Limiting Ionic Partial Molar Volumes and Viscosities of $\mathbf{C s}^{+}, \mathbf{N a}^{+}$, $\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4} \mathbf{N}^{+}, \mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathbf{I},^{-}$, and BPh_{4}^{-}in Aqueous Acetone at 308.15 K

Pandharinath S. Nikam, Ravindra P. Shewale, Arun B. Sawant, ${ }^{\dagger}$ and Mehdi Hasan*
P.G. Department of Physical Chemistry, M.S.G. College, Malegaon Camp, Pin. 423105, India

Abstract

Densities and viscosities of $\mathrm{CsX}\left(\mathrm{X}=\mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}\right) \mathrm{NaBr},\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4} \mathrm{NBr}$, and NaBPh_{4} in $(0,0.2,0.4,0.6$, and 0.8) weight fraction $\left(w_{1}\right)$ acetone + water have been measured over the whole composition range at 308.15 K. From the densities, apparent and limiting partial molar volumes of the electrolytes and ions in their mixtures have been evaluated. The viscosity data have been analyzed with the help of the Jones-Dole equation, and the corresponding viscosity B coefficients have been calculated. The ionic B coefficients have been determined using the reference electrolyte NaBPh_{4}.

1. Introduction

The nature of ion-solvent interactions in aqueous and nonaqueous solutions has been successfully elucidated from the volumetric and viscometric behavior of electrolytes. ${ }^{1,2}$ A knowledge of this property is very important in many practical problems concerning energy transport, mass transport, and fluid flow. In the present paper, we report apparent and limiting ionic partial molar volumes and viscosities of $\mathrm{CsX}\left(\mathrm{X}=\mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}\right), \mathrm{NaBr},\left(\mathrm{C}_{4} \mathrm{H}_{9}\right){ }_{4} \mathrm{NBr}$, and NaBPh_{4} in acetone + water mixtures at 308.15 K to determine the effect of the variation of limiting ionic partial molar volumes and viscosity B coefficients with acetone content for a given electrolyte.

2. Experimental Section

Water was distilled in quick-fit apparatus over alkaline KMnO_{4}, followed by further distillation over $\mathrm{H}_{2} \mathrm{SO}_{4}$. The electric conductance of distilled water varied between $7 \times$ 10^{-7} and $9 \times 10^{-7} \Omega^{-1} \cdot \mathrm{~cm}^{-1}$. Acetone was purified ${ }^{3}$ by refluxing with KMnO_{4} for 2 h . The solution was cooled, and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ was added to it. Two hours later it was filtered and distilled. The distillate was further distilled and preserved over anhydrous CaCl_{2} in a vacuum desiccator. The purity of acetone was checked by comparing its observed density $\left(0.78442 \mathrm{~g} \cdot \mathrm{~cm}^{-3}\right)$ to that of $0.7844 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$ at 298.15 K reported in the literature ${ }^{3}$.
$\mathrm{CsCl}, \mathrm{CsBr}$, and CsI were of analar grade, from the SAS chemical company, Bombay, with a purity greater than $99 \% ; \mathrm{NaBPh}_{4}$ was from E . Merck with a purity greater than 99.5%; NaBr was from Loba Chemie Indoaustranal company with a purity greater than 99%; and $\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4} \mathrm{NBr}$ was from Fluka Chemie, AG, CH-9470 assay greater than 98% (Br). All of these electrolytes were vacuum-dried and used without further purification.

Acetone + water mixtures of compositions ($0,0.2,0.4$, 0.6 , and 0.8) weight fraction of acetone were prepared by mixing known masses of water and acetone in glassstoppered flasks. No attempts were made to monitor the relative humidity of the air to which the acetone was

[^0]exposed for a short period of time during preparation. However, any effect of humidity on the composition of acetone was considered to be negligible.

Accurately known masses of electrolytes were dissolved in a particular solvent to give concentration of 0.05 M . This served as the stock solution. Additional concentrations were obtained by using a mass dilution technique. Electrolyte concentrations varied from (0.005 to 0.05) M. The exact concentration of the electrolyte solution was obtained either from the measurement of halide ion concentration using the Volahrds method or by gravimetric analysis. ${ }^{4,5}$ Densities were determined by using $15-\mathrm{cm}^{3}$ bicapillary pycnometer as described earlier. ${ }^{6}$ The pycnometer was calibrated using conductivity water with $0.99705 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$ as its density at 298.15 K . The pycnometer filled with air-bubble-free experimental liquids was kept in a transparent-walled water bath (maintained constant to $\pm 0.01 \mathrm{~K}$) for 10 to 15 \min to attain thermal equilibrium. The positions of the liquid levels in the two arms were recorded with the help of a travelling microscope that could be read to 0.01 mm . The estimated accuracy of the density measurements of solvent and electrolyte solutions was $0.00005 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$.

