1606.9	0.817	1.5010		0.4024	1343.5	0.815	1.5044		0.8036	1099.6	0.877	1.5096	
0.0979	1540.9	0.818	1.5015		0.5044	1280.5	0.825	1.5056		0.8974	1044.8	0.898	1.5101	
0.1962	1476.1	0.813	1.5023		0.6045	1219.3	0.839	1.5069		1.0	984.1	0.919	1.5124	
0.3035	1407.0	0.811	1.5034		0.7033	1159.6	0.855	1.5083						
						T	= 308.15	K						
0.0	1599.0	0.782	1.4980		0.4024	1337.9	0.770	1.5014		0.8036	1094.5	0.817	1.5068	
0.0979	1533.6	0.776	1.4986		0.5044	1274.6	0.776	1.5026		0.8974	1039.2	0.835	1.5080	
0.1962	1469.0	0.770	1.4993		0.6045	1213.5	0.787	1.5040		1.0	979.4	0.853	1.5092	
0.3035	1400.4	0.767	1.5004		0.7033	1154.1	0.799	1.5054						
					An	isole (1) + T	Tetrachle = 298.15	oroethan K	e (2)					
0	1587.8	1.591	1.4922	1153	0.3939	1348.3	1.419	1.5009	1235	0.7983	1107.6	1.149	1.5105	1347
0.1003	1526.3	1.555	1.4943	1172	0.4986	1285.5	1.355	1.5032	1262	0.9012	1047.0	1.074	1.5129	1379
0.2021	1464.3	1.518	1.4966	1193	0.5975	1226.5	1.292	1.5055	1289	1.0	988.9	0.992	1.5148	1410
0.3030	1403.1	1.470	1.4989	1214	0.6972	1167.2	1.224	1.5080	1317					
0	1500 0	1 477	1 400 4		0.0000	T 1942 2	= 303.15	K		0 7000	1100 7	1.004	1 5050	
U 0.1002	1510.4	1.471	1.4894		0.3939	1342.2	1.315	1.4980		0.7983	1102.7	1.064	1.5076	
0.1003	1019.4	1.439	1.4910		0.4980	1279.9 1991 1	1.200	1.5005		0.9012	1042.8 094 1	0.994	1.5100	
0.3030	1396.9	1.362	1.4960		0.6972	1162.1	1,131	1.5020 1.5052		1.0	304.1	0.313	1.0124	
5.5000	1000.0	1.502	1.1000		0.0012	т. л	- 300 15	x						
0	1573.3	1.361	1.4865		0.3939	1 1336.2	1.210	1.4952		0.7983	1097.7	0.979	1.5050	
0.1003	1512.6	1.323	1.4887		0.4986	1274.0	1.155	1.4977		0.9012	1037.4	0.914	1.5072	
0.2021	1451.2	1.290	1.4909		0.5975	1215.6	1.100	1.5000		1.0	979.4	0.853	1.5092	
0.3030	1390.6	1.253	1.4931		0.6972	1156.9	1.038	1.5023						

