Pressure–Volume–Temperature Properties for 1-Octanol + Acetophenone, Poly(Propylene Glycol) + 1-Octanol + Acetophenone, and Poly(Ethylene Glycol) + Poly(Ethylene Glycol Methyl Ether) + Anisole

Ming-Jer Lee, Tzu-Sheng Hsu, Yu-Chun Tuan, and Ho-mu Lin*

Department of Chemical Engineering, National Taiwan University of Science and Technology, 43 Keelung Road, Section 4, Taipei 106-07, Taiwan

Pressure–volume–temperature (P-V-T) properties were measured for 1-octanol + acetophenone, the polymer solutions of poly(propylene glycol) (PPG) with the mixed solvents of 1-octanol and acetophenone, and the polymer blends of poly(ethylene glycol) (PEG)/poly(ethylene glycol methyl ether) (PEGME) with anisole at temperatures from 298.15 K to 348.15 K and pressures up to 50 MPa. The Tait equation represents accurately the pressure effect on the liquid densities over the entire pressure range. The experimental-specific volumes of the constituent binary systems were correlated with the Flory–Orwoll–Vrij and the Schotte equations of state to determine the binary interaction parameters. By use of these determined binary parameters, the equations of state predicted the specific volumes to average absolute deviations of better than 0.13% for the ternary mixtures composed of PPG with the mixed solvents and the polymer blends of PEG/PEGME with anisole.

Introduction

Reliable polymer equations of state (EOS) are useful in polymer manufacturing and processing as well as in many environmental and biological applications. In theory, the thermodynamic properties of a multicomponent system may be predicted from an EOS with known equation constants and binary interaction parameters, which are usually determined from the properties of the constituents and their binary pairs. The validity of the P-V-T relationship, describing by an EOS with mixing rules, can be tested directly with the experimental volumetric data of multicomponent systems.

While Zoller and Walsh¹ collected P-V-T properties for a wide variety of "pure" polymeric substances, the literature data are relatively scarce for polymer solutions and blends, especially for multicomponent systems. Muller and Rasmussen² and Sandell and Goring³ measured the specific volumes for aqueous poly(ethylene glycol)s PEGs and for oligometric propylene glycols. In the recent years, P-V-Tdata were reported for several associated polymer solutions and blends, such as poly(4-hydroxystyrene) + acetone (Compostizo et al.),⁴ poly(4-hydroxystyrene) + tetrahydrofuran and + ethanol (Compostizo et al.),⁵ poly(propylene glycol) PPG + n-hexane and + ethanol (Colin et al.),⁶ and PEG + PPG (Colin et al.).⁷ Panayiotou and Sanchez⁸ correlated binary P-V-T data with the lattice-fluid EOS to examine the applicability of such models for representing the hydrogen-bonding effects on the volumetric properties. Our research group has also conducted a series of P-V-Tmeasurements for various polymer solutions and blends containing PEG, PPG, and poly(ethylene glycol methyl ether) PEGME. Lee et al.⁹ reported the volumetric properties for PEGME-350, PEG-200, PEG-600, and the blended

* To whom correspondence may be addressed. Tel: +886-2-2737-6643. Fax: +886-2-2737-6644. E-mail: hml@ch.ntust.edu.tw.

mixtures of PEGME-350 with either PEG-200 or PEG-600, Chang et al.¹⁰ for 10 fractionation cuts of PEG and PPG, Lee et al.¹¹ for PEG-200 + 1-octanol and PEG-600 + 1-octanol, Lee et al.¹² for PEGME-350 + anisole and PEG-200 + anisole, Lin et al.¹³ for the binary systems of PPG-4000 with 1-octanol and acetophenone, and Lee et al.¹⁴ for PPG-425 + anisole, PPG-425 + PEGME-350, PPG-425 + PEGME-350 + anisole, and PPG-200 + PPG-425 + anisole. In the present study, the P-V-T properties were measured for 1-octanol + acetophenone, the polymer solutions of PPG-4000 with the mixed solvents of 1-octanol and acetophenone, and the polymer blends of PEG-200 and PEGME-350 with anisole. The experimental results reveal the volumetric behavior for these associated polymer solutions in response to the effects of temperature, pressure, and composition. The ternary P-V-T data were also used to examine the validity of the prediction from the polymer EOS and Flory-Orwoll-Vrij (FOV) and Schotte equations with the binary interaction parameters determined from the constituent binaries.

