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Solubility models for four protein-salt systems have been developed with the aid of an artificial neural
network technique. The solubility of proteins in salt solutions is a complex phenomenon dependent on
the type of protein, pH, temperature, concentration, and type of salt. In these models, the solubility has
been correlated as a function of temperature, pH, and salt concentrations. The four systems are
carboxyhaemoglobin in potassium phosphate solutions, ovalbumin in ammonium sulfate solutions, glucose
isomerase in ammonium sulfate solutions, and concanavalin A in ammonium sulfate solutions. The models
predicted the solubilities with an average quadratic error ranging from 0.00025 to 0.002. The model
predictions were then analyzed to study the effect of pH, temperature, and salt concentrations. The
predictions were found to be qualitatively in agreement with reports from the literature.

Introduction

Downstream processing of proteins accounts for a major
portion of the cost in the bioprocess industry. Research has
been ongoing to find cost-effective separation techniques
to lower production costs. Crystallization, which is used
industrially for the recovery and purification of many
inorganic and organic materials, can be used for the
recovery and purification of proteins. The crystallization
technique is scalable to any production requirement,
provided that solution and kinetic data for the protein are
known.1 Solubility data is an important tool for process
design and control in crystallization. Solubility is the first
information needed for designing a crystallizing system.2
It is also a key to understanding the protein crystal growth
process and gives insight into a protein’s behavior and
function in liquid and crystalline states.3

Although they are important, solubility data are avail-
able for only a few proteins, and an accurate model for the
solubility of a protein has not been defined. Efforts to model
protein solubility date back more than a half century. The
first well-known relation between protein solubility and
salts was proposed by Cohn.4 Melander and Horvath5

related the hydrophobic effect to protein solubility. Przy-
bycien and Bailey6 showed that the empirical correlation
proposed by Melander and Horvath5 was valid for only
conformally inert proteins. Three simple empirical equa-
tions were proposed by Jenkins,7 in which protein solubility
was fitted with salt concentration in terms of either the
salt molarity, the salt activity, or the water activity. A
UNIQUAC model with temperature-dependent parameters
to model protein solubility was proposed by Agena et al.3
The two systems applied to the model were lysozymes in
sodium chloride solution and concanavalin A in ammonium
sulfate solution. The models developed were limited to the
systems and conditions studied. Moreover, the model did
not include the pH variation term. A relation between the
second virial coefficient of the solution and the solubility
of proteins was suggested by Wilson and co-workers.8

However, the model was analyzed only for lysozymes in
sodium chloride solutions. A correlation between the
osmotic second virial coefficient and the solubility of
proteins from classical thermodynamics was developed by
Ruppert et al.9 The model was fit to two systems, lysozymes
in sodium chloride solution and ovalbumin in ammonium
sulfate solution, but agreement between the model and the
experimental data was good only for protein solubilities up
to 30 mg/mL.

Artificial neural networks have been successfully applied
to a number of disciplines such as chemistry,10,11 medi-
cine,12 molecular biology13 and chemical engineering.14-16

In biotechnology, ANN has been utilized for many applica-
tions such as the prediction of variables, optimization and
modeling, and process control.17-23 Neural networks pro-
vide a simple, straightforward approach to ill-defined
biological problems owing to their ability to handle the
highly nonlinear, complex, and dynamic problems in bio-
processes.

Protein solubility is a complex function of a number of
factors such as the physical and chemical nature of proteins
themselves and environmental parameters such as pH,
temperature, and nature of the salt or organic solvent and
its concentration.24 In this study, an artificial neural
network technique is used to develop a model for predicting
the solubility of proteins. The systems examined here are

1. carboxyhaemoglobin in aqueous potassium phosphate
solutions;

2. ovalbumin in aqueous ammonium sulfate solutions;
3. glucose isomerase in aqueous ammonium sulfate

solutions; and
4. concanavalin A in aqueous ammonium sulfate solu-

tions.
To the best of our knowledge, a thermodynamic-based

model has not been developed for glucose isomerase-
ammonium sulfate systems and carboxyhaemoglobin-
potassium phosphate systems.

