Temperature and Volume Dependence of the Viscosity of Water and Heavy Water at Low Temperatures

Kenneth R. Harris* and Lawrence A. Woolf

School of Physical, Environmental and Mathematical Sciences,[†] University College, University of New South Wales, Australian Defence Force Academy, Canberra, ACT 2600, Australia

New measurements have been made for the viscosity (η) of light and heavy water between the temperatures of 255.65 K and 298.15 K at pressures up to approximately 375 MPa with a falling-body viscometer. A revised correlation function is used to represent the results as a function of temperature and molar volume (V) with a standard deviation of $\pm 0.2\%$ for both H₂O and D₂O. The overall uncertainty is estimated at $\pm 1\%$. Comparison of the two sets of data shows that they are consistent with the correlation η (D₂O, *T*, *V*) = 1.0544 η (H₂O, *T* – 6.498 K, *V*) where 1.0544 is the square root of ratio the molar masses and 6.498 K is the thermal offset proposed by Robinson and co-workers.

Introduction

Recently Harris¹ examined the difference between the viscosity and self-diffusion coefficients of water and heavy water at high pressures in terms of the scaling relationship suggested by Robinson and co-workers,² the so-called thermal-offset effect. Within experimental precision, the viscosity of heavy water at a given temperature and pressure was found to equal that of ordinary water at a temperature 6.498 K lower and the same pressure, corrected for the difference in molar mass

$$\eta(D_2O, T/K, p) = 1.0544\eta(H_2O, (T - 6.498)/K, p)$$
 (1)

An analogous relation holds for the self-diffusion coefficient

$$D(D_2O, T/K, p) = D(H_2O, (T - 6.498)/K, p)/1.0544$$
 (2)

The quantity 1.0544 is the square root of the molar mass ratio of the two isotopomeric forms of water. While the self-diffusion data conformed to eq 2 down to temperatures of -30 °C and up to pressures of 400 MPa, the low-temperature viscosity data (-15 °C to 10 °C) of Jonas and co-workers ^{3,4} showed considerable scatter in the correlation, whereas the higher-temperature data (2 °C to 25 °C) of Harlow ⁵ conformed well.

At the time of publication of the correlating paper,¹ we were unaware of the low-temperature results of Först and co-workers⁶ for ordinary water which extend to -13 °C, but unfortunately these diverge by as much as 6% from those of DeFries and Jonas at high pressures. Agayev^{7,8} has also made viscosity measurements on both isotopomers to -10 °C, but to much lower pressures than the other groups. Table 1 summarizes the available high-pressure measurements, including two other sets of high-pressure data for ordinary water that overlap the range of state points reported here.^{9,10} It is desirable to be able to test the viscosity correlation at least as well as has been done for self-diffusion, and this is best accomplished if data are available for the two isotopomers measured with the same

* To whom correspondence may be addressed. E-mail: k.harris@ adfa.edu.au.

Figure 1. Residuals (experimental – calculated values) for the fit of the experimental high-pressure viscosities for H₂O to eq 4 as a function of molar volume, *V*. The dashed lines represent the expanded uncertainty of the fit, or 95% confidence limits, that is, the standard uncertainty multiplied by 2. \diamond , -17.5 °C; \blacksquare , -15 °C; \bigcirc , -10 °C; \blacklozenge , -5 °C; \bigtriangledown , 0 °C; \blacktriangle , 5 °C; \square , 10 °C; \blacklozenge , 25 °C.

Figure 2. Residuals (experimental – calculated values) for the fit of the experimental high-pressure viscosities for D₂O to eq 4 as a function of molar volume, *V*. \diamond , -17.5 °C; \blacksquare , -15 °C; \bigcirc , -10 °C; \blacklozenge , -5 °C; \bigtriangledown , 0 °C; \blacklozenge , 5 °C; \square , 10 °C; \blacklozenge , 25 °C.

instrument and under the same range of conditions. This was the impetus for this work.