Experimental Section

Anisole (99+ mass %), 1-octanol (99+ mass %), acetophenone (99 mass %), and the fractionation cuts of PPG-4000, PEG-200, and PEGME-350 were supplied by Aldrich Chemical Co. (USA). The number-average molecular weights (M_n) and the polydispersities (M_w/M_n) were measured with a matrix-assisted laser desorption/ionization time-of-flight. The values are approximately 4960 and 1.008 for PPG-4000, 260 and 1.0742 for PEG-200, and 366 and 1.0188 for PEGME-350. Each component has been degassed by heat accompanying with agitation before use. The schematic diagram of the P-V-T apparatus has been illustrated by Lee et al.¹² Liquid mixture sample was prepared from the degassed compounds by mass to an uncertainty of ±0.0001 in mass fraction. The density was measured with a highpressure densitometer (DMA 512 P, Anton Paar). Pressure

Table 1.	<i>P</i> - <i>V</i> - <i>T</i> Pro	perties of 1-O	ctanol (1) +	Acetophenone (2)
----------	------------------------------------	----------------	--------------	------------------

	298	.15 K	318	.15 K	348	.15 K		298	.15 K	318	.15 K	348	.15 K
Р	ρ	$\kappa_{\rm T} imes 10^4$	ρ	$\kappa_{\mathrm{T}} imes 10^4$	ρ	$\kappa_{\rm T} imes 10^4$	Р	ρ	$\kappa_{\mathrm{T}} imes 10^4$	ρ	$\kappa_{\mathrm{T}} imes 10^4$	ρ	$\kappa_{\mathrm{T}} imes 10^4$
MPa	g·cm ⁻³	MPa^{-1}	g·cm ⁻³	MPa^{-1}	g•cm ⁻³	MPa^{-1}	MPa	g∙cm ⁻³	MPa^{-1}	g∙cm ⁻³	MPa^{-1}	g·cm ⁻³	MPa^{-1}
					И	$y_1 = 0.1075$	$(x_1 = 0.$	1000)					
0.1	0.9960	5.861	0.9789	6.656	0.9525	7.859	30	1.0123	5.068	0.9970	5.531	0.9731	6.504
10	1.0017	5.571	0.9853	6.234	0.9597	7.348	35	1.0149	4.957	0.9995	5.380	0.9761	6.323
15	1.0045	5.436	0.9883	6.041	0.9632	7.116	40	1.0173	4.851	1.0022	5.238	0.9792	6.153
20	1.0072	5.308	0.9913	5.860	0.9666	6.899	45	1.0197	4.750	1.0048	5.104	0.9820	5.992
25	1.0098	5.185	0.9941	5.691	0.9699	6.695	50	1.0221	4.653	1.0073	4.977	0.9848	5.840
0.1	0.0710	0 111	0.05.45	0.000	N 0004	1 = 0.2132	$(x_1 = 0.$	2000)	r 000	0.0707	F 000	0.0400	0.010
0.1	0.9712	6.111 5 707	0.9545	6.983	0.9284	8.3//	30	0.9877	5.230	0.9727	5.699	0.9492	6.612
10	0.9770	5.787	0.9609	0.495	0.9359	7.092	30	0.9903	3.108	0.9794	5.530	0.9523	0.390
10	0.9798	5.030	0.9640	0.275	0.9394	7.389	40	0.9928	4.992	0.9780	5.372	0.9333	0.183
20 25	0.9820	5.495	0.9070	0.009 5 070	0.9428	7.109	45	0.9951	4.001	0.9807	5.224	0.9382	5.989
20	0.9852	5.359	0.9699	3.878	0.9401	0.801	50	0.9975	4.770	0.9832	5.085	0.9610	5.808
0.1	0.0470	6 206	0.0212	7 9 1 5	0 0057	$n_1 = 0.3172$	$(x_1 = 0.$	0.0647	5 205	0.0407	5 012	0.0967	6 0 9 9
10.1	0.9479	0.300	0.9313	7.213	0.9037	8.309 7.004	30	0.9047	5.395	0.9497	5.915	0.9207	0.922
10	0.9000	5.010	0.9378	0.721	0.9131	7.904	30	0.9072	5.200	0.9524	5.741	0.9290	0.713
10	0.9500	5 600	0.9409	0.490	0.9107	7.032	40	0.9097	5.132	0.9551	5.360	0.9329	0.321
20 25	0.9394	5.000	0.9439	6.005	0.9201	7.379	40	0.9722	3.010	0.9377	5.905	0.9339	0.339
20	0.9620	0.000	0.9469	6.095	0.9235	7.143	00 (0	0.9740	4.894	0.9603	5.285	0.9380	0.100
0.1	0.0969	6 794	0.0100	7 5 1 6	N 0017	$a_1 = 0.4195$	$(x_1 = 0.$	4000)	5 599	0 0996	6 111	0.0069	7 070
10.1	0.9202	0.734	0.9100	7.310	0.004/	9.110	30	0.9432	5.322	0.9200	5 0 2 9	0.9002	7.070
10	0.9322	0.275	0.9100	6 740	0.0924	0.309 7.058	35	0.9400	5.302	0.9314	5 755	0.9093	0.010
10	0.9331	5 972	0.9197	0.740	0.0900	7.930	40	0.9403	5.212	0.9340	5.755	0.9123	0.364
20 25	0.9379	5.675	0.9220	0.313	0.0990	7.037	40	0.9307	3.070	0.9300	5.394	0.9100	0.307
20	0.9400	3.032	0.9237	0.300	0.9029	7.342	(v = 0)	5000)	4.557	0.9393	J.442	0.9102	0.104
0.1	0 0050	6 944	0.8000	7 676	0 8651	0.356	$(x_1 - 0, x_2)$	0 0230	5 673	0 0087	6 304	0.8866	7 9 4 3