Table	2. (Conti	(D		, ,			(P		, 1			(, .
<i>x</i> ₁	$\rho/\text{kg}\cdot\text{m}^{-3}$	η/mPa•s	n_{D}	$u/m \cdot s^{-1}$	x_1	ρ/kg•m ^{−3}	η/mPa•s	n_{D}	$u/m \cdot s^{-1}$	x_1	$\rho/\text{kg}\cdot\text{m}^{-3}$	η/mPa•s	$n_{ m D}$	$u/m \cdot s^{-1}$
					Anis	sole $(1) + \Gamma$ T	0imethyl I = 298.15	Formami K	ide (2)					
0.0	943.9	0.801	1.4288	1462	0.3966	968.5	0.912	1.4708	1438	0.7984	984.7	0.994	1.5024	1418
0.1004	951.0	0.833	1.4407	1456	0.4975	973.4	0.937	1.4798	1432	0.9042	987.7	1.006	1.5099	1413
0.1960	957.0	0.859	1.4513	1451	0.5983	977.6	0.957	1.4878	1427	1.0	988.9	0.992	1.5148	1410
0.2939	962.9	0.886	1.4614	1445	0.6953	981.2	0.977	1.4953	1422					
0.0	000 5	0 554	1 4004		0.0000	T	= 303.15	K		0 5004	000.0	0.000	1 5000	
0.0	939.5	0.754	1.4264		0.3966	964.1	0.856	1.4683		0.7984	980.3	0.928	1.5000	
0.1004	946.6	0.787	1.4381		0.4975	968.8	0.878	1.4771		0.9042	983.3	0.938	1.5071	
0.1900	952.7	0.810	1.4487		0.0983	973.Z	0.897	1.4892		1.0	984.1	0.919	1.3124	
0.2939	908.2	0.833	1.4087		0.6955	976.9 T	0.913	1.4928 V						
0.0	935.0	0.711	1.4238		0.3966	959.7	0.799	1.4656		0.7984	975.9	0.863	1.4973	
0.1004	942.3	0.739	1.4356		0.4975	964.4	0.819	1.4744		0.9042	978.5	0.871	1.5043	
0.1960	948.2	0.760	1.4462		0.5983	968.7	0.836	1.4825		1.0	979.4	0.853	1.5092	
0.2939	953.9	0.780	1.4558		0.6953	972.4	0.851	1.4902						
					An	isole (1) +	Dimethy	sulfoxid	e (2)					
0.0	1005 /	1 98/	1 4768	1/03	0 3087	1043 G	= 298.15 1 466	N 1 4062	1469	0 7088	1005 5	1 157	1 5105	1/98
0.0	1035.4	1.836	1 / 817	1433	0.5507	1045.0	1 369	1 / 996	1402	0.7500	997 /	1.157	1.5105	1420
0.0000	1066.7	1.691	1.4017	1407	0.5014	1002.0 1024 1	1.318	1.4000	1445	1.0	988.9	0.992	1.5124	1410
0.2010	1054.4	1.565	1 4929	1468	0.6956	1024.1 1014 7	1.010 1 249	1.5069	1437	1.0	000.0	0.002	1.0140	1410
0.0010	1001.1	1.000	1.1020	1100	0.0000	т Т	= 303.15	к	1101					
0.0	1090.8	1.801	1,4594		0.3987	1039.2	1.347	1.4935		0.7988	1001.4	1.073	1.5075	
0.0938	1077.0	1.683	1.4772		0.5074	1027.9	1.268	1.4974		0.8933	992.8	1.004	1.5096	
0.2016	1062.1	1.549	1.4853		0.5940	1019.7	1.219	1.5006		1.0	984.1	0.919	1.5124	
0.3025	1049.9	1.438	1.4901		0.6956	1010.3	1.152	1.5043						
						T	= 308.15	K						
0.0	1086.2	1.651	1.4547		0.3987	1034.7	1.228	1.4906		0.7988	996.7	0.989	1.5046	
0.0938	1072.3	1.529	1.4727		0.5074	1023.6	1.166	1.4952		0.8933	988.5	0.931	1.5069	
0.2016	1057.6	1.407	1.4828		0.5940	1015.1	1.119	1.4980		1.0	979.4	0.853	1.5092	
0.3025	1045.3	1.310	1.4873		0.6956	1005.7	1.054	1.5017						
					А	nisole (1) -	+ Diethyl - 208 15	Oxalate K	(2)					
0.0	1072.3	1.844	1,4084	1267	0.3621	1047.7	1.495	1.4412	1316	0.8016	1010.1	1.140	1.4896	1377
0.1017	1065.8	1 732	1 4171	1280	0 4971	1037.4	1 380	1 4551	1334	0.9007	999.9	1.061	1 5021	1393
0.1976	1059.5	1.640	1.4257	1293	0.5975	1029.1	1.301	1.4660	1348	1.0	988.9	0.992	1.5148	1410
0.2978	1052.6	1.550	1.4350	1307	0.6977	1020.1	1.223	1.4773	1362	1.0	00010	0.002	110110	
						 T	= 303.15	K						
0.0	1066.6	1.659	1.4061		0.3621	1042.3	1.367	1.4388		0.8016	1005.3	1.054	1.4868	
0.1017	1060.1	1.578	1.4148		0.4971	1031.9	1.265	1.4525		0.9007	995.4	0.985	1,4991	
0.1976	1053.8	1.497	1.4232		0.5975	1023.8	1.195	1.4634		1.0	984.1	0.918	1.5124	
0.2978	1047.1	1.416	1.4325		0.6977	1014.9	1.126	1.4746						
						Т	= 308.15	K						
0.0	1060.7	1.508	1.4039		0.3621	1036.7	1.239	1.4362		0.8016	1000.0	0.968	1.4840	
0.1017	1054.3	1.424	1.4124		0.4971	1026.5	1.149	1.4499		0.9007	990.2	0.910	1.4962	
0.1976	1048.1	1.354	1.4207		0.5975	1018.5	1.089	1.4607		1.0	979.4	0.853	1.5092	
0.2978	1041.4	1.282	1.4300		0.6977	1009.7	1.030	1.4718						