	0		0		~ ~								
substance		temperature range/°C		°C pi	pressure range /MPa		uncertainty		ref and technique				
H	0	2.2	2 to 100		0.1-990			1.4%	Н	[arlow_ 1967:5 d	centered fal	ling body	
D	õ	10	to 100		0.1 - 990			1 4%	Ĥ	[arlow 1967.3	centered fa	ling body	
102 H	ñ	2 1	a 30		0.1-138			+1.5%	S	tanley and Bat	ton 1060.9	rolling body	
112 H.	0	-15 ± 0.10			0.1 -600			⊥1.070 ⊥9%	л П	a Erios and Ior	1077.3	colling ball	
		-15 to 10			0.1 700			± 20/		Files and Joi	105, 1977, 1077, 4	olling Dall	
D_2	0	-1	-15 to 10		0.1-700			$\pm 2\%$ Defines and Jonas, 1977; ⁴ rolling ba			folling ball		
H_2	0	-1	-10 to 375 4		0.1 - 200			$\pm 1.5\%$.gayev, 1980;′ o	capillary		
D_2	0	4			0.1 - 196		$\pm 1.5\%$		A	.gayev, 1980; ⁷ (capillary		
H_2	0	10 to 75			0.1-120			$\pm 2\%$		anaka et al., 1	987; ¹⁰ cente	red falling bo	ody
D_{2}	0	-9) to 0		0.1 - 216			+1.2% Agavey, 1989 ⁸			0	5	
$\tilde{H_2}$	0	-1	13 to 20		0.1 - 700			+0.5% Först et al., 2000; ⁶ rolling ball			all		
~ T-11.0	X 79)	· · · · · · · · · · · · · · · · · · ·	000 TZ + - 0"	r 17					, 0		
	. VISCO	sity of C		ter from 2	298 K to 25	D of		tla	n/MDo	1//(am3/mal)	-/(1/20023)		Ded
1/K	00.04			ρ/(g/cm²)	η/(IIIPa·s)	Rea	1/K	<i>US</i>		10,000	ρ/(g/cm²)	η/(IIIPa·s)	Ke ^a
298.15	29.64	0.1	18.068	0.99706	0.892	3/4	273.15	59.77	0.1	18.020	0.99974	1.799	92
298.15	29.64	0.1	18.068	0.99706	0.892	374	273.15	59.88	0.1	18.020	0.99974	1.802	92
298.15	29.68	0.1	18.068	0.99706	0.893	373	273.15	57.33	30.7	17.748	1.01507	1.722	102
298.15	29.68	0.1	18.068	0.99706	0.893	373	273.15	55.99	60.4	17.512	1.02876	1.678	109
298.15	29.68	0.1	18.068	0.99706	0.893	373	273.15	55.26	90.7	17.295	1.04165	1.653	113
298.15	29.58	31.0	17.828	1.01053	0.888	382	273.15	55.05	120.6	17.099	1.05359	1.644	116
298 15	29.64	61.0	17 613	1 02284	0.888	386	273 15	55 31	150.3	16 921	1 06469	1 649	116
208 15	20.80	00.0	17 /16	1 02//2	0.000	397	272 15	55 75	180.0	16 755	1.00400	1 650	115
200.15	20.00	190.5	17.410	1.03443	0.001	207	273.15	55.75	200.6	10.755	1.07521	1.033	113
298.15	30.00	120.7	17.233	1.04558	0.696	304	273.15	30.40	209.0	10.002	1.08515	1.078	114
298.15	30.42	150.6	17.064	1.05578	0.907	380	273.15	57.43	240.3	16.453	1.09496	1.704	111
298.15	30.87	180.6	16.905	1.06566	0.919	373	273.15	58.54	270.4	16.316	1.10412	1.735	108
298.15	31.36	210.6	16.758	1.07504	0.933	365	273.15	59.84	300.4	16.188	1.11287	1.771	104
298.15	31.92	240.6	16.620	1.08394	0.948	356	273.15	61.24	330.3	16.067	1.12126	1.810	100
298.15	32.53	270.1	16.494	1.09225	0.965	345	273.15	62.72	359.5	15.955	1.12916	1.852	96
298.15	33.18	299.7	16.374	1.10023	0.983	335	273.15	64.19	386.7	15.855	1.13626	1.893	93
298.15	33.86	329.2	16.261	1.10785	1.002	324	268.15	65.70	61.1	17.496	1.02966	1.969	79
298 15	34 58	358.5	16 155	1 11515	1 022	313	268 15	64 88	80.8	17 349	1 03839	1 942	82
208 15	35 30	384 3	16.065	1 12130	1.022	302	268 15	64.45	98.0	17 228	1.00000	1 0 2 7	8/
200.15	42.65	0.1	10.005	0.00074	1.042	172	269 15	64.49	100.0	17.020	1.04572	1.026	04
203.15	43.03	0.1	10.020	0.99974	1.313	173	200.15	04.42	100.2	17.213	1.04001	1.920	04
283.15	43.56	0.1	18.020	0.99974	1.310	1/4	268.15	64.11	124.2	17.056	1.05626	1.914	85
283.15	43.54	0.1	18.020	0.99975	1.310	174	268.15	64.17	151.1	16.892	1.06652	1.913	86
283.15	43.54	0.5	18.017	0.99991	1.310	174	268.15	64.65	177.5	16.742	1.07608	1.924	86
283.15	42.65	30.7	17.769	1.01388	1.280	184	268.15	65.61	213.3	16.554	1.08830	1.949	84
283.15	42.19	60.7	17.544	1.02684	1.264	191	268.15	66.81	245.4	16.398	1.09863	1.982	82
283.15	42.03	90.7	17.337	1.03910	1.257	195	268.15	69.18	295.3	16.176	1.11372	2.047	78
283 15	42.09	120.8	17 147	1 05062	1 257	197	268 15	72 40	350.8	15 953	1 12930	2 138	72
283 15	12.00	150.8	16 973	1.06143	1 263	107	268 15	74.26	376.7	15 856	1 13620	2 100	69
200.15	42.00	100.0	16 919	1.00145	1.205	105	269 15	75.01	2070	15 015	1 12010	2.100	60
203.15	42.04	100.0	10.012	1.07130	1.675	101	200.15	75.01	110.0	17 117	1.15510	0.070	00
283.15	43.49	210.2	10.008	1.08080	1.293	191	263.15	75.59	112.0	17.117	1.05246	2.238	01
283.15	44.26	240.6	16.529	1.08989	1.314	186	263.15	75.58	112.1	17.116	1.05251	2.258	61
283.15	45.11	270.7	16.402	1.09833	1.337	181	263.15	75.29	128.6	17.008	1.05921	2.247	62
283.15	46.00	300.2	16.286	1.10620	1.362	175	263.15	75.28	150.8	16.870	1.06787	2.244	63
283.15	46.98	330.0	16.176	1.11372	1.390	169	263.15	75.83	180.7	16.698	1.07890	2.256	63
283.15	48.06	359.2	16.073	1.12083	1.420	163	263.15	76.76	209.9	16.542	1.08905	2.281	62
283.15	49.12	385.2	15,986	1 12694	1.450	157	263 15	78.03	240.1	16.392	1.09902	2.315	60
278 15	50 78	0.1	18 015	0 00000	1 528	128	263 15	79.56	270.5	16 251	1 10855	2 357	59
270.15	50.70	0.1	10.015	0.00000	1.520	120	262 15	91.65	202.0	16 114	1 11700	2.337	56
270.15	50.77	0.1	10.013	1 00094	1.520	100	203.15	01.00	302.0	15.079	1.11733	2.413	50
278.15	50.76	0.0	18.011	1.00024	1.327	120	203.15	63.99	333.4	15.978	1.12/49	2.481	54
278.15	49.33	30.7	17.758	1.01452	1.481	138	263.15	88.37	386.4	15.785	1.14126	2.605	49
278.15	48.53	60.7	17.527	1.02785	1.454	144	258.15	89.90	159.3	16.797	1.07251	2.678	44
278.15	48.16	90.5	17.318	1.04029	1.440	149	258.15	90.47	188.4	16.630	1.08333	2.690	44
278.15	48.18	120.3	17.126	1.05196	1.439	151	258.15	91.14	205.2	16.538	1.08930	2.708	44
278.15	48.44	150.8	16.946	1.06310	1.444	151	258.15	91.22	209.2	16.517	1.09068	2.710	44
278 15	48 93	180 7	16.785	1.07327	1.456	149	258 15	92.85	239.8	16.363	1.10098	2 754	43
278 15	10.00	210.7	16 629	1 08970	1 176	1/7	258 15	05 72	282 G	16 164	1 11/50	2 8 2 1	41
270.1J	50 47	210.7	16 504	1 00160	1 /00	1/19	250.15	08 00	200.0	16 051	1 1 1 9 9 9 7	2.004	20
210.13	50.47	240.4 970 4	10.304	1.03100	1.490	140	200.10	30.00	009.0	10.031	1.1223/	2.090	39
2/8.15	51.32	270.4	16.378	1.09997	1.522	140	258.15	99.30	323.5	15.991	1.12657	2.934	38
278.15	52.51	300.6	16.261	1.10789	1.555	135	258.15	100.12	333.2	15.952	1.12933	2.957	38
278.15	53.77	330.3	16.153	1.11530	1.591	129	258.15	102.29	354.1	15.871	1.13512	3.019	36
278.15	55.18	360.0	16.051	1.12238	1.631	124	258.15	102.79	361.0	15.844	1.13701	3.033	36
278.15	56.64	389.0	15.956	1.12903	1.672	118	255.65	98.97	177.5	16.678	1.08018	2.945	37
						-	255.65	99.38	190.3	16,606	1.08489	2,955	37
							255 65	99 56	196 7	16 571	1 08719	2 959	37