10	0.3033	6 461	0.8967	7.070	0.8031	8 525	35	0.9256	5.507	0.0007	6 1 2 3	0.0000	6 082
15	0.0110	6 244	0.8307	6 0 2 1	0.8765	8 162	40	0.3230	5 350	0.0110	5 952	0.0030	6 742
20	0.0176	6.040	0.0330	6 702	0.8703	7 820	40	0.3201	5 202	0.0142	5 702	0.0320	6 5 1 9
25	0.0170	5 851	0.3023	6 497	0.8834	7 525	4J 50	0.3300	5.063	0.0105	5.640	0.0333	6 3 1 0
20	0.3203	5.651	0.3033	0.457	0.0034	7.525	$(v_{1} - 0)$	6000)	5.005	0.5155	5.040	0.0307	0.510
0.1	0 8866	7 1 3 9	0 8711	8 1 9/	0.8469	9 595	$(x_1 - 0, 30)$	0000)	5 824	0 8900	6 309	0 8685	7 4 7 0
10	0.8927	6 639	0.8778	7 451	0.8546	8 762	35	0.0000	5 651	0.8927	6.078	0.8717	7 206
15	0.8956	6 413	0.8811	7 1 2 6	0.8583	8.396	40	0.9090	5 491	0.8954	5 865	0 8748	6 962
20	0.8984	6.203	0.8841	6.830	0.8618	8.061	45	0.9114	5.338	0.8981	5.666	0.8778	6.735
25	0.9012	6.008	0.8871	6.559	0.8653	7.754	50	0.9138	5.194	0.9007	5.482	0.8807	6.523
					и	a = 0.7166	$(x_1 = 0)$	7000)					
0.1	0.8686	7.343	0.8534	8.293	0.8296	10.029	30	0.8859	5.966	0.8724	6.541	0.8513	7.553
10	0.8747	6.818	0.8602	7.613	0.8374	9.038	35	0.8885	5.787	0.8752	6.321	0.8545	7.258
15	0.8776	6.582	0.8633	7.311	0.8411	8.612	40	0.8910	5.618	0.8779	6.115	0.8576	6.986
20	0.8804	6.362	0.8664	7.034	0.8446	8.225	45	0.8935	5.460	0.8805	5.923	0.8605	6.735
25	0.8832	6.158	0.8695	6.778	0.8480	7.874	50	0.8959	5.311	0.8831	5.744	0.8634	6.503
					и	n = 0.8126	$(x_1 = 0)$	8000)					
0.1	0.8518	7.549	0.8370	8.509	0.8137	10.152	30	0.8692	6.094	0.8560	6.681	0.8354	7.734
10	0.8579	6.992	0.8439	7.797	0.8215	9.192	35	0.8718	5.906	0.8589	6.452	0.8386	7.442
15	0.8609	6.743	0.8470	7.482	0.8252	8.775	40	0.8742	5.729	0.8616	6.239	0.8417	7.172
20	0.8637	6.511	0.8502	7.194	0.8287	8.396	45	0.8768	5.564	0.8643	6.041	0.8446	6.922
25	0.8665	6.295	0.8532	6.927	0.8321	8.051	50	0.8792	5.409	0.8668	5.855	0.8475	6.690
					и	$v_1 = 0.9070$	$(x_1 = 0.$.9000)					
0.1	0.8360	7.695	0.8216	8.648	0.7984	10.647	30	0.8534	6.184	0.8406	6.790	0.8204	7.862
10	0.8421	7.115	0.8283	7.924	0.8064	9.519	35	0.8559	5.990	0.8434	6.558	0.8236	7.538
15	0.8451	6.855	0.8316	7.605	0.8102	9.040	40	0.8585	5.808	0.8461	6.342	0.8267	7.241
20	0.8480	6.616	0.8347	7.311	0.8138	8.608	45	0.8610	5.638	0.8488	6.140	0.8297	6.967
25	0.8507	6.392	0.8377	7.041	0.8172	8.217	50	0.8633	5.477	0.8513	5.951	0.8325	6.714

in the measuring cell was manipulated by a hand pump and monitored by a pressure transducer (Model-PDCR 911, 0-70 MPa, Druck) with a digital indicator (model-DPI 261, Druck). Pressure measurements were accurate to ± 0.1 % at pressures higher than atmospheric. A thermostatic bath with circulating water regulated the temperature of the measuring cell to within ± 0.03 K. A precision digital thermometer (model-1560, Hart Scientific) incorporated with a thermistor probe measured the bath temperature to an accuracy of ± 0.02 K, and its uncertainty is about ± 0.01 K. The oscillation period (*t_i*) of sample *i* in the vibrating U tube was read with a densimeter of DMA 48 (Anton Paar) which was converted into density (ρ_i) via

$$\rho_i = A(t_i^2 - B) \tag{1}$$

where *A* and *B* are apparatus parameters determined by using the literature density data of two calibration fluids: pure water¹⁵ and dry nitrogen.¹⁶ The calibration was made at each temperature of interest over a pressure range (0.1– 50) MPa. The calibration reproduced water densities with an average absolute deviation of 0.01% over the entire calibrated conditions. The viscosity differences between the samples and the calibration fluids might affect the accuracy