The viscosity measurements were made using a sus-pended-level Ubbelohde viscometer. ${ }^{7}$ The viscometer was clamped vertically in the bath, and $20 \mathrm{~cm}^{3}$ of the solution was added from a buret. The viscometer was calibrated with water using the viscosity and density values recommended by Marsh. ${ }^{8}$ Viscosity values were determined using the relation

$$
\begin{equation*}
\frac{\eta_{1}}{\eta_{2}}=\frac{\rho_{1} t_{1}}{\rho_{2} t_{2}} \tag{1}
\end{equation*}
$$

where $\eta_{1}, \rho_{1}, t_{1}$ and $\eta_{2}, \rho_{2}, t_{2}$ are the viscosity, density, and flow time of the solvent and solution, respectively. The flow time was measured with an electronic stop watch (accuracy of $\pm 0.01 \mathrm{~s}$). A viscometer was selected having a flow time of 250 to 300 s for redistilled water at 298.15 K . The estimated uncertainty in the experimental viscosities (relative to water) was $\pm 0.1 \%$.

3. Results and Discussion

The observed densities, ρ, and viscosities, η, of the solutions, which are the mean of three or four series of

Table 1. Densities, ρ, Apparent Molar Volumes, V_{ϕ}, and Viscosities, η, for $\mathbf{C s X},\left(\mathbf{C}_{4} \mathbf{H}_{9}\right){ }_{4} \mathbf{N B r}, \mathrm{NaBr}$, and NaBPh_{4} in Acetone (1) + Water (2) at $T=308.15 \mathrm{~K}$

Table 1. (Continued)

many measurements of CsX solutions at 308.15 K , are given in Table 1 along with the mass $\%$ values of acetone in the mixed solvent. The apparent molar volumes, V_{ϕ}, of the electrolytes were calculated from the densities using the equation

$$
\begin{equation*}
V_{\phi}=\frac{M}{\rho_{\mathrm{o}}}-\frac{1000\left(\rho-\rho_{\mathrm{o}}\right)}{C \rho_{\mathrm{o}}} \tag{2}
\end{equation*}
$$

where ρ_{0} is the density of water or acetone + water solvent, ρ is the density of electrolyte solutions, and M is the molecular weight of the electrolyte. The values of V_{ϕ} for electrolytes are given in the Table 1. V_{ϕ} for each electrolyte varied linearly with $C^{1 / 2}$ over the concentration range studied. The limiting partial molar volume, $V^{\circ}{ }_{\phi}$, of these electrolytes was obtained by computerized least-squares fitting of the results, with a correlation coefficient greater
than 0.999 , to the Masson equation ${ }^{9}$

$$
\begin{equation*}
V_{\phi}=V_{\phi}^{\circ}+S_{v}^{*} C^{1 / 2} \tag{3}
\end{equation*}
$$

where $S^{*}{ }_{v}$ is the experimental slope. The values of $V_{\phi}{ }^{\circ}$ and $S^{*}{ }_{v}$ are presented in Table 2. Figure 1 shows a representative plot of $V_{\phi}{ }^{\circ}$ versus $C^{1 / 2}$ for CsCl in all solvents. Similar plots are obtained for the other electrolytes.

The $S^{*}{ }_{v}$ values shown in Table 2 are positive for the solutions of electrolytes in water and acetone + water mixtures, indicating ion-ion interactions in solvent media. ${ }^{10}$

The $S^{*} v$ values decrease as the size of CsX increases; it appears that the dielectric constant ${ }^{11}$ of the solvent medium and the size of the X^{-}ion play an important role in the determination of $S^{*} v$ values.
$V_{\phi}{ }^{\circ}$ is regarded as a measure of solute-solvent interactions. The $V_{\phi}{ }^{\circ}$ values in water and acetone + water