Table 1. High-Pressure Viscosity Data for H₂O and D₂O

^{*a*}Reynolds number for annular flow: Re = $2r_1^2\rho v/(r_2 - r_1)\eta$), where *v* is the terminal velocity of the sinker and r_1 and r_2 are the radii of the sinker and tube, respectively.⁹

255.65

255.65

255.65

255.65

255.65

A high-pressure falling-body viscometer has been used to determine the viscosity of both light and heavy water from 25 °C to our lowest operational temperature of -17.5 °C and our highest operational pressure of 400 MPa, while staying within the liquid phase bounded by the ice I and ice III melting lines.

Experimental Section

99.74 101.20

103.11

105.97

108.86

201.8

231.8

257.8

292.3

321.1

Ordinary water, deionized with a reverse-osmosis system, was further purified with a MilliQ ion exchange system (Waters-Millipore Ltd). The resistivity was $18 \text{ M}\Omega$ · cm. The heavy water (99.9 atom % D, resistivity of $11 \text{ M}\Omega$ ·

16.542

16.387

16.261

16.105

15.984

1.08904

1.09937

1.10789

1.11860

1.12710

2.964

3.003

3.056

3.135

3.217

37

36

35

33

32

Table 3.	Viscosity	of Heavy	Water from	1 298 K	to 255	Κ
	- /					

<i>T</i> /K	t/s	<i>p</i> /MPa	<i>V</i> /(cm ³ / mol)	ρ/(g/cm ³)	$\eta/(mPa \cdot s)$	Re	<i>T</i> /K	t/s	<i>p</i> /MPa	<i>V</i> /(cm ³ / mol)	$\rho/(g/cm^3)$	$\eta/(mPa \cdot s)$	Re
298.15	37.08	0.1	18.0054	1.11230	1.095	272	278.15	67.14	0.1	18.1177	1.10540	1.987	82
298.15	37.34	0.1	18.0054	1.11230	1.103	268	278.15	66.85	3.1	18.0926	1.10694	1.977	83
298.15	37.10	0.1	18.0054	1.11230	1.096	272	278.15	66.56	5.6	18.0707	1.10828	1.968	84
298.15	37.14	0.1	18.0054	1.11230	1.097	271	278.15	66.32	8.1	18.0491	1.10961	1.961	85
298.15	37.28	0.1	18.0054	1.11230	1.101	269	278.15	66.03	10.8	18.0261	1.11102	1.952	86
298.15	37.04	0.1	18.0054	1.11230	1.094	272	278.15	64.74	25.9	17.9000	1.11885	1.911	90
298.15	37.00	5.6	17.9670	1.11467	1.092	274	278.15	63.18	50.8	17.7030	1.13130	1.862	95
298.15	36.94	8.0	17.9502	1.11572	1.090	275	278.15	62.18	75.6	17.5192	1.14317	1.829	100
298.15	36.97	10.3	17.9345	1.11670	1.091	275	278.15	61.67	100.7	17.3457	1.15461	1.811	103
298.13	30.93	10.7	17.9319	1.11080	1.090	2/3	270 15	01.30	120.0	17.1837	1.10549	1.803	104
298.13	30.77	20.7 50.7	17.8297	1.12320	1.084	280	270 15	01.37 61.00	130.3	16 2052	1.1/383	1.802	105
208 15	36.66	50.7	17.6675	1.13357	1.001	284	278 15	62 44	100 1	16 7624	1.10330	1.809	103
298 15	36.73	75.6	17 5132	1 14356	1 080	286	278 15	63 17	224 1	16 6359	1 20387	1 841	103
298.15	36.81	90.6	17.4243	1.14939	1.081	287	278.15	64.08	249.6	16.5141	1.21274	1.865	101
298.15	36.85	100.6	17.3664	1.15323	1.081	287	278.15	66.19	299.7	16.2957	1.22900	1.922	96
298.15	37.09	125.6	17.2268	1.16257	1.087	286	278.15	68.79	349.1	16.1024	1.24376	1.993	90
298.15	37.16	130.6	17.1999	1.16439	1.089	286	273.15	74.52	52.0	17.6726	1.13324	2.196	69
298.15	37.39	150.6	17.0938	1.17162	1.094	284	273.15	73.36	69.6	17.5413	1.14173	2.159	72
298.15	37.75	170.5	16.9926	1.17860	1.104	281	273.15	72.07	99.7	17.3309	1.15559	2.116	75
298.15	37.81	175.6	16.9673	1.18035	1.105	280	273.15	72.07	99.7	17.3309	1.15559	2.116	75
298.15	38.28	200.6	16.8468	1.18880	1.117	276	273.15	71.59	130.4	17.1314	1.16905	2.098	77
298.15	38.47	210.2	16.8019	1.19197	1.122	274	273.15	71.61	150.6	17.0083	1.17750	2.096	78