Table 2.	Correlated	Results	of the	Tait	Equation	for
1-Octano	ol (1) + Acet	ophenor	1e (2)			

		· · · · I· · ·			
<i>T</i> /K	W_1^a	X_1^{b}	С	D/MPa	$\pi_1 imes 10^5$ c
298.15	0.1075	0.1000	0.09993	170.40	6.05
	0.2132	0.2000	0.09704	158.70	6.78
	0.3172	0.3000	0.09330	146.00	3.38
	0.4195	0.4000	0.08323	123.50	2.25
	0.5201	0.5000	0.08402	120.90	2.01
	0.6192	0.6000	0.08552	119.70	3.86
	0.7166	0.7000	0.08599	117.00	2.33
	0.8126	0.8000	0.08546	113.10	3.10
	0.9070	0.9000	0.08518	110.60	2.66
318.15	0.1075	0.1000	0.08826	132.50	5.09
	0.2132	0.2000	0.08394	120.10	1.56
	0.3172	0.3000	0.08831	122.30	1.75
	0.4195	0.4000	0.08809	117.10	2.40
	0.5201	0.5000	0.09434	122.80	6.70
	0.6192	0.6000	0.07495	91.37	5.78
	0.7166	0.7000	0.08376	100.90	1.98
	0.8126	0.8000	0.08407	98.70	1.39
	0.9070	0.9000	0.08533	98.57	2.35
348.15	0.1075	0.1000	0.10020	127.40	8.86
	0.2132	0.2000	0.08478	101.10	2.47
	0.3172	0.3000	0.09870	115.90	6.25
	0.4195	0.4000	0.08517	93.39	2.15
	0.5201	0.5000	0.08641	92.26	4.96
	0.6192	0.6000	0.09037	94.08	2.59
	0.7166	0.7000	0.08267	82.33	4.76
	0.8126	0.8000	0.08726	85.85	2.80
	0.9070	0.9000	0.08131	76.27	3.28

 a w_1 is the mass fraction of component 1. b x_1 is the mol fraction of component 1, calculated with the molecular weights of 130.231 and 120.151 for 1-octanol and acetophenone, respectively. c π_1 is defined as in eq 3.

of density measurement by an oscillating densitometer (Ashcroft et al.),¹⁷ but the effect is generally minor. The accuracy of the density measurements, without the correction of viscosity effect, is estimated to within $\pm 0.1\%$, and the uncertainty of the reported densities is about ± 0.0001 g·cm⁻³.

Results and Discussion

Binary System. The experimental densities of the constituent compounds (PEG-200, PEGME-350, PPG-4000, anisole, 1-octanol, and acetophenone) have been reported and compared with literature values in Lee et al.¹² and Lin et al.¹³ The agreement is within the uncertainty of the measurements. Table 1 lists the measured density data for the binary mixed solvents of 1-octanol + acetophenone at temperatures from 298.15 K to 348.15 K and pressures up to 50 MPa. These data will be used to determine the binary interaction parameter for the pair of mixed solvents.

The pressure effect on the isothermal densities of a given composition can be represented accurately by the Tait equation

$$\frac{\rho - \rho_0}{\rho} = C \ln \left(\frac{D + P}{D + 0.1} \right) \tag{2}$$

where ρ_0 is the density at 0.1 MPa. The optimized values of *C* and *D* were obtained by fitting the Tait equation to the density data with the following objective function (π_1)

$$\pi_1 = \left[\sum_{k=1}^n |\rho_{k,\text{calc}} - \rho_{k,\text{exp}}| / \rho_{k,\text{exp}}\right] / n \tag{3}$$

where *n* is the number of data points. $\rho_{k,\text{calc}}$ and $\rho_{k,\text{exp}}$ refer to the calculated and the experimental densities for the *k*th point, respectively. Table 2 reports the calculated

Figure 1. Variations of excess volume with composition for 1-octanol (1) + acetophenone (2) under 0.1 MPa at: \diamond , 298.15 K; \Box , 318.15 K; \triangle , 348.15 K.