estimated values of A_j and σ for V^{E} , $\Delta\eta$, ΔR , Δu , and Δk_{s} are presented in Table 3. In all cases, the best fit was found by using only three adjustable fitting coefficients in eq 3.

Table 9 (Continued)

Excess molar volumes, $V^{\rm E}$, of the binary mixtures of anisole + 2-chloroethanol, + 1,4-dioxane, + tetrachloroethylene, + tetrachloroethane, + N,N-dimethylformamide, + dimethylsulfoxide, and + diethyloxalate as a function of mole fraction, x_1 , of anisole at 298.15 K are displayed in Figure 1. It is observed that for mixtures of anisole + 1,4dioxane, + tetrachloroethylene, or + 2-chloroethanol the $V^{\rm E}$ data are positive. These positive $V^{\rm E}$ values vary in the order 2-chloroethanol > tetrachloroethylene > 1,4-dioxane because of the repulsive forces operating between the component liquids of the mixtures depending on their dipole moments and dielectric constants. The breaking up of intermolecular H bonding in 2-chloroethanol by anisole molecules combined with repulsive forces between the lone pair of electrons on oxygen atoms of both of the components of the mixture leads to the positive deviation in $V^{\!\rm E}$ of the mixture. Similar dispersion forces between the component molecules combined with a low molar volume of dioxane leads to small positive values of the excess molar volume for mixtures of anisole + dioxane. Dispersion forces also exist between electronic charges on the oxygen atom of anisole molecules and the π electrons of the double bond of tetrachloroethylene having a higher molar volume leading to higher positive $V^{\rm E}$ values. In the case of mixtures of anisole (1) + tetrachloroethane (2), or + dimethylsulfoxide, or + diethyloxalate, or dimethylacetamide, the $V^{\rm E}$ versus x_1 plots exhibit negative trends. The negative $V^{\rm E}$ values vary in the order tetrachloroethane > dimethylsulfoxide > diethyloxalate > dimethylformamide.