298.15	38.81	225.5	16.7320	1.19695	1.131	270	273.15	71.97	177.3	16.8550	1.18822	2.103	78
298.15	39.37	249.7	16.6260	1.20459	1.146	265	273.15	72.62	204.3	16.7091	1.19859	2.119	77
298.15	40.66	299.6	16.4208	1.21963	1.181	252	2/3.15	73.25	223.0	16.0138	1.20547	2.135	75
298.13	41.33	331.9	16.2978	1.22884	1.200	244	272 15	75.02	270 5	16.4097	1.21002	2.100	73
208 15	42.10	0 1	18 0054	1.23334	1.221	230	273.15	75.02	219.5	16 2500	1.22494	2.203	73
208 15	37.10	0.1	18 0050	1 1 1 2 3 0	1.000	279	273 15	80.03	350.5	16 0632	1 24679	2 3 1 8	67
298 15	37.10	0.2	18 0045	1 11235	1.005	272	273 15	80.68	357.5	16.0374	1 24879	2 336	66
298.15	36.79	30.7	17,7964	1.12536	1.084	280	273.15	84.22	395.2	15.9044	1.25923	2.435	61
298.15	36.69	60.7	17.6046	1.13762	1.079	285	268.15	84.98	109.7	17.2360	1.16195	2.494	54
298.15	36.81	90.7	17.4241	1.14941	1.081	287	268.15	84.44	125.3	17.1364	1.16870	2.475	55
298.15	37.06	120.7	17.2539	1.16075	1.086	286	268.15	84.33	150.9	16.9800	1.17947	2.468	56
298.15	37.42	150.6	17.0937	1.17162	1.095	284	268.15	84.33	174.7	16.8426	1.18909	2.464	57
298.15	37.93	180.6	16.9427	1.18207	1.108	279	268.15	85.04	201.2	16.6980	1.19939	2.481	56
298.15	38.49	210.6	16.8001	1.19210	1.123	274	268.15	87.14	251.4	16.4471	1.21768	2.535	55
298.15	39.16	240.6	16.6653	1.20174	1.141	267	268.15	89.59	289.2	16.2761	1.23048	2.601	52
298.15	39.87	270.5	16.5382	1.21098	1.160	260	268.15	92.27	325.5	16.1253	1.24199	2.675	50
298.15	40.68	300.3	16.4183	1.21983	1.182	252	268.15	98.60	390.6	15.8843	1.26083	2.850	45
298.15	41.33	350.1	16.3040	1.22000	1.203	244 225	263.15	100.40	100.2	16 2022	1.18230	2.939	40
208 15	42.43	333.8	16 0954	1 24420	1.250	226	263.15	100.43	185.3	16 7550	1.10500	2.537	40
283 15	56 68	0.1	18 1213	1 10519	1.677	115	263 15	101.04	200.8	16 6713	1 20131	2 953	40
283.15	56.66	0.2	18,1206	1.10523	1.676	115	263.15	103.81	249.5	16.4257	1.21927	3.020	39
283.15	56.68	0.2	18.1205	1.10523	1.677	115	263.15	107.71	299.6	16.1992	1.23632	3.125	36
283.15	56.47	3.0	18.0959	1.10674	1.670	116	263.15	112.62	347.1	16.0065	1.25121	3.260	34
283.15	56.31	5.6	18.0742	1.10806	1.665	117	263.15	116.98	383.4	15.8733	1.26171	3.381	32
283.15	56.15	8.1	18.0528	1.10938	1.660	118	258.15	122.22	196.9	16.6621	1.20198	3.566	27
283.15	55.98	10.8	18.0305	1.11075	1.655	119	258.15	123.12	215.3	16.5656	1.20897	3.588	27
283.15	55.17	25.8	17.9068	1.11842	1.629	123	258.15	124.71	242.9	16.4273	1.21916	3.629	27
283.15	54.20	50.8	17.7123	1.13070	1.597	130	258.15	127.24	271.0	16.2940	1.22913	3.697	26
283.15	54.23	50.8	17.7120	1.13073	1.598	129	258.15	130.19	298.5	16.1710	1.23848	3.777	25
283.15	53.42	100.8	17.3601	1.15364	1.569	137	258.15	132.31	315.6	16.0982	1.24408	3.835	24
203.13	52.30 52.41	100.8	17 2021	1.13303	1.307	137	200.00 255 65	130.97	616.6 990 1	10.3002	1.20893	3.903 2 079	22
283 15	53.41	150.6	17.2021	1.10424	1.500	130	255 65	130.30	230.2	16 4202	1 21 202	3.373 4 019	~~ 99
283 15	53.05	150.0	17 0524	1 17440	1.570	120	255 65	132 70	240 5	16 3800	1 22268	4.012	~~ 99
283 15	54 03	175.5	16.9122	1.18420	1.579	138	200.00	100.75	<i>w</i> 10.0	10.0000	1.0000	4.000	66
283.15	54.54	199.4	16.7862	1.19309	1.592	136							
283.15	54.52	199.7	16.7846	1.19320	1.592	136							
283.15	55.17	224.3	16.6617	1.20200	1.608	134							
283.15	55.96	249.6	16.5431	1.21062	1.629	132							
283.15	55.99	249.7	16.5428	1.21064	1.630	132							