 Table 3. Correlated Results of Excess Volumes with the Redlich-Kister Equation for 1-Octanol (1) +

 Acetophenone (2)

<i>T</i> /K	<i>P</i> /MPa	$E_1/\mathrm{cm}^3\cdot\mathrm{mol}^{-1}$	$E_2/\mathrm{cm}^3\cdot\mathrm{mol}^{-1}$	$\pi_2^a/\mathrm{cm}^3\cdot\mathrm{mol}^{-1}$
298.15	0.1	0.9131	0.8205	0.019
	10	0.9415	0.8065	0.022
	15	0.9799	0.8676	0.027
	20	0.9937	0.8042	0.024
	25	0.9572	0.7437	0.022
	30	0.9630	0.6877	0.023
	35	0.9813	0.7836	0.027
	40	1.0015	0.7444	0.026
	45	0.9919	0.7313	0.026
	50	0.9531	0.7262	0.028
318.15	0.1	1.3549	0.8793	0.026
	10	1.6163	1.2036	0.046
	15	1.6198	1.2163	0.045
	20	1.6011	1.1308	0.043
	25	1.6349	1.1242	0.046
	30	1.6286	1.2165	0.046
	35	1.6081	1.0391	0.044
	40	1.6390	1.0508	0.046
	45	1.6308	1.0873	0.046
	50	1.5985	1.1393	0.050
348.15	0.1	2.1830	0.9020	0.058
	10	2.0885	0.6387	0.049
	15	2.0144	0.5810	0.044
	20	2.0119	0.5133	0.041
	25	2.0260	0.5250	0.045
	30	2.0191	0.5784	0.045
	35	2.0275	0.5541	0.045
	40	1.9756	0.5551	0.042
	45	1.9671	0.5345	0.047
	50	1.9458	0.5155	0.046

^{*a*} π_2 is defined as in eq 8.

results for 1-octanol + acetophenone. With the values of ρ_0 , *C*, and *D*, the Tait equation reproduces the densities at pressures higher than 0.1 MPa to within the experimental uncertainty. The isothermal compressibility κ_T at given temperature, pressure, and composition can be calculated from its definition with the aid of the Tait equation

$$\kappa_{\rm T} = \frac{-1}{\rm V} \left(\frac{\partial V}{\partial P} \right)_{T,x} = \frac{V_{\rm o}}{V} \left(\frac{C}{D+P} \right) \tag{4}$$

where V_0 is the specific volume at 0.1 MPa. Table 1 lists the calculated isothermal compressibility at each experimental condition. It was found that the isothermal compressibility increases as the temperature is increased but decreases as the pressure is increased.

		$ ho/{ m g}{ m \cdot cm^{-3}}$			$ ho/ extrm{g} extrm{cm}^{-3}$					
P/MPa	298.15 K	318.15 K	348.15 K	298.15 K	318.15 K	348.15 K				
	W_1/W_2	$w_3 = 0.8877/0.0400/$	0.0723	$W_1/W_2/$	$w_3 = 0.8897/0.0668/$	0.0435				
	$(x_1/2)$	$x_2/x_3 = 0.168/0.312/0.$	520)	(x_1/x_2)	$x_2/x_3 = 0.168/0.520/0$.312)				
0.1	0.9844	0.9693	0.9460	0.9909	0.9753	0.9521				
10	0.9906	0.9761	0.9537	0.9969	0.9820	0.9598				
15	0.9936	0.9792	0.9573	0.9999	0.9853	0.9634				
20	0.9964	0.9823	0.9609	1.0027	0.9883	0.9669				
25	0.9992	0.9854	0.9643	1.0055	0.9914	0.9703				
30	1.0020	0.9883	0.9675	1.0082	0.9943	0.9736				
35	1.0047	0.9911	0.9707	1.0108	0.9972	0.9767				
40	1.0072	0.9939	0.9738	1.0134	0.9999	0.9798				
45	1.0098	0.9966	0.9768	1.0159	1.0027	0.9828				
50	1.0122	0.9992	0.9797	1.0184	1.0053	0.9857				
00	W1/W2	$/W_2 = 0.9540/0.0072/$	0.0388	W1/W2	$w_2 = 0.9552/0.0215/$	0 0233				
	$(x_1/2)$	$x_2/x_2 = 0.350/0.108/0.$	542)	(x_1/x_2)	$x_2/x_2 = 0.350/0.325/0$.325)				
0.1	0.9904	0.9752	0.9523	0.9939	0.9786	0.9557				
10	0.9966	0.9820	0.9600	1 0001	0.9854	0.9634				
15	0.9996	0.9852	0.9637	1.0001	0.9886	0.9671				
20	1 0025	0.0002	0.0007	1.0001	0.0000	0.9706				
25	1.0023	0.004	0.0072	1.0000	0.0018	0.9730				
20	1.0033	0.0014	0.3700	1.0007	0.0078	0.9739				
35	1.0000	0.0079	0.3733	1.0115	1 0006	0.9773				
40	1.0100	1 0000	0.3771	1.0141	1.0000	0.0835				
40	1.0152	1.0000	0.0001	1.0107	1.0054	0.9855				
45	1.0130	1.0027	0.9651	1.0195	1.0001	0.9803				
30	1.0102	1.0034	0.9000	1.0217	1.0000	0.9094				
	W1/W2	$W_3 = 0.9303/0.0339/0$	100)	W1/W2/	$W_3 = 0.9792/0.0049/$	0.0109				
0.1	0.0079	$x_2/x_3 = 0.330/0.342/0.$	100)	0.0044	$x_2/x_3 = 0.346/0.113/0$.339)				
0.1	0.9978	0.9823	0.9392	0.9944	0.9792	0.9300				
10	1.0040	0.9892	0.9009	1.0000	0.9809	0.9038				
10	1.0009	0.9925	0.9705	1.0030	0.9893	0.9075				
20	1.0098	0.9956	0.9740	1.0005	0.9924	0.9709				
25	1.0126	0.9986	0.9774	1.0093	0.9954	0.9744				
30	1.0154	1.0016	0.9807	1.0121	0.9984	0.9776				
35	1.0181	1.0044	0.9839	1.0147	1.0013	0.9809				
40	1.0207	1.0072	0.9870	1.0173	1.0041	0.9840				
45	1.0232	1.0099	0.9900	1.0198	1.0068	0.9870				
50	1.0257	1.0125	0.9929	1.0223	1.0094	0.9898				
	W_1/W_2	$W_3 = 0.9800/0.0147/$	0.0053							
	$(x_1/2)$	$x_2/x_3 = 0.548/0.339/0.$	113)							
0.1	0.9966	0.9812	0.9581							
10	1.0027	0.9881	0.9658							
15	1.0057	0.9913	0.9695							
20	1.0087	0.9945	0.9730							
25	1.0114	0.9975	0.9764							
30	1.0142	1.0005	0.9797							
35	1.0168	1.0033	0.9828							
40	1.0194	1.0061	0.9860							
45	1.0219	1.0088	0.9890							