function	T/K	A_1	A_2	A_3	σ	function	T/K	A_1	A_2	A_3	σ
$\frac{\text{An}}{V^{\text{E}}/10^{-6}/\text{m}^3 \cdot \text{mol}^{-1}}$	isole (1) - 298.15 303.15	+ 2-Chloroet 0.922 0.412	hanol (2) 0.031 -0.678	$0.312 \\ 1.312$	$0.005 \\ 0.029$	Anise $V^{\text{E}}/10^{-6} \text{ m}^3 \cdot \text{mol}^{-1}$	(1) + 298.15 303.15	Dimethyl : -1.173 -1.263	formamide 0.613 0.885	(2) -0.451 -0.729	0.034 0.041
$\Delta \eta$ /mPa·s	308.15 298.15	0.484 -2.638	-0.173 -0.923	-0.091 -0.075	0.008 0.021	$\Delta \eta$ /mPa·s	308.15 298.15	-1.370 0.156	0.860 -0.098	-0.730 0.122	0.025 0.0028
	303.15 308.15	$-2.111 \\ -1.806$	-0.367 -0.158	$0.546 \\ 0.621$	$0.026 \\ 0.022$		303.15 308.15	$0.161 \\ 0.141$	$-0.099 \\ -0.093$	$0.165 \\ 0.149$	0.0024 0.0019
$\Delta R \times 10^{\circ}/\mathrm{m}^{\circ}\cdot\mathrm{mol}^{-1}$	298.15 303.15 308.15	$-7.346 \\ -7.795 \\ -7.228$	$-1.589 \\ -5.080 \\ -2.012$	-0.903 7.177 0.549	$0.043 \\ 0.464 \\ 0.035$	$\Delta R \times 10^{\circ}/\mathrm{m}^{\circ}\cdot\mathrm{mol}^{-1}$	298.15 303.15 308.15	$-4.490 \\ -4.559 \\ -4.555$	$-0.892 \\ -0.971 \\ -0.876$	$-0.125 \\ -0.294 \\ -0.090$	$0.010 \\ 0.006 \\ 0.007$
$\Delta u/\mathrm{m}\cdot\mathrm{s}^{-1}$	298.15	14.26	0.17	1.60	0.039	$\Delta u/\mathrm{m}\cdot\mathrm{s}^{-1}$	298.15	-14.89	10.15	5.10	0.360
$\Delta k_{\rm S}/{\rm Tpa^{-1}}$	298.15	-0.17	-0.08	0.09	0.001	$\Delta k_{\rm S}/{\rm TPa^{-1}}$	298.15	-10.72	4.30	-2.26	0.1711
$V^{\rm E}/10^{-6}{\rm m}^3\cdot{\rm mol}^{-1})$	Anisole (1 298.15 303.15 308.15	(1) + 1,4-Diox 0.235 0.215 0.146	ane (2) 0.048 0.343 0.094	$-0.084 \\ -0.224 \\ -0.007$	$\begin{array}{c} 0.001 \\ 0.011 \\ 0.0003 \end{array}$	Ani $V^{\text{E}}/10^{-6} \text{ m}^3 \cdot \text{mol}^{-1}$	sole (1) + 298.15 303.15 308.15	Dimethy -0.761 -0.904 -0.970	lsulfoxide (0.410 0.622 0.687	$2) \\ 0.160 \\ -0.077 \\ -0.179$	$0.018 \\ 0.019 \\ 0.010$
$\Delta \eta$ /mPa·s	$298.15 \\ 303.15 \\ 308.15$	$-0.507 \\ -0.202 \\ -0.169$	$-0.109 \\ 0.105 \\ -0.126$	$\begin{array}{c} 0.409 \\ 0.575 \\ 0.059 \end{array}$	$\begin{array}{c} 0.009 \\ 0.010 \\ 0.002 \end{array}$	$\Delta \eta$ /mPa·s	298.15 303.15 308.15	$-0.416 \\ -0.337 \\ -0.333$	$-0.351 \\ -0.301 \\ -0.337$	$\begin{array}{c} 0.041 \\ 0.119 \\ 0.008 \end{array}$	$\begin{array}{c} 0.010 \\ 0.007 \\ 0.009 \end{array}$
$\Delta R \times 10^{6} / \mathrm{m}^{3} \cdot \mathrm{mol}^{-1}$	$298.15 \\ 303.15 \\ 308.15$	$-2.121 \\ -2.285 \\ -2.078$	$-0.350 \\ -0.238 \\ -0.274$	$0.516 \\ -0.132 \\ 0.077$	$\begin{array}{c} 0.020 \\ 0.021 \\ 0.022 \end{array}$	$\Delta R imes 10^{6} / \mathrm{m}^{3} \cdot \mathrm{mol}^{-1}$	$298.15 \\ 303.15 \\ 308.15$	$-5.529 \\ -4.509 \\ -4.287$	$-1.303 \\ -2.975 \\ -2.968$	$-0.088 \\ 1.188 \\ 1.123$	$\begin{array}{c} 0.032 \\ 0.021 \\ 0.019 \end{array}$