cm) was obtained from the Aldrich Chemical Co. and used without further purification. The molar masses were taken to be (18.0153 and 20.0275) g/mol.

16.3293

16.3275

16.1383

16.1377

1.22647

1.22661

1.24099

1.24103

1.678

1.678

1.737

1.737

126

126

118

118

283.15

283.15

283.15

283.15

57.76

57.78

59.95

59.95

299.2

299.6

348.6

348.7

The high-pressure viscometer and its operation have been described elsewhere.^{11,12} It was calibrated with Cannon standards.¹² Platinum-resistance thermometers newly recalibrated by the National Measurement Laboratory (CSIRO, West Lindfield, NSW) between (-65 and 100) °C on the ITS-90 to a tolerance of ± 8 mK were employed. The viscometer oil-bath temperature was controlled¹² to within ± 0.01 K (between -10 °C and 25 °C) and to ± 0.02 K below -10 °C. The primary pressure gauge (400 MPa Heise CM) was calibrated^{11} against a deadweight tester to $\pm 0.05\%$ and pressures have an overall uncertainty of ± 0.2 MPa.

The working equation for the falling-body viscometer $is^{\rm 11,13,14}$

$$\eta(p,T) = \frac{t(1-\rho/\rho_s)}{A[(1+2\alpha(T-T_{\rm ref}))][1-2\beta(p-p_{\rm ref})/3]}$$
(3)

where *t* is the fall time, ρ the density of the fluid, ρ_s the density of the sinker, α the coefficient of thermal expansion (1.6 × 10⁻⁵ K⁻¹), and β the bulk compressibility (2 × 10⁻⁶