0.9919

Table 4. *P*-*V*-*T* Properties of PPG-4000 (1) + Acetophenone (2) + 1-Octanol (3)

By definition, the volume change of mixing or excess volume ($V^{\rm E}$) can be calculated from experimental density data via

1.0244

$$V^{E} = V_{m} - \sum_{i=1}^{c} x_{i} V_{i}^{0}$$
 (5)

1.0114

with

50

$$V_{\rm m} = \sum_{i=1}^{c} x_i M_i \rho \tag{6}$$

where $V_{\rm m}$ is the molar volume of a mixture and c is the number of components. x_i , V_i^0 , and M_i are the mol fraction, molar volume, and molecular weight, respectively, for component *i*. The uncertainty of the calculated excess volumes is estimated to be within $\pm 0.02 \text{ cm}^3 \cdot \text{mol}^{-1}$. The excess volumes of 1-octanol + acetophenone are positive over the entire experimental conditions. While the excess volumes increase substantially with increasing tempera-

ture, the pressure effect is insignificant. Figure 1 shows the excess volumes at 0.1 MPa varying with composition for 1-octanol + acetophenone. The excess volumes at constant temperature and pressure were correlated with a Redlich-Kister-type equation

$$V^{E}/x_{1}x_{2} = \sum_{k=1}^{2} E_{k}(x_{1} - x_{2})^{k-1}$$
(7)

The optimial values of E_k were determined by minimization of the following objective function (π_2)

$$\pi_2 = \left[\sum_{k=1}^{n} |V_{k,\text{calc}}^E - V_{k,\text{exp}}^E|\right]/n$$
(8)

The correlated results are listed in Table 3 and represented by the dashed curves in Figure 1.

Ternary Systems. The P-V-T properties were also measured, over the same temperature and pressure ranges, for PPG-4000 with mixed solvents of 1-octanol and ac-