$\Delta u/\mathrm{m}\cdot\mathrm{s}^{-1}$	298.15	28.67	11.73	0.25	0.138	$\Delta u/\mathrm{m}\cdot\mathrm{s}^{-1}$	298.15	8.07	-1.68	6.54	1.221
$\Delta k_{\rm S}/{\rm TPa^{-1}}$	298.15	-11.60	5.31	1.76	0.074	$\Delta k_{\rm S}/{ m TPa^{-1}}$	298.15	-43.79	-14.93	-10.12	1.0276
Anise $V^{\text{E}}/10^{-6} \mathrm{m^{3} \cdot mol^{-1}}$	ole (1) + ' 298.15 303.15 308.15	Tetrachloroe 0.755 0.854 0.697	ethylene (1 0.363 0.609 0.454	$2) \\ -0.087 \\ -0.595 \\ -0.198$	$\begin{array}{c} 0.005 \\ 0.034 \\ 0.008 \end{array}$	Ar $V^{\text{E}}/10^{-6} \text{ m}^3 \cdot \text{mol}^{-1}$	nisole (1) 298.15 303.15 308.15	+ Diethyl -0.920 -0.891 -0.902	oxalate (2) 0.334 0.477 0.346) 0.031 -0.282 0.035	$0.0104 \\ 0.0224 \\ 0.0123$
$\Delta \eta$ /mPa·s	$298.15 \\ 303.15 \\ 308.15$	$-0.216 \\ -0.176 \\ -0.168$	$-0.007 \\ -0.011 \\ -0.019$	$\begin{array}{c} 0.038 \\ 0.090 \\ 0.051 \end{array}$	$\begin{array}{c} 0.0018 \\ 0.0016 \\ 0.0010 \end{array}$	$\Delta \eta$ /mPa·s	298.15 303.15 308.15	$-0.151 \\ -0.100 \\ -0.125$	$-0.072 \\ -0.023 \\ -0.058$	$-0.090 \\ 0.044 \\ -0.010$	$\begin{array}{c} 0.0025 \\ 0.0018 \\ 0.0016 \end{array}$
$\Delta R \times 10^{6} / \mathrm{m}^{3} \cdot \mathrm{mol}^{-1}$	$298.15 \\ 303.15 \\ 308.15$	$-0.095 \\ -0.165 \\ -0.200$	$-0.049 \\ -0.091 \\ 0.040$	$-0.005 \\ -0.279 \\ 0.050$	$\begin{array}{c} 0.0015 \\ 0.0163 \\ 0.0012 \end{array}$	$\Delta R imes 10^{6} / \mathrm{m}^{3} \cdot \mathrm{mol}^{-1}$	$298.15 \\ 303.15 \\ 308.15$	$-0.245 \\ -0.290 \\ -0.275$	$0.058 \\ -0.102 \\ 0.038$	$\begin{array}{c} 0.085 \\ -0.182 \\ -0.126 \end{array}$	$0.0039 \\ 0.0104 \\ 0.0041$
$\Delta u/\mathrm{m}\cdot\mathrm{s}^{-1}$	298.15	-124.04	27.70	-1.33	0.494	$\Delta u/{ m m}\cdot{ m s}^{-1}$	298.15	-16.45	12.28	-17.50	0.295
$\Delta k_{\rm S}/{\rm TPa^{-1}}$	298.15	16.31	4.30	-3.67	0.2846	$\Delta k_{\rm S}/{\rm TPa^{-1}}$	298.15	-27.91	11.55	9.37	0.42
Anis V ^E /10 ⁻⁶ m ³ ·mol ⁻¹	sole (1) + 298.15 303.15 308.15	$\begin{array}{c} {\rm Tetrachloro} \\ -0.436 \\ -0.574 \\ -0.664 \end{array}$	ethane (2 0.232 0.494 0.434	$\begin{array}{c} -0.172 \\ -0.657 \\ -0.498 \end{array}$	$\begin{array}{c} 0.005 \\ 0.043 \\ 0.010 \end{array}$						
$\Delta \eta$ /mPa·s	$298.15 \\ 303.15 \\ 308.15$	$0.255 \\ 0.241 \\ 0.194$	$\begin{array}{c} 0.047 \\ 0.052 \\ 0.053 \end{array}$	$0.020 \\ 0.014 \\ -0.074$	$\begin{array}{c} 0.0037 \\ 0.0030 \\ 0.0037 \end{array}$						
$\Delta R \times 10^{6} / \mathrm{m}^{3} \cdot \mathrm{mol}^{-1}$	$298.15 \\ 303.15 \\ 308.15$	$-0.288 \\ -0.360 \\ -0.340$	$\begin{array}{c} 0.024 \\ -0.121 \\ -0.010 \end{array}$	$0.132 \\ -0.201 \\ 0.015$	$\begin{array}{c} 0.005 \\ 0.015 \\ 0.005 \end{array}$						
$\Delta u/m \cdot s^{-1}$	298.15	-76.08	-6.97	5.48	0.442						