Experimental Data
Ovalbumin is a major protein in egg whites. It can be

recovered and purified from solution by bulk crystallization* Corresponding author. E-mail: ssb@udct.org. Fax: +91-22-24145614.
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using high concentrations of ammonium sulfate.1 In the
present study, solubility data of ovalbumin in ammonium
sulfate solutions were taken from the published litera-
ture.25 Ovalbumin solubility in aqueous ammonium sulfate
solutions ranging from (23.7 to 30.1) kg of ammonium
sulfate‚(100 kg of water)-1 at 273 K, 285 K, 291 K, 293 K,
297 K, and 302 K over the pH range from 3.92 to 5.3 was
measured by Sorensen and Hoyrup26 and Sorensen.27 A
majority of these measurements were made at 291 K. The
solubility of ovalbumin in aqueous ammonium sulfate
solutions ranging from (18.1 to 28) kg of ammonium
sulfate‚(100 kg of water)-1 at 303 K over the pH range from
4.57 to 5.42 was measured by Judge et al.28 The solubility
data of glucose isomerase from S. rubiginosis was obtained
from Dalziel.29 Glucose isomerase solubility in aqueous
ammonium sulfate solutions was from (2.5 to 25) kg of
ammonium sulfate‚(100 kg of solution)-1, temperatures
from 275 K to 325 K, and pH from 5.5 to 8.5. Solubility
data of horse carboxyhaemoglobin was taken from Green.30,31

It covered potassium phosphate concentrations from 0.005
K‚mol‚m-3 to 1.908 K‚mol‚m-3 at temperature of 298 K and
273 K. The effect of pH from 5.89 to 7.53 was also
considered. Concanavalin A solubility data from Jack Bean
in aqueous ammonium sulfate was taken from Mickol and
Giege.32 It covered ammonium sulfate concentrations from
0.4 K‚mol‚m-3 to 1.6 K‚mol‚m-3 and temperature from 277
K and 313 K. The effect of pH from 5 to 7 was also included.

Artificial Neural Network

An artificial neural network is an information processing
paradigm that is inspired by the way that biological
nervous systems, such as the brain, process information.
They offer an attractive approach to black-box modeling
of highly complex, nonlinear systems having a large
number of inputs and outputs. They require relatively little
time to construct and do not require any prior knowledge
of the relationships between the process variables in
question.33 They consist of simple units called neurons or
processing elements that are working in parallel and are
connected via directed links. Among the variety of neural
network architectures that have been proposed, the feed-
forward artificial neural network with an error back-
propagation learning algorithm appears to be the most
commonly used network paradigm for approximating the
nonlinear functional relationships between input-output
variables of complex systems.34 The error back-propagation
(EBP) structure is mainly composed of three layers: an
input layer, an intermediate layer called a hidden layer,
and an output layer. Each layer contains a number of
neurons. Each neuron may be connected to all of the
neurons in the next layer by connection weight. The
problem of neural network modeling is to find a set of
weights such that the error in prediction is minimal. The
weights are randomly chosen initially and then adjusted
according to an error minimization technique until the
prediction error falls to an acceptable level. Thus, the
network acquires knowledge through a learning process
that involves the modification of connection weights in a
systematic manner. This model can then be used to predict
output that was not included in the training set. Thus,
ANNs have the ability to generalize beyond the training
data, which is one of the important advantages. Another
advantage of ANNs is the inherent fault tolerance; the
overall performance is not affected significantly even if a
few data are abnormal because of experimental errors.

The input layer consists of n neurons that serve as
distribution points. Each hidden layer of neurons computes

the weighted sum of all of the inputs according to eq 1 and
then transforms it using a nonlinear activation function35

where wi (i ) 1, n) represents the connection weights and
θ is called the bias. The output y is evaluated according to

where y is the final output and f is an activation function.
Activation Function. The activation function trans-

forms processing elements in a linear or nonlinear manner.
The nonlinear function approximation capability of mul-
tilayer feedforward networks is attributed to the use of
nonlinear transfer functions for computing nodal outputs.
In this study, the logistic function given by eq 3 was used
as the activation function.

Learning Function: Standard Back-Propagation.
The learning rule defines the steps needed to arrive at the
right weight values so that the network learns individual
patterns of the training data. The back-propagation algo-
rithm, which is the most famous learning algorithm, was
used in the present study.

The Stuttgart Neural Network Simulator (version 4.2)36

was used for correlating the solubility.

Results and Discussion

Data Preprocessing and Analysis. In this study, the
temperature, pH, and ammonium sulfate concentration
were chosen as input parameters for the glucose isomerase-
ammonium sulfate system and the concanavalin A-am-
monium sulfate system. In the case of ovalbumin and
carboxyhaemoglobin, the solubility decreases as the tem-
perature increases at high salt concentrations.27,30 The
inverse temperature was hence used as an input parameter
for these two systems. The solubility falls off exponentially
as the salt concentration is increased at a given pH and
temperature.28,30 Also, the chemical potential of protein is
a logarithmic function of protein concentration (solubility),
and hence the logarithm of solubility was used as the
dependent parameter (i.e., output). The inputs and outputs
were then scaled to avoid numerical overflows during
training. Because a sigmoidal form of the activation func-
tion was used, the input and output data for all of the
systems was scaled between 0.05 and 0.95 and not between
0 and 1. This was done so that the network can extrapolate
results with respect to the new inputs lying just outside
the region of the training input vectors and also because
to generate the normalized desired output of 0 and 1 using
the logistic sigmoid function the output-layer weights
would have to be very large, leading to an increase in
training time.35 The scaled data were then randomized.