Figure 3. (a) Comparison of Harlow's data⁵ for ordinary water (estimated uncertainty 1.4%) with the results of this work. The ordinate is the percentage difference between the experimental viscosity and that predicted from eq 4 using x = p. \forall , 2.2 °C; \oplus , 10 °C; \blacksquare , 20 °C; \blacktriangle , 25 °C. (b) Comparison of the DeFries and Jonas data³ for ordinary water (estimated uncertainty ±2%) with the results of this work. \oplus , -15 °C; \blacksquare , -10 °C; \bigstar , -5 °C; \forall , 0 °C; \square , 5 °C; \bigcirc , 10 °C. (c) Comparison of Agayev's data⁷ for ordinary water (estimated uncertainty ±1.5%) with the results of this work. \oplus , -8.9 °C; \square , -6.6 °C; \blacksquare , -3.7 °C; \bigcirc , -1 °C; \blacktriangle , 0 °C; \triangle , 2.2 °C; \forall , 10.6 °C; \bigtriangledown , 18.2 °C; \bigstar , 19.7 °C. (d) Comparison of literature data for ordinary water with the results of this work. Tanaka et al. (estimated uncertainty ±2%):¹⁰ \oplus , 10 °C; \blacksquare , 25 °C. Stanley and Batten (estimated uncertainty ±1.5%):⁹ \bigcirc , 2.2 °C; \square , 6 °C; \triangle , 10 °C; \bigtriangledown , 15 °C; \diamondsuit , 20 °C. (e) Comparison of the data of Först et al.⁶ for ordinary water (estimated uncertainty ±0.5%) with the results of this work (estimated uncertainty ±1%). \oplus , -13 °C; \blacksquare , -8 °C; \bigstar , -5 °C; \bigstar , 0 °C; \square , 4 °C; \bigcirc , 10 °C; \triangle , 20 °C.

Pa⁻¹) of the sinker and tube material, in this case, 316 stainless steel. *A* is the calibration constant, 28 707 Pa⁻¹, $\pm 0.17\%^{12}$, obtained at temperature $T_{\rm ref}$ and pressure $p_{\rm ref}$, valid for Re < 1000. ¹¹ The sinker density was corrected for changes in *T* and *p* from the calibration state point, $T_{\rm ref} = 298.15$ K and $p_{\rm ref} = 0.1$ MPa using the relation¹⁵

$$\rho_{\rm s} = \frac{\rho_{\rm s}(T_{\rm ref}, p_{\rm ref})}{[1 + 3\alpha(T - T_{\rm ref})][1 - \beta(p - p_{\rm ref})]} \tag{4}$$

The tube and sinker diameters are 6.5 mm and 6.3 mm, respectively. The overall uncertainty in the viscosity, based

on replicate measurements and the sum of the uncertainty in the calibration ($\pm 0.2\%$) and that in the fit to the function of temperature and density described below ($\pm 0.3\%$), is estimated at $\pm 1\%$.

Calculation of the viscosity from fall times requires knowledge of the density as a function of *T* and *p*. The equations of state recommended by the International Association for Water and Steam (IAWPS) were used to obtain the densities of H_2O^{17} and D_2O^{16} at the experimental state points. These equations are recommended for temperatures above the normal freezing points and for pressures to 100 MPa, though they can be employed outside these limits.

Figure 4. (a) Comparison of Harlow's data⁵ for heavy water (estimated uncertainty $\pm 1.4\%$) with the results of this work. \bullet , 10 °C; \blacksquare , 20 °C; \blacktriangle , 25 °C. (b) Comparison of the DeFries and Jonas data⁴ for heavy water (estimated uncertainty $\pm 2\%$) with the results of this work. \bullet , -15 °C; \blacksquare , -10 °C; \blacktriangle , -5 °C; \lor , 0 °C; \Box , 5 °C; \circ , 10 °C. (c) Comparison of Agayev's data^{7.8} for heavy water (estimated uncertainty $\pm 1.5\%$) with the results of this work. \diamondsuit , -9.9 °C; \blacklozenge , -7.5 °C; \lor , -4.9 °C; \blacktriangledown , -2.5 °C; \triangle , 0 °C; \blacktriangle , 2.9 °C; \circ , 3.8 °C; \bullet , 4 °C; \blacksquare , 7 °C; \Box , 10 °C.

Below the normal freezing point of water we have used the recent pVT measurements of Asada et al.¹⁸ for H₂O as the IAWPS correlation is largely based on the older density data of Bridgman¹⁹ at subzero temperatures. The Asada data, when differentiated to yield compressibilities and thermal expansivities, are in excellent agreement with experimental measurements for these quantities.

For heavy water, the IAWPS density values at (300 to 400) MPa and below 0 °C are significantly different (1 to 2%) from those based on the data of Bridgman¹⁹ used by DeFries and Jonas.⁴ The Bridgman densities were also used for the viscosity correlation of Aleksandrov and Mateev.²⁰ It is of interest that while the IAWPS density data for heavy water can be correlated with those for light water using the Robinson approach to some (25 to 30) MPa above the limit of the IAWPS equation of state (100 MPa) at temperatures below about 40 °C,1 those of Bridgman show large deviations. Clearly new high-pressure density measurements for heavy water below the normal freezing point would be extremely useful. In the tables, we report the densities we have used in order for the viscosities to be recalculated should that be found necessary in the future.

Results and Discussion

The results are presented in Tables 2 and 3.

The viscosities were fitted as functions of temperature and pressure and temperature and molar volume to the empirical equation first used by Woolf²¹

$$\eta = \exp(a_1 + a_2 x + a_3 x/T + a_4 x^2 + a_5 x^2/T + a_6 x^3 + a_7/T + a_8/T^2)$$
(4)

where here *x* is either pressure, *p*, or molar volume, *V* (Woolf used pressure and density). The coefficients for the fits are given in Tables 4 and 5. The fit of $\eta(T, V)$ is better than that of $\eta(T, p)$ in each case. The residual plots for the former are shown as Figures 1 and 2.