Table 3. Derived Parameters of Equation 3 for Various Functions of the Binary Mixtures at Different Temperatures

The excess molar volume decreases with increasing temperature for the mixtures of anisole + tetrachloroethane, or + dimethylformamide, or + dimethylsulfoxide. A typical plot showing the effect of temperature on the values of $V^{\rm E}$ for the mixtures of anisole + tetrachloroethane is shown in Figure 2. For other mixtures, no systematic trend is observed with increasing temperature.

-11.96

-18.46

-7.32

0.2469

298.15

 $\Delta k_{\rm S}/{\rm TPa^{-1}}$

The results of $\Delta \eta$ versus x_1 at 298.15 K are displayed in Figure 3. It is observed that large negative values of $\Delta \eta$ are observed for anisole + 2-chloroethanol. Negative $\Delta \eta$ values are also observed for anisole + diethyloxalate, or + tetrachloroethylene, or + dimethylsulfoxide, or + 1,4dioxane. For these mixtures, the values vary in the order diethyloxalate > tetrachloroethylene > dimethylsulfoxide > 1,4-dioxane > 2-chloroethanol. The positive $\Delta \eta$ values are observed for mixtures of anisole + tetrachloroethane or + N,N-dimethylformamide. With increasing temperature, $\Delta \eta$ values decrease for the mixtures of anisole +tetrachloroethane, whereas those for anisole + 2-chloroethanol show an increasing trend with increasing temperature. Typical plots showing the effect of temperature on $\Delta \eta$ for these two mixtures are shown in Figures 4 and 5. For anisole + tetrachloroethylene, the effect of temperature on $\Delta \eta$ is not appreciable, whereas for others no systematic trend is observed with increasing temperature for $\Delta \eta$.

The results of deviations in molar refraction, ΔR plotted as a function of ϕ_1 of anisole at 298.15 K, displayed in Figure 6, indicate negative values for all of the mixtures. The negative ΔR values vary in the order 2-chloroethanol > DMSO > DMF > 1,4-dioxane > tetrachloroethane > diethyloxalate > tetrachloroethylene. The effect of tem-

Figure 3. Deviations in viscosity vs mole fraction at 298.15 K for the same mixtures presented in Figure 1.

Figure 4. Effect of temperature on $\Delta \eta$ for the anisole (1) + tetrachloroethane (2) mixture at (\blacklozenge) 298.15 K, (\blacksquare) 303.15 K, and (\blacktriangle) 308.15 K.

perature on ΔR for anisole + 2-chloroethanol or + DMF is not observed, whereas for other systems the effect of temperature exhibits no systematic trend in ΔR values.

The results of Δu versus x_1 and Δk_s versus ϕ_1 of the binary mixtures at 298.15 K are presented in Figures 7 and 8. A negative Δu is observed in the case of anisole + tetrachloroethylene, or + tetrachloroethane, or + diethyloxalate, or + DMF. However, for mixtures of anisole with 2-chloroethanol, or DMSO, or 1,4-dioxane, Δu values are positive. The Δk_s values for all of the mixtures are negative except for the mixtures of anisole + tetrachloroethylene, which are positive. For anisole + tetrachloroethane mixtures, at lower volume fractions the negative deviations are small, whereas at higher volume fractions the negative values are greater. For mixtures with 1,4-dioxane and *N*,*N*-dimethylformamide, the two curves overlap one another, whereas for mixtures with DMSO and diethyloxalate larger negative values are observed.

Figure 5. Effect of temperature on $\Delta \eta$ for an sole (1) + 2-chloroethanol (2) Mixture at (\blacklozenge), 298.15 K; (\blacksquare), 303.15 K; and (\blacktriangle), 308.15 K.

Figure 6. Deviations in molar refraction (ΔR) vs volume fraction at 298.15 K for the same mixtures presented in Figure 1.

It may be noted that in all of the plots, points represent the quantities calculated from eqs 1 and 2, whereas the smooth curves are drawn from the best-fit values calculated from eq 3.