Training of Neural Network. For neural network
training, the data set for all of the systems was divided
into a training set, a validation set, and a testing set.

• The training set is used to train a neural network. The
error in this data set is minimized during training.

• The validation set is used to determine the performance
of a neural network on patterns that are not trained during
learning.

net ) ∑
i)1

n

xiwi - θ (1)

y ) f(net) (2)

f(net) ) 1

1 + e(-net)
(3)
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• A test set for finally checking the overall performance
of a neural network.

The carboxyhaemoglobin-potassium phosphate system
consisting of 89 patterns was divided into 60 patterns for
training, 15 patterns for validation, and 14 patterns for
testing. The ovalbumin-ammonium sulfate system con-
sisting of 96 patterns was divided into 62 patterns for
training, 20 patterns for validation, and 14 patterns for
testing. The glucose isomerase-ammonium sulfate system
consisting of 69 patterns was divided into 49 patterns for
training, 10 patterns for validation, and 10 patterns for
testing. The concanavalin A-ammonium sulfate system
consisting of 161 patterns was divided into 110 patterns
for training, 26 patterns for validation, and 25 patterns
for testing.

To decide the optimum number of hidden-layer neurons,
neural networks with 1-10 hidden-layer neurons were
trained for all of the systems. The training of the network
was continued until the validation error reached a mini-
mum value. At this point, the net has the best generaliza-
tion ability. Overtraining deteriorates the performance of
the net, despite the fact that the error in the training data
may decrease. The trained net was finally checked with
the third set, the test set. The average quadratic error
(AQE) for training, validation, testing, and the total was
calculated as shown in eq 4 to quantify the network
performance.

where P is the number of data points.
Carboxyhaemoglobin-Potassium Phosphate Sys-

tem. The optimum number of hidden-layer neurons for the
carboxyhaemoglobin-potassium phosphate system was
found to be four. The total AQE for this configuration was
0.000254, and the predicted AQE was 0.000454. The parity
plot of the trained network is shown in Figure 1. To test
the robustness of the trained network further, data sets
that span a wide range of pH, temperature, and phosphate
concentration were constructed, and the corresponding
solubility (output) was predicted by the trained model. As

shown in Figure 2 , solubility passes through a minimum,
which is in agreement with theory. The point of minimum
solubility is called the isoelectric point. Moreover, it can
be seen from Figure 2 that the point of minimum solubility
of carboxyhaemoglobin lies between pH 6.55 and pH 6.65,
which is close to the isoelectric point reported in the
literature (pI 6.6).30 The effects of phosphate concentration
and temperature on solubility were also examined. Figure
3 shows the “salting-in” and “salting-out” effects of salt.
In the salting-in region, increasing temperature increases
the solubility, whereas in the salting-out region, increasing
temperature decreases solubility. This behavior is in agree-
ment with theory.30 The effect of temperature on solubility
is shown in Figure 4. Thus, the trained neural network

Figure 1. Parity plot of experimental and predicted ANN (3-4-1)
solubility of carboxyhaemoglobin in potassium phosphate solutions
of varying pH, temperature, and potassium phosphate concentra-
tion: O, training; ×, testing; 4, validation.

AQE )

(∑
P

i)1

(predicted - experimental)2)

P
(4)

Figure 2. Solubilities of carboxyhaemoglobin estimated by neural
network (3-4-1) at a fixed temperature 298 K and different
potassium phosphate concentrations as a function of pH: *,
phosphate concentration 0.02 K‚mol‚m-3; O, phosphate concentra-
tion 0.04 K‚mol‚m-3. Lines represent ANN model calculations, and
symbols represent experimental data.

Figure 3. Solubilities of carboxyhaemoglobin estimated by neural
network (3-4-1) at pH 6.6 and varying temperature as a function
of potassium phosphate concentration: *, temperature 298 K; O,
temperature 273 K. Lines represent ANN model calculations, and
symbols represent experimental data.
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model prediction of carboxyhaemoglobin solubility is quali-
tatively and quantitatively correct.