Parts a-e of Figure 3 show a comparison of the literature data for water with our results, based on fitting the data as a function of pressure. There is excellent agreement with the data sets of Harlow,⁵ Tanaka and co-workers,¹⁰ Stanley and Batten⁹ (except for one of the two isotherms reported for 20 °C), and Agayev.⁷ There is also generally good agreement with the data sets of DeFries and Jonas³ and of Först and co-workers,⁶ though with some outliers, and we note that the latter group reported a divergence from the DeFries–Jonas data set at pressures higher than those covered in this work.

Parts a-c of Figure 4 show a comparison of the literature data for heavy water with our results. Again there is good agreement with the results of Harlow⁵ and reasonable agreement with those of DeFries and Jonas⁴ given the uncertainty in the densities referred to above, though there is some scatter between -5 °C and 5 °C. There is poor agreement with Agayev's 4 °C isotherm from his 1980 paper⁷ but generally better agreement with his later

Figure 5. Comparison of isochoric viscosities of light (closed symbols) and heavy water (open symbols). The heavy water viscosities are divided by the factor 1.0544 and shifted to (T - 6.548 K). The isochores are also offset by the quantity *k* to avoid overlap. \bullet , \bigcirc , 16 cm³/mol, k = 0 mPa·s; \blacksquare , \Box , 16.5 cm³/mol, k = 0.25 mPa·s; \blacklozenge , \triangle , 17 cm³/mol, k = 0.5 mPa·s; \checkmark , \bigtriangledown , 17.5 cm³/mol, k = 1 mPa·s.

Table 4. Coefficients of Best Fit for Equation 4, x = p

	H_2O	D_2O
<i>a</i> ₁	0.411 011	1.391 70
$a_2 imes 10^2 / \mathrm{MPa^{-1}}$	0.854 113	1.076 27
$a_3 imes 10^{-1}$ /(K·MPa ⁻¹)	$-0.267\ 340$	-0.337597
$a_4 imes 10^4/\mathrm{MPa^{-2}}$	-0.135 750	-0.176949
$a_5 imes 10^2$ /(K·MPa ⁻²)	0.525 404	0.656 687
$a_6 imes 10^8/\mathrm{MPa^{-3}}$	-0.515042	$-0.534\ 170$
$a_7 imes 10^{-4}/{ m K}$	$-0.235\ 032$	0.301 449
$a_8 imes 10^{-6}/\mathrm{K}^2$	0.654 401	0.783 377
standard uncertainty/(mPa·s)	0.007	0.006
standard percentage uncertainty	0.4	0.3
maximum percentage deviation	1.1	1.2

Table 5. Coefficients of Best Fit for Equation 4, x = V

	H_2O	D_2O
$a_1 imes 10^{-2}$	-0.600 113	$-0.349\ 075$
$a_2 imes 10^{-1}$ /(mol·cm ⁻³)	0.695 355	0.357 257
$a_3 imes 10^{-4}$ /(K·mol·cm ⁻³)	$-0.373\ 675$	-0.333775
$a_4 imes 10/(\text{mol}^2 \cdot \text{cm}^{-6})$	-1.265 912	0.183 286
$a_5 imes 10^{-3}$ /(K·mol ² ·cm ⁻⁶)	0.116 435	0.104 781
$a_6 \times 10^2/(\mathrm{mol}^3 \cdot \mathrm{cm}^{-9})$	-0.400576	-0.579565
$a_7 imes 10^{-5}/ m K$	0.269 496	0.230 844
$a_8 imes 10^{-6}/\mathrm{K}^2$	0.692 075	0.779 586
standard uncertainty/(mPa·s)	0.004	0.005
standard percentage uncertainty	0.1	0.1
maximum percentage deviation	0.4	0.4

results.⁸ The higher deviations at lower pressures, where the experimental viscosity is higher than predicted from our correlation, correspond to points taken in the supercooled region, where Agayev estimated an uncertainty of 2.5%, somewhat higher than the 1.2% given for the normal liquid region.

Comparison of the light and heavy water viscosities shows they are better fitted by the volume analogue of eq 1

$$\eta(D_2O, T/K, V) = 1.0544\eta(H_2O, (T - 6.498 \text{ K}), V)$$
 (5)

than as a function of pressure. This is shown in Figure 5; the maximum deviation is 1%. An analysis of the applicability of the Robinson conjecture to these and other data will be made in a separate article.