Table 2. Limiting Partial Molar Volumes, $\boldsymbol{V}_{\phi}{ }^{\circ}$, Experimental Slopes, $S^{*} v$, and Standard Deviation, σ, of $\mathrm{CsCl}, \mathrm{CsBr}, \mathrm{CsI},\left(\mathrm{C}_{4} \mathrm{H}_{9}\right){ }_{4} \mathrm{NBr}, \mathrm{NaBr}$, and NaBPh_{4} in Acetone + Water at $T=308.15 \mathrm{~K}$

electrolyte	w_{1}	$V_{\phi}{ }^{\circ} \times 10^{6}$	$S^{*} v \times 10^{3}$	σ
		$\mathrm{m}^{3} \cdot \mathrm{~mol}^{-1}$	$\mathrm{dm}^{3} \cdot \mathrm{~L}^{1 / 2} \cdot \mathrm{~mol}^{-3 / 2}$	
CsCl	0	40.38	2.51	0.003
	0.2	38.69	3.11	0.003
	0.4	38.95	5.89	0.003
	0.6	36.93	7.27	0.002
	0.8	35.38	8.89	0.004
CsBr	0	47.00	1.98	0.003
	0.2	46.13	2.92	0.003
	0.4	45.63	5.37	0.003
	0.6	44.18	6.91	0.003
	0.8	42.68	8.19	0.003
CsI	0	58.46	1.90	0.002
	0.2	57.01	2.57	0.003
	0.4	55.80	4.97	0.003
	0.6	54.98	6.42	0.003
	0.8	53.79	7.81	0.003
$\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4} \mathrm{NBr}$	0	304.42	-6.35	0.021
	0.2	306.77	-2.64	0.003
	0.4	307.88	1.89	0.020
	0.6	306.39	7.00	0.002
	0.8	304.49	11.02	0.005
NaBr	0	24.77	2.06	0.004
	0.2	23.45	2.77	0.004
	0.4	21.81	5.27	0.002
	0.6	20.04	6.65	0.003
	0.8	20.04	6.81	0.011
NaBPh_{4}	0	288.10	-8.33	0.002
	0.2	289.30	-4.81	0.003
	0.4	280.90	0.36	0.003
	0.6	276.30	6.00	0.003
	0.8	270.71	8.78	0.003

mixtures are shown in Table 2 for all CsX along with reference electrolytes.

Limiting ionic partial molar volumes have been calculated following the method suggested by Conway et al. ${ }^{12}$ Following this procedure, the $V_{\phi}{ }^{\circ}$ values for CsX in water and acetone + water were plotted against the molecular weight of the corresponding X^{-}ions using an equation of the form

$$
\begin{equation*}
V_{\phi}^{\circ}=V_{\phi}^{\circ}\left(\mathrm{Cs}^{+}\right)+b\left(\mathrm{~mol} \mathrm{wt} \text { of } \mathrm{X}^{-}\right) \tag{4}
\end{equation*}
$$

where b is a constant and $V_{\phi}{ }^{\circ}\left(\mathrm{Cs}^{+}\right)$is the limiting ionic partial molar volumes of the Cs^{+}ion. An excellent linear relationship was observed for all electrolytes in all solvents with a correlation coefficient greater than 0.999.

Figure 1. Plot of apparent molar volume V_{ϕ} versus $C^{1 / 2}$ for cesium chloride in $w_{1}=0(\bullet), w_{1}=0.2(■), w_{1}=0.4(\bullet), w_{1}=0.6(\mathbf{\Delta})$, and $w_{1}=0.8$ (■).

Table 3. Ionic Partial Molar Volumes in Various Acetone (1) + Water (2) Mixtures at $T=308.15 \mathrm{~K}$
$V_{\phi}{ }^{0 \pm} \times 10^{6} / \mathrm{m}^{3} \cdot \mathrm{~mol}^{-1}$

w_{1}	Na^{+}	Cs^{+}	Cl^{-}	Br^{-}	I^{-}	$\mathrm{BPh}_{4}{ }^{-}$	$\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4} \mathrm{~N}^{+}$
0	10.37	32.60	7.78	14.4	25.86	277.73	290.02
0.2	8.38	31.06	7.63	15.07	25.95	280.92	291.70
0.4	8.06	31.88	7.07	13.75	23.92	272.84	294.13
0.6	5.25	29.39	7.54	14.79	25.59	271.05	291.60
0.8	2.89	27.66	7.72	15.02	26.13	267.81	289.47