Conclusions

Experimental data of the density, viscosity, refractive index, and speed of sound have been measured for binary mixtures of anisole with 2-chloroethanol, 1,4-dioxane, tetrachloroethylene, tetrachloroethane, DMF, DMSO, and diethyloxalate. These data have been further used to compute excess quantities such as the excess molar volume, deviations in viscosity, molar refractivity, and speed of sound. The sign and magnitude of these quantities have been discussed in terms of the molecular interactions between the mixing components. Both negative and positive deviations are observed for $V^{\mathbb{E}}$, $\Delta \eta$, Δu , and Δk_{s} ,

Figure 7. Deviations in speed of sound (Δu) vs mole fraction at 298.15 K for the same mixtures presented in Figure 1.

Figure 8. Deviations in isentropic compressibility (Δk_s) vs volume fraction at 298.15 K for the same mixtures presented in Figure 1.

whereas negative deviations in ΔR are observed for all of the binary mixtures.

Literature Cited

- (1) Aralaguppi, M. I.; Aminabhavi, T. M.; Balundgi, R. H. Excess Molar Volume, Excess Isentropic Compressibility and Excess Molar Refraction of Binary Mixtures of Methyl Acetoacetate with Benzene, Toluene, *m*-Xylene, Mesitylene and Anisole. *Fluid Phase* Equilib. **1992**, 71, 99–112.
- (2) Aralaguppi, M. I.; Aminabhavi, T. M.; Haragoppad, S. B.; Balundgi, R. H.Thermodynamic Interactions in Binary Mixtures of DimethylSulphoxide with Benzene, Toluene, 1,3-Dimethylbenzene, 1,3,5-Trimethylbenzene, and Methoxybenzene from 298.15 to 308.15 K. J. Chem. Eng. Data 1992, 37, 298-303.
- (3) Aralaguppi, M. I.; Aminabhavi, T. M.; Balundgi, R. H. Shear Viscosities of Binary Mixtures of Methyl Acetoacetate with Benzene, Toluene, m-Xylene, 1,3,5-Trimethylbenzene, and Methoxybenzene. Indian J. Technol. 1993, 31, 734-738.
- (4) Aralaguppi, M. I.; Jadar, C. V.; Aminabhavi, T. M. Density, Refractive Index, Viscosity and Speed of Sound in Binary Mixtures of Cyclohexane with Benzene, Methylbenzene, 1,3-Dimethylbenzene, 1,3,5-Trimethylbenzene, and Methoxybenzene in the Temperature Interval (298.15 to 308.15) K. J. Chem. Eng. Data 1999, 44, 446-450.