Literature Cited

- Harris, K. R. Isotope Effects and the Thermal Offset Effect for Diffusion and Viscosity Coefficients of Liquid Water. *Phys. Chem. Chem. Phys.* 2002, *4*, 5841–5845.
 Cho, C. H.; Urquidi, J.; Singh, S.; Robinson, G. W. Thermal Offset
- (2) Cho, C. H.; Urquidi, J.; Singh, S.; Robinson, G. W. Thermal Offset Viscosities of Liquid H₂O, D₂O, and T₂O. *J. Phys. Chem. B.* **1999**, *103*, 1991–1994.
- (3) DeFries, T.; Jonas, J. Pressure Dependence of NMR Proton Spin-Lattice Relaxation Times and Shear Viscosity in Liquid Water in the Temperature Range -15-10 °C. J. Chem. Phys. 1977, 66, 896-901.
- (4) DeFries, T.; Jonas, J. Molecular Motions in Compressed Liquid Heavy Water at Low Temperatures. J. Chem. Phys. 1977, 66, 5393-9.
- (5) Harlow, A. Thesis. Imperial College of Science and Technology, University of London. 1967.
- (6) Först, P.; Werner, F.; Delgado, A. The Viscosity of Water at High Pressures – Especially at Subzero Degrees Centigrade. *Rheol. Acta* 2000, *39*, 566–573.
- (7) Agayev, N. A. Experimental Investigation of the Viscosity of Ordinary and Heavy Water and Steam in the Temperature Range from -10 to 375 °C and at Pressures from 0.1 to 200 MPa. *Proceedings of the 9th International Conference on the Properties of Water and Steam*; Straub, J., Scheffler, K., Eds.; Pergamon Press: Oxford, U.K., 1980; pp 362-374.
 (8) Agayev, N. A. Heavy Water Viscosity under High Pressuires near
- (8) Agayev, N. A. Heavy Water Viscosity under High Pressuires near (the) Freezing Line. Physical Chemistry of Aqueous Systems: Meeting the Needs of Industry; *Proceedings of the 11th International Conference on the Properties of Water and Steam*; White, H. J., Jr., Sengers, J., Neumann, D. B., Bellows, J. C., Eds.; Begell House: New York, 1995; pp 148–154.
 (9) Stanley, E. M.; Batten, R. C. Viscosity of Water at High Pressures
- (9) Stanley, E. M.; Batten, R. C. Viscosity of Water at High Pressures and Moderate Temperatures. J. Phys. Chem. 1969, 73, 1187– 1191.
- (10) Tanaka, Y.; Matsuda, Y.; Fujiwara, H.; Kubota, H.; Makita, T. Viscosity of (Water + Alcohol) Mixtures under High Pressure. *Int. J. Thermophys.* **1987**, *8*, 147–163.
 (11) Malhotra, R.; Price, W. E.; Woolf, L. A.; Easteal, A. J. Thermo-
- (11) Malhotra, R.; Price, W. E.; Woolf, L. A.; Easteal, A. J. Thermodynamic and Transport Properties of 1,2-Dichloroethane. *Int. J. Thermophys.* **1990**, *11*, 835–861.
- (12) Harris, K. R. Temperature and Density Dependence of the Viscosity of Toluene. J. Chem. Eng. Data 2000, 45, 893– 897.
- (13) Isdale, J. D.; Spence, C. M. A Self-Centering Falling Body Viscometer for High Pressures. National Engineering Laboratory Report No 592, Department of Industry, UK, 1975.
- (14) Isdale, J. D.; Easteal, A. J.; Woolf, L. A. Shear Viscosity of Methanol and Methanol + Water Mixtures Under Pressure. *Int. J. Thermophys.* **1985**, *6*, 439–450.
- (15) Dymond, J. H.; Young, K. J.; Isdale, J. D. Transport Properties of Nonelectrolyte Liquid Mixtures. II. Viscosity Coefficients for *n*-Hexane + *n*-Hexadecane System at Temperatures from 25 to 100 °C at Pressures up to the Freezing Pressure or 500 MPa. *Int. J. Thermophys.* **1980**, *1*, 345–373.
 (16) Kestin, J.; Sengers, J. V. New International Formulations for the
- (16) Kestin, J.; Sengers, J. V. New International Formulations for the Thermodynamic Properties of Light and Heavy Water. *J. Phys. Chem. Ref. Data.* **1986**, *15*, 305–320.
 (17) Wagner, W.; Pruss, A. The IAPWS Formulation 1995 for the
- (17) Wagner, W.; Pruss, A. The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use. J. Phys. Chem. Ref. Data 2002, 31, 387-535.
- (18) Asada, S.; Sotani, T.; Arabas, J.; Kubota, H.; Matsuo, S.; Tanaka, Y. Density of Water at Subzero Temperature under High Pressure: Measurements and Correlation. *J. Phys.: Condens. Matter* **2002**, *14*, 11447–11452.
- (19) Bridgman, P. W. The Pressure-Volume-Temperature Relation of the Liquid, and the Phase Diagram of Heavy Water. J. Chem. Phys. 1935, 3, 597–605.
- (20) Aleksandrov A. A.; Matveev, A. B. An Equation for Dynamic Viscosity of Heavy Water for a Wide Range of Temperatures and Pressures in Steam, Water, and Hydrothermal Systems: Physics and Chemistry Meeting the Needs of Industry. *Proceedings of the* 13th International Conference on the Properties of Water and Steam, Tremaine, P. R. Ed.; National Research Council of Canada: Ottawa, 2000; pp 80–87.
- (21) Woolf, L. A. Tracer Diffusion of Tritiated Water (THO) in Ordinary Water (H₂O) Under Pressure. J. Chem. Soc., Faraday Trans. I 1975, 71, 784–796.

Received for review February 23, 2004. Accepted April 14, 2004.

JE049918M