Table 4. Parameters of Jones-Dole Equation A and B and Standard Deviation, σ, for $\mathrm{CsCl}, \mathrm{CsBr}$, CsI, $\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4} \mathrm{NBr}, \mathrm{NaBr}$, and NaBPh_{4} in Acetone (1) + Water (2) at $T=308.15 \mathrm{~K}$

		A	C	
electrolyte	w_{1}	$\mathrm{dm}^{3 / 2} \cdot \mathrm{~mol}^{-1 / 2}$	$\mathrm{dm}^{3} \cdot \mathrm{~mol}^{-1}$	σ
CsCl	0	0.0063	-0.0259	0.0002
	0.2	0.0680	0.2150	0.0002
	0.4	0.0720	0.4950	0.0002
	0.6	0.0786	0.7750	0.0002
	0.8	0.0760	1.048	0.0002
CsBr	0	0.0057	-0.0560	0.0002
	0.2	0.0117	0.2095	0.0002
	0.4	0.0188	0.4100	0.0002
	0.6	0.0222	0.6590	0.0003
	0.8	0.0258	0.9110	0.0004
	0	0.0070	-0.0966	0.0002
	0.2	0.0084	0.1940	0.0002
	0.4	0.0084	0.3740	0.0002
	0.6	0.0089	0.6370	0.0002
	0.8	0.0185	0.8920	0.0006
	0	0.0072	1.1180	0.0003
$\left.\mathrm{CsI}_{4} \mathrm{H}_{9}\right)_{4} \mathrm{NBr}$	0.2	0.0082	1.0610	0.0002
	0.4	0.0082	0.9930	0.0004
	0.6	0.0030	0.9280	0.0002
	0.8	0.0013	0.8620	0.0006
NaBr	0	0.0065	0.0618	0.0002
	0.2	0.0110	0.1900	0.0002
	0.4	0.0141	0.3280	0.0001
	0.6	0.0164	0.4700	0.0003
NaBPh		0.8	0.0240	0.6150
	0	0.0116	1.0840	0.0006
	0.2	0.0169	1.1090	0.0002
	0.4	0.0076	1.1700	0.0002
	0.6	0.0042	1.2260	0.0002
	0.8	0.0039	1.2390	0.0007

Table 3 represents the values of $V_{\phi}{ }^{\circ}(\mathrm{ion}) . V_{\phi}{ }^{\circ}\left(\mathrm{X}^{-}\right)$values show a systematic increase as the size of X^{-}increases. In general, the $V_{\phi}{ }^{\circ}\left(\mathrm{Cs}^{+}\right)$values decreases with an increase in the acetone content of the solvent mixture, whereas $V_{\phi}{ }^{\circ}\left(\mathrm{X}^{-}\right)$ in general increases with the acetone content in the acetone + water mixture.

The viscosities of cesium halides, $\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4} \mathrm{NBr}, \mathrm{NaBr}$, and NaBPh_{4} are analyzed with the help of the Jones-Dole ${ }^{13}$ equation

$$
\begin{equation*}
\eta_{\mathrm{r}}=\left(\frac{\eta}{\eta_{\mathrm{o}}}\right)=1+A C^{1 / 2}+B C \tag{5}
\end{equation*}
$$

where η and η_{o} are the viscosities of the solution and the solvent, respectively, and C is the molar concentration. A is the measure of long-range Coulombic forces between ions, whereas B reflects the effect of ion-solvent interactions. Plots of $\left[\left(\eta / \eta_{0}\right)-1\right] / C^{1 / 2}$ versus $C^{1 / 2}$ for all of the electrolytes over the whole composition range of aqueous acetone are found to be straight lines with intercepts equal to A, and the slopes give the Jones-Dole viscosity B coefficients. Figure 2 shows a representative plot for CsCl in all solvents. Similar plots are obtained for the other electrolytes. The A and B coefficients obtained with a computerized least-squares method are listed in Table

Figure 2. Plot of $\left[\left(\eta / \eta_{0}\right)-1\right] / C^{1 / 2}$ versus $C^{1 / 2}$ for cesium chloride in $w_{1}=0(\bullet), w_{1}=0.2(\mathbf{\bullet}), w_{1}=0.4(\bullet), w_{1}=0.6(\mathbf{\Delta})$, and $w_{1}=$ 0.8 (■).