Ovalbumin-Ammonium Sulfate System. For the
ovalbumin-ammonium sulfate system, the network with
the three hidden-layer neurons predicted the solubility of
ovalbumin with the lowest total AQE of 0.000831 and
prediction AQE of 0.001103. The parity plot of the trained
network is shown in Figure 5. Similar to the above system,
the solubility was calculated for various input patterns
using the trained model, and the effects of pH, ammonium
sulfate concentration, and temperature were investigated.
The effect of pH on solubility is shown in Figure 6. The
solubility behavior is in agreement with theory. This model
predicts the minimum solubility to be in the pH range of
4.2 to 4.6, which also closely follows the isoelectric point of
ovalbumin (pI 4.58).28 The effect of ammonium sulfate
concentration and temperature on ovalbumin solubility was
examined. As seen from Figure 7, the logarithm of the

solubility of ovalbumin decreases linearly with increasing
ammonium sulfate concentration and decreases as tem-
perature increases (Figure 8). These findings are also in
agreement with theory.28,30 The ANN model was then
compared with the correlation developed by Judge et al.28

The correlation is as given in the following expression

where C0 is the ovalbumin solubility concentration in (kg‚
(100 kg of water)-1), t is the temperature in °C, and CA is
the ammonium sulfate concentration in (kg‚(100 kg of
water)-1). This correlation is valid for ammonium sulfate
concentrations of (18 e CA/(kg‚(100 kg of water)-1) e 30),

Figure 4. Solubilities of carboxyhaemoglobin estimated by neural
network (3-4-1) at a fixed potassium phosphate concentration
(1.267 K‚mol‚m-3) and pH 6.6 as a function of temperature. The
line represents ANN model calculations, and the symbols represent
experimental data.

Figure 5. Parity plot of experimental and predicted ANN (3-3-1)
solubility of ovalbumin in ammonium sulfate solutions of varying
pH, temperature, and ammonium sulfate concentrations: O, ANN
model (3-3-1); ×, Judge et al. (1996).

Figure 6. Solubilities of ovalbumin estimated by neural network
(3-3-1) at fixed temperature of 291 K and varying ammonium
sulfate concentrations as a function of pH: *, ammonium sulfate
concentration 25.9 kg‚(100 kg of water)-1; O, ammonium sulfate
concentration 27.1 kg‚(100 kg of water)-1. Lines represent ANN
model calculations, and symbols represent experimental data.

Figure 7. Solubilities of ovalbumin estimated by neural network
(3-3-1) at pH 4.86 and different temperature as a function of
ammonium sulfate concentration: *, temperature 273 K; O,
temperature 285 K. Lines represent ANN model calculations, and
symbols represent experimental data.

log10(C0) ) 5.06 - 0.006t - 0.205CA +

0.5(pH - 4.58) + 1.1(pH - 4.58)2 (5)
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pH (4.58 e pH e 5.4), and temperature (0 e t/°C e 30).
This correlation gave an AQE of 0.00158, which was
comparable to the AQE of the ANN model. The parity plot
for the correlation is given in Figure 5.

Glucose Isomerase-Ammonium Sulfate System. Neu-
ral network topology 3-5-1 was found to be optimum for
the glucose isomerase-ammonium sulfate system. The
total AQE of this model was 0.001026, and the prediction
AQE was 0.000656. The parity plot of the trained network
is shown in Figure 9. As shown in Figure 10, the trained
model predicts the minimum solubility to lie between pH
6.5 and pH 7.5. This is reasonably correct with the
isoelectric point of glucose isomerase (pI 7).29 The effect of
the ammonium sulfate concentration and temperature on
solubility was also examined. From Figure 11, it can be
seen that the solubility decreases exponentially with the
increasing ammonium sulfate concentration and increases
with increasing temperature (Figure 12), as suggested by
Visuri.29 The ANN model was then compared with the

correlation developed by Dalziel.29 The correlation is as
given in the following expression

where C* is the glucose isomerase solubility in (kg‚m-3),
T is the temperature in °C, and AS is the ammonium
sulfate concentration in (kg‚(100 kg of solution)-1). This
correlation gave an AQE of 0.00597, which was greater
than the value from the ANN model. The parity plot for
the correlation is given in Figure 9.

Concanavalin A-Ammonium Sulfate System. For
this system, the optimum network consisted of seven
hidden-layer neurons. The total AQE for this network

Figure 8. Solubilities of ovalbumin estimated by neural network
(3-3-1) at a fixed ammonium sulfate concentration (24 kg‚(100 kg
of water)-1) and pH 4.86 as a function of temperature. The line
represents ANN model calculations, and the symbols represent
experimental data.

Figure 9. Parity plot of experimental and predicted ANN (3-5-1)
solubility of glucose isomerase in ammonium sulfate solutions of
varying pH, temperature, and ammonium sulfate concentra-
tions: O, ANN model (3-5-1); +, Dalziel (2000).