	$ ho/{ m g}{ m \cdot}{ m cm}^{-3}$			$ ho/{ m g}{ m \cdot}{ m cm}^{-3}$		
<i>P</i> /MPa	298.15 K	318.15 K	348.15 K	298.15 K	318.15 K	348.15 K
	$W_1/W_2/W_2/W_2/W_2/W_2/W_2/W_2/W_2/W_2/W_2$	$w_3 = 0.1773/0.7489/$	0.0738	$W_1/W_2/W_2$	$w_3 = 0.2736/0.3851/$	0.3413
	(x_1/x_2)	$x_2/x_3 = 0.200/0.600/0.$	200)	(x_1/x_2)	$x_2/x_3 = 0.200/0.200/0.$	600)
0.1	1.0868	1.0700	1.0433	1.0687	1.0510	1.0246
10	1.0913	1.0752	1.0493	1.0740	1.0570	1.0313
15	1.0936	1.0777	1.0523	1.0766	1.0598	1.0346
20	1.0959	1.0801	1.0551	1.0791	1.0625	1.0377
25	1.0981	1.0825	1.0577	1.0816	1.0651	1.0408
30	1.1002	1.0847	1.0604	1.0840	1.0678	1.0437
35	1.1023	1.0870	1.0629	1.0864	1.0704	1.0466
40	1.1043	1.0892	1.0655	1.0886	1.0728	1.0494
45	1.1063	1.0914	1.0679	1.0909	1.0753	1.0521
50	1.1083	1.0935	1.0702	1.0932	1.0777	1.0548
	W_1/W_2	$w_3 = 0.6219/0.2918/0$	0.0862	$W_1/W_2/$	$W_3 = 0.3713/0.4853/$	0.1434
	(x_1/x_2)	$x_2/x_3 = 0.600/0.200/0.$	200)	(x_1/x_2)	$x_2/x_3 = 0.350/0.325/0.$	325)
0.1	1.0989	1.0820	1.0572	1.0793	1.0622	1.0369
10	1.1035	1.0874	1.0631	1.0842	1.0678	1.0430
15	1.1058	1.0899	1.0659	1.0866	1.0703	1.0460
20	1.1081	1.0924	1.0687	1.0889	1.0729	1.0490
25	1.1103	1.0949	1.0714	1.0912	1.0755	1.0517
30	1.1125	1.0972	1.0740	1.0935	1.0779	1.0545
35	1.1146	1.0995	1.0766	1.0957	1.0803	1.0571
40	1.1167	1.1017	1.0791	1.0978	1.0826	1.0597
45	1.1188	1.1040	1.0816	1.0999	1.0849	1.0623
50	1.1209	1.1062	1.0839	1.1020	1.0872	1.0647

Table 5. P-V-T Properties of PEG-200 (1) + PEGME-350 (2) + Anisole (3)

		FO	OV EOS			Sch	otte EOS	
	P^*	T^*	V^*	$\hat{V}AAD^{a}$	P^*	T^*	V^*	$\hat{V}AAD^{a}$
compound	MPa	K	$\overline{\text{cm}^3 \cdot \text{g}^{-1}}$	%	MPa	K	$\overline{\mathrm{cm}^{3}\cdot\mathrm{g}^{-1}}$	%
1-octanol	494.9	5627	0.9947	0.05	511.1	4945	0.9794	0.04
acetophenone	627.4	5838	0.8076	0.03	649.2	5138	0.7954	0.02
anisole	640.2	5363	0.8164	0.02	651.3	4753	0.8058	0.03
PPG-4000	483.7	6227	0.8401	0.04	498.9	5543	0.8297	0.03
PEG-200	725.1	6486	0.7551	0.03	767.4	5742	0.7449	0.02
PEGME-350	686.2	6101	0.7695	0.02	702.1	5393	0.7589	0.02
100	n							

^a
$$\hat{V}AAD = \frac{100}{n} \sum_{k=1}^{n} |\hat{V}_{k,exp} - \hat{V}_{k,exp}| / \hat{V}_{k,exp}$$

Table 7.	Results of S	pecific-Volume	Correlation wit	n the Ea	juations of	State for P	olymer Solutions
							./

	FOV	/ EOS	Schotte EOS		
mixture $(1) + (2)$	Δ_{12}	ŶAADª/%	Δ_{12}	$\hat{V} AAD^{a}/\%$	
1-octanol + acetophenone	0.0162	0.06	0.0152	0.06	
PPG-4000 + 1-octanol ^b	0.0002	0.06	-0.0004	0.06	
$PPG-4000 + acetophenone^{b}$	-0.0430	0.06	-0.0439	0.05	
$PEG-200 + anisole^{c}$	-0.0299	0.15	-0.0317	0.14	
PEGME-350 $+$ anisole ^c	-0.1294	0.22	-0.1290	0.21	
$PEG-200 + PEGME-350^d$	-0.0020	0.02	-0.0012	0.01	

^{*a*} $\hat{V}AAD = \frac{100}{n} \sum_{k=1}^{n} |\hat{V}_{k\text{-calc}} - \hat{V}_{k\text{-exp}}|/\hat{V}_{k\text{-exp}}|^{b}$ Data taken from Lin et al.¹³ ^{*c*} Data taken from Lee et al.¹² ^{*d*} Data taken from Lee et al.¹²

etophenone and for the polymer blends of PEG-200/PEGME-350 with anisole. The experimental densities are tabulated in Tables 4 and 5 for PPG + 1-octanol + acetophenone and PEG + PEGME + anisole, respectively. These volumetric data form a basis to test the capability of polymer equations of state for multicomponent polymer solutions.

P-*V*-*T* Property Calculations with Equations of State

Two polymer EOSs, the FOV¹⁸ and the Schotte,¹⁹ were tested in the present study with the experimental volumetric properties. The definitions of these two EOSs are as follows.