Table 5. Ionic \boldsymbol{B} Coefficients of $\mathbf{N a}^{+}, \mathbf{C s}^{+}, \mathbf{C l}^{-}, \mathbf{B r}^{-}, \mathbf{I}^{-}$, BPh_{4}^{-}, and $\mathrm{Bu}_{4} \mathbf{N}^{+}$Ions in Acetone (1) + Water (2) Mixtures at $T=308.15 \mathrm{~K}$

	$B / \mathrm{dm}^{3} \cdot \mathrm{~mol}^{-1}$							
w_{1}	Na^{+}	Cs^{+}	Cl^{-}	Br^{-}	I^{-}	BPh_{4}^{-}	$\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4} \mathrm{~N}^{+}$	
0	-0.0943	-0.2121	0.1862	0.1561	0.1155	1.1783	0.9619	
0.2	0.0189	0.0384	0.1766	0.1711	0.1556	1.0901	0.8899	
0.4	0.1597	0.2417	0.2533	0.1683	0.1323	1.0103	0.8247	
0.6	0.2988	0.4878	0.2872	0.1712	0.1492	0.9272	0.7568	
0.8	0.4209	0.7169	0.3311	0.1941	0.1751	0.8181	0.6679	

4.The viscosity B coefficients are negative for aqueous CsCl , CsBr , and CsI solutions, suggesting the structure-breaking tendencies of these electrolytes in pure water. The B values in these systems increase with increasing acetone content in the solvent mixtures, indicating that the solute-solvent interactions increase with the decrease in the dielectric constant of the solvent system. The B values are in the order $\mathrm{CsCl}<\mathrm{CsBr}<\mathrm{CsI}$, which is in agreement with the intrinsic ionic volume order $\mathrm{Cl}^{-}<\mathrm{Br}^{-}<\mathrm{I}^{-}$. This means that as the electrolyte molar volume increases solutesolvent interaction increases.

To have a better understanding of ion-solvent interactions, it is necessary to split the viscosity B coefficient into the individual ionic B coefficients. This has been done in the present study using $\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4} \mathrm{NBr}, \mathrm{NaBr}$, and NaBPh_{4} as the reference electrolytes, assuming that ${ }^{14}$

$$
\begin{gather*}
\frac{B\left(\mathrm{BPh}_{4}^{-}\right)}{B\left(\mathrm{Bu}_{4} \mathrm{~N}^{+}\right)}=\frac{r^{3}\left(\mathrm{BPh}_{4}^{-}\right)}{r^{3}\left(\mathrm{Bu}_{4} \mathrm{~N}^{+}\right)} \\
=\left(\frac{5.35}{5.00}\right)^{3} \\
B\left(\mathrm{Bu}_{4} \mathrm{NBPh}_{4}\right)=B\left(\mathrm{BPh}_{4}^{-}\right)+B\left(\mathrm{Bu}_{4} \mathrm{~N}^{+}\right) \tag{6}
\end{gather*}
$$

where r is the ionic radius. The solubility of $\mathrm{Bu}_{4} \mathrm{NBPh}_{4}$ is very low in aqueous acetone at room temperature; therefore, the above method could not be employed. The ionic B coefficient is therefore obtained from the relation ${ }^{15}$

$$
\begin{align*}
B\left(\mathrm{Bu}_{4} \mathrm{NBPh}_{4}\right) & = \\
& B\left(\mathrm{Bu}_{4} \mathrm{NBr}\right)+B\left(\mathrm{NaBPh}_{4}\right)-B(\mathrm{NaBr}) \tag{7}
\end{align*}
$$

Therefore, the Jones-Dole viscosity B coefficients were determined for $\mathrm{Bu}_{4} \mathrm{NBr}, \mathrm{NaBPh}_{4}$, and NaBr ; using eq 7, the B coefficient of $\mathrm{Bu}_{4} \mathrm{NBPh}_{4}$ was calculated; and from eq

6 , the B coefficient of $\mathrm{Bu}_{4} \mathrm{~N}^{+}$was calculated, which enabled us to get the ionic B coefficient of Br^{-}and hence the ionic B coefficient of all of the other ions could be calculated. The ionic B coefficients for all cations and anions are listed in Table 5. The small negative B values of cations and small positive values of halide $\left(\mathrm{Cl}^{-}, \mathrm{Br}^{-}\right.$and $\left.\mathrm{I}^{-}\right)$ions in water are due to the breakdown of the tetrahedral structure of water and the formation of strongly structured solvated ions. As the acetone content in the solvent mixture increases, these B values of small ions increase. Small ions have values that are considerably higher in acetone than in water and can reasonably be ascribed to increased ionsolvent interactions through charge-transfer phenomena.