- (5) Nayak, J. N.; Aralaguppi, M. I.; Aminabhavi, T. M. Density, Viscosity, Refractive Index, and Speed of Sound in the Binary Mixtures of Ethylchloroacetate with Aromatic Liquids at 298.15, 303.15, and 308.15 K. J. Chem. Eng. Data 2002, 47, 964–969.
- (6) Jasbir, S.; Singh, B. M. Ultrasonic velocities, densities and refractive indices of binary mixtures of acetonitrile with DMF and pyridine at various temperatures. J. Chem. Res., Synop. 1992, 7, 218–219.
- (7) Krishnaiah, A.; Surendranath, K. N.; Vishwanath, D. S. Excess Volumes and Viscosities of 1,4-Dioxane + Chlorinated Ethanes or + Chlorinated Ethanes at 303.15 K. J. Chem. Eng. Data 1994, 39, 756–758.
- (8) Venkatesulu, D.; Venkatesu, P.; Prabhakar Rao, M. V. Viscosities and densities of Trichloroethylene or Tetrachloroethylene with 2-Alkoxy Ethanols at 303.15 and 313.15 K. J. Chem. Eng. Data 1997, 42, 365–367.
- (9) Renu, C.; Tripathi, A. D. Excess Molar Enthalpies of 1,1,2,2-Tetrachloroethane + 2-Methylfuran, + THF, + 1,4-Dioxane, and + Cyclopentanone at 308.15 K and 318.15 K. J. Chem. Eng. Data 1995, 40, 645–646.
- (10) Comelli, F.; Francesconi, R. Excess Molar Enthalpies and Excess Molar Volumes of Propionic Acid + Cyclohexane, + 1,3,5-Trimethylbenzene, + Oxane, or + 1,4-Dioxane at 313.15 K. J. Chem. Eng. Data 1996, 41, 101–104.
- (11) Surendranath, K. N.; Krishnaiah, A.; Ramakrishna, M. Thermodynamics of binary mixtures containing cyclic ethers- Part III. Excess enthalpies of oxolane and 1,4-dioxane. *Fluid Phase Equilib.* **1992**, *71*, 169–176.
- (12) Nath, J.; Pandey, J. G. Excess Molar Volumes, Relative Permittivities, and Refractive Indexes of 1,1,2,2-Tetrachloroethane + Pyridine, + Anisole, + Methylethyl Ketone and 1,4-Dioxane at 303.15 K. J. Chem. Eng. Data **1996**, 41, 844–847.
- (13) Tsierkezos, N. G.; Kelarakis, A. E.; Palaiogou, M. M. Densities, Viscosities, and Refractive Indices of Dimethyl Sulphoxide + Butyl Acetate Mixtures at (293.15, 303.15, and 313.15) K. J. Chem. Eng. Data 2000, 45, 395–398.
- (14) Oswal, S. L.; Patel, N. B. Speed of Sound, Isentropic Compressibilities, and Excess Volumes of Binary Mixtures of Acrylonitrile with Organic Solvents. J. Chem. Eng. Data 2000, 45, 225–230.
- (15) Bardavid, S. M.; Pedrosa, G. C.; Katz, M. Excess molar volumes, excess viscosities and excess molar refraction of tetrachloroethylene with alcohols. An. Asoc. Quim. Argent. 1995, 83, 141– 152.
- (16) Francesconi, R.; Comelli, F.; Castellari, C. Excess Molar Enthalpies and Excess Molar Volumes of Binary Mixtures Containing Dialkyl Carbonates + Anisole or Phenetole at (298.15 and 313.15) K. J. Chem. Eng. Data 2000, 45, 544–548.
- (17) Aralaguppi, M. I.; Aminabhavi, T. M.; Balundgi, R. H.; Joshi, S. S. Thermodynamic Interactions in Mixtures of Bromoform with Hydrocarbons. J. Phys. Chem. 1991, 95, 5299-5308.
- (18) Aralaguppi, M. I.; Jadar, C. V.; Aminabhavi, T. M. Density, Viscosity, Refractive Index, and Speed of Sound in Binary Mixtures of Cyclohexane with Hexane, Heptane, Octane, Nonane, Decane, Dodecane, and 2,2,4-Trimethylpentane. J. Chem. Eng. Data 1999, 44, 441–445.
- (19) Nayak, J. N.; Aralaguppi, M. I.; Toti, U. S.; Aminabhavi, T. M. Density, Viscosity, Refractive Index, and Speed of Sound in the Binary Mixtures of Tri-n-butylamine + Tri-n-ethylamine, + Tetrahydrofuran, + Tetradecane, + Tetrachloroethylene, + Pyridine, or + Trichloroethylene at (298.15, 303.15, and 308.15) K. J. Chem. Eng. Data 2003, 48, 1483–1488.
- (20) Suri, S. K.; Naorem, H. Thermodynamic Studies of Binary Mixtures of Tetrahydrofuran with Some Oxygen- and Nitrogen-Containing Solvents: Molar Excess Volumes. J. Chem. Eng. Data 1987, 32, 462.
- (21) Riddick, J. A.; Bunger, W. B.; Sakano, T. K. Organic Solvents: Physical Properties and Methods of Purifications; Techniques of Chemistry; John Wiley & Sons: New York, 1986; Vol. 2.
- (22) Aminabhavi, T. M. Raikar, S. K. A Study on Mixing Properties of Binary Mixtures of Bromoform with Aliphatic Alcohols. J. Chem. Eng. Data 1993, 38, 310-319.
- (23) Redlich, O.; Kister, A. T. Algebraic Representation of Thermodynamic Properties and the Classification of Solutions. Ind. Eng. Chem. 1948, 40, 345–348.
- (24) Marquardt, D. W. An Algorithm for Least Squares Estimation of Nonlinear Parameters. J. Soc. Ind. Appl. Math. 1963, 11, 431– 441.

Received for review November 8, 2004. Accepted March 4, 2005. This research was funded by the Department of Science and Technology, New Delhi, India (SP/S1/H-09/2000).

JE049610V