The FOV EOS

$$\frac{\overline{PV}}{\overline{T}} = \frac{\overline{V}^{1/3}}{\overline{V}^{1/3} - 1} - \frac{1}{\overline{TV}}$$
(9)

The Schotte EOS

$$\frac{\overline{PV}}{\overline{T}} = \frac{RT^*}{P^*MV^*} \left(1 - \frac{1}{\overline{V}^{1/3}}\right) + \frac{1}{\overline{V}^{1/3} - 1} - \frac{1}{\overline{TV}}$$
(10)

where *M* is the molecular weight, $\overline{P} = P/P^*$, $\overline{V} = V/V^*$, and $\overline{T} = T/T^*$. The model parameters P^* , V^* , and T^* are characteristic pressure, specific volume, and temperature,

Table 8.	Predicted	Results	from t	the FOV	and	the	Schotte	EOSs	for t	he 7	Fernary	/ Poly	ymer	Solutions	5

0.09

PEG-4000 (1) +	acetophenone (2) + 1-	octanol (3)	PEG-200 (1) + PEGME -350 (2) + anisole (3)					
	FOV	Schotte		FOV	Schotte			
$x_1/x_2/x_3$	ŶAADª/%	ŶAADª/%	$x_1/x_2/x_3$	ŶAADª/%	ŶAADª/%			
0.168/0.312/0.520	0.06	0.05	0.2/0.6/0.2	0.12	0.10			
0.168/0.520/0.312	0.06	0.06	0.2/0.2/0.6	0.13	0.12			
0.350/0.108/0.542	0.06	0.04	0.6/0.2/0.2	0.12	0.11			
0.350/0.325/0.325	0.05	0.04	0.35/0.325/0.325	0.12	0.13			
0.350/0.542/0.108	0.06	0.05						
0.548/0.113/0.339	0.06	0.05						

$${}^{a} \hat{V}AAD = \frac{100}{n} \sum_{k=1}^{n} |\hat{V}_{k,exp} - \hat{V}_{k,exp}| / \hat{V}_{k,exp}$$

0.548/0.339/0.113

respectively, which were determined by fitting the EOS to experimental P-V-T data for each constituent. The characteristic parameters of 1-octanol, acetophenone, anisole, PPG-4000, PEG-200, and PEGME-350 are given in Table 6. The mixing rules proposed by Schotte¹⁹ were used in this study

0.09

$$V_{\rm m}^{*} = \left[M_{\rm m} \left(\sum_{i=1}^{c} \frac{\Psi_{i}}{M_{i} V_{i}^{*}} \right)^{-1} \right]$$
(11)

$$T_{m}^{*} = \frac{P_{m}^{*}}{\sum_{i=1}^{c} \frac{\Psi_{i} P_{i}^{*}}{T_{i}^{*}}}$$
(12)

and

$$P_{m}^{*} = \sum_{i=1}^{c} \sum_{j=1}^{c} \Psi_{i} \Psi_{j} P_{jj}^{*}$$
(13)

with

$$\Psi_i = \frac{w_i V_i^*}{\sum_{i=1}^c w_i V_i^*} \tag{14}$$

and

$$P_{ij}^{*} = (1 - \Delta_{ij})(P_{i}^{*}P_{j}^{*})^{0.5}$$
(15)

where Ψ_i , M_i , and w_i refer to the segment volume fraction, the number average molecular weight, and the weight fraction of component *i*, respectively. The parameter Δ_{ij} in eq 15 is a binary interaction constant for the i-j pair. Its value was determined from the P-V-T data of each binary system by minimization of the absolute average deviation (AAD) of the calculated specific volume. Table 7 reports the correlated results. Both the FOV and the Schotte EOS calculate quantitatively the specific volumes for the constituent binaries. With these optimized Δ_{ij} values, the FOV and the Schotte EOSs were employed to predict the volumetric properties for mixtures of PPG with mixed solvents of 1-octanol + acetophenone and the polymer blends of PEG/PEGME with anisole. The predicted results are presented in Table 8. The AADs of predicted specific volumes are better than 0.13% from both EOSs, and these two EOSs are almost equally well for the investigated

Figure 2. Comparison of predicted results with experimental values for PPG-4000 (1) + acetophenone (2) + 1-octanol (3) of $x_1/x_2 = 0.35/0.325$ at \diamond , 298.15 K; \Box , 318.15 K, \triangle , 348.15 K; solid line, calculated from the FOV EOS; dashed line, calculated from the Schotte EOS.

Figure 3. Comparison of predicted results with experimental values for PEG-200 (1) + PEGME-350 (2) + anisole (3) at 298.15 K: \diamond , $x_1/x_2 = 0.2/0.6$; \Box , $x_1/x_2 = 0.2/0.2$; \triangle , $x_1/x_2 = 0.6/0.2$; +, $x_1/x_2 = 0.35/0.325$; solid line, calculated from the FOV EOS; dashed line, calculated from the Schotte EOS.

ternary systems. Figures 2 and 3 compare the predicted densities with the experimental values for PPG + 1-octanol + acetophenone and PEG + PEGME + anisole