Acknowledgment

We are grateful to Dr. V. S. More, Principal, M.S.G. College, Malegaon camp, for providing laboratory facilities.

Literature Cited

(1) Millero, F. J. In The Partial Molal Volumes of Electrolytes in Aqueous Solutions. In Water and Aqueous Solutions (Structure, Thermodynamics and Transport Processes); Horne, R. A., Ed.; Wiley-Interscience: New York, 1972; Chapter 13.
(2) Nikam, P. S.; Sawant, A. B. Viscosity of Potassium Halides and Symmetrical Tetra Alkyl Ammonium Bromides in Acetonitrile + Water Mixtures at 298.15 K. J. Chem. Eng. Data 1997, 42, 11511156.
(3) Riddick, J. A.; Bunger, W. B.; Sakano, T. K. Organic Solvents: Physical Properties and Methods of Purification, 4th ed; Techniques of Chemistry; Wiley-Interscience, New York, 1986; Vol. 2.
(4) Kreshkov, A. P. Fundamentals of Analytical Chemistry, 3rd ed; Khimiya: Moscow, 1970; Vol. 2.
(5) Nikam, P. S.; Nikumbh, A. B. Ionic Viscosity B-Coefficients of Tetraalkyl Ammonium Chlorides in (0 to 100) Mass \% Water + Methanol at 298.15 K. J. Chem. Eng. Data 2002, 47, 400-404.
(6) Nikam, P. S.; Jagdale, B. S.; Sawant, A. B.; Hasan, M. Ultrasonic Study of Binary Liquid Mixtures of Benzonitrile with Alkanols $\left(\mathrm{C}_{1}-\mathrm{C}_{3}\right)$ at Various Temperatures. Acoust. Lett. 1999, 22, 199203.
(7) Nikam, P. S.; Kharat, S. J. Densities and Viscosities of Binary Mixtures of N, N-Dimethylformamide with Benzyl Alcohol and Acetophenone at $(298.15,303.15,308.15$, and 313.15) K. J. Chem. Eng. Data 2003, 48, 1291-1295.
(8) Marsh, K. N. Recommended Reference Materials for the Realisation of Physicochemical Properties; Blackwell Scientific Publications: Oxford, UK, 1987.
(9) Masson, D. O. Solute Molecular Volumes in Relation to Solvation and Ionization. Philos. Mag. 1929, 8, 218-235.
(10) Nikam P. S.; Sawant A. B. Limiting Ionic Partial Molar Volumes of $\mathrm{R}_{4} \mathrm{~N}^{+}$and Br^{-}in Aqueous Acetonitrile at 298.15 K. J. Chem. Eng. Data 1997, 42, 585-589.
(11) Nikam P. S.; Sawant A. B. Volumetric behaviour of $\mathrm{R}_{4} \mathrm{~N}^{+}$and Br^{-}ions in acetonitrile + water at 303.15 K. J. Mol. Liq. 1998, 75, 199-209.
(12) Conway, B. E.; Verrall, R. E.; Desnoyers, J. E. Partial Molal Volumes of Tetraalkylammonium Halides and Assignment of Individual Ionic Contributions. J. Chem. Soc., Faraday Trans. 1966, 62, 2736-2749.
(13) Jones, G.; Dole, M. The Viscosity of Aqueous Solutions of Strong Electrolytes with Special Reference to Barium Chloride. J. Am. Chem. Soc. 1929, 51, 2950-2964.
(14) Gill D. S.; Chauhan M. S.; Sekhri M. B. Conductance and Viscosity Measurements of Tetrabutylammonium Tetraphenylboride in Nonaqueous Solvents at 25° C. J. Chem. Soc., Faraday Trans. 1 1982, 78, 3461-3466.
(15) Nandi, D.; Hazra, D. K. Viscosities of Alkali-Metal Chlorides and Bromides in 2-Methoxyethanol at 25 and $35{ }^{\circ}$ C. J. Chem. Soc., Faraday Trans. 1 1989, 85, 4227-4236.

Received for review August 21, 2004. Accepted November 16, 2004. R.P.S. thanks the UGC, New Delhi, for awarding him the teacher fellowship.

JE049698C

[^0]: * To whom correspondence should be addressed. E-mail: mihasan@ rediffmail.com.
 \dagger Present address: Department of Chemistry, Arts, Science and Commerce College, Nampur, Pin. 423204, India. E-mail: absawant@ rediffmail.com.