Figure 10. Solubilities of glucose isomerase estimated by neural
network (3-5-1) at a fixed temperature 303 K and ammonium
sulfate concentration (10 kg‚(100 kg of solution)-1) as a function
of pH. The line represents ANN model calculations, and the
symbols represent experimental data.

Figure 11. Solubilities of glucose isomerase estimated by neural
network (3-5-1) at pH 7 and different temperatures as a function
of ammonium sulfate concentration: *, temperature 298 K; O,
temperature 303 K. Lines represent ANN model calculations, and
symbols represent experimental data.

C* ) 1.7(pH - 7.25)2 + [0.05 + 18e(-AS/1.6)] ×
e[T/(7.5 - 0.07AS)] (6)
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topology was 0.002013, and the prediction AQE was
0.00307. The parity plot is shown in Figure 13. The effects
of pH, temperature, and ammonium sulfate concentration
were also analyzed. As shown in Figure 14, solubility
decreases as pH increases as the isoelectric point of
concanavalin A (pI 8.132), which is in agreement with
trends from theory. The effects of the ammonium sulfate
concentration and temperature are shown in Figure 15 and
Figure 16. The behavior is consistent with results from the
literature.32 The ANN model was then compared with the
UNIQUAC model proposed by Agena et al.3 The perfor-
mance of the UNIQUAC model was evaluated by means
of the root-mean-square deviation (rmsd). For the concan-
valin A-ammonium sulfate system, the deviation of the
experimental and modeled solubility was 4.5% rmsd. The
ANN-based model gave similar results, but the ANN-based
model was able to extend to include pH variation, with a
deviation of 7% rmsd.

Conclusions

Protein solubility in salt solutions is a complex phenom-
enon dependent on many factors such as the type of protein,
pH, temperature, and concentration and type of salt. As a
result, a fundamental model has not been developed.
Artificial neural networks, because of their ability to model
nonlinear, multivariable systems and because they do not
require a complete knowledge of the process to be modeled,
offer a novel solution to the problem of protein solubility
modeling.

In this work, solubility models for four different proteinss
carboxyhaemoglobin, ovalbumin, glucose isomerase, and
concanavalin Ashave been developed with the artificial
neural network technique. Solubility has been modeled as

Figure 12. Solubilities of glucose isomerase estimated by neural
network (3-5-1) at a fixed ammonium sulfate concentration (5 kg‚
(100 kg of solution)-1) and pH 7 as a function of temperature. The
line represents ANN model calculations, and the symbols represent
experimental data.

Figure 13. Parity plot of experimental and predicted ANN (3-7-
1) solubility of concanavalin A in ammonium sulfate solutions of
varying pH, temperature, and ammonium sulfate concentration:
O, training; ×, testing; 4, validation.

Figure 14. Solubilities of concanavalin A estimated by neural
network (3-7-1) at a fixed temperature of 293 K and varying
ammonium sulfate concentrations as a function of pH: *, am-
monium sulfate concentration 1.2 K‚mol‚m-3; O, ammonium
sulfate concentration 0.8 K‚mol‚m-3. Lines represent ANN model
calculations, and symbols represent experimental data.

Figure 15. Solubilities of concanavalin A estimated by neural
network (3-7-1) at pH 6 and varying temperature as a function of
ammonium sulfate concentration: *, temperature 293 K; O,
temperature 303 K. Lines represent ANN model calculations, and
symbols represent experimental data.
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function of pH, temperature, and salt concentration. The
average quadratic errors (AQEs) for carboxyhaemoglobin,
ovalbumin, glucose isomerase, and concanavalin A were
found to be 0.00025, 0.00083, 0.001, and 0.002, respectively.
A performance evaluation of these models was made by
studying the effects of pH, temperature, and salt concen-
tration. The carboxyhaemoglobin solubility model was able
to predict the salting-in and salting-out behavior of salt
because the network was trained for low and high salt
concentrations. This shows that the ANN model can be
enhanced by the availability of a wide range of data. The
models were also able to predict the minimum solubility
of the proteins near their isoelectric point. Thus, the models
can be said to be qualitatively and quantitatively correct.
Though the models can effectively predict the solubilities
within the range of conditions for which the network was
trained, extrapolation to predict solubilities cannot be
guaranteed.

Supporting Information Available:

Procedure for developing the artificial neural network
(ANN) technique for the carboxyhaemoglobin-potassium phos-
phate system and training of the neural network. This mate-
rial is available free of charge via the Internet at http://
pubs.acs.org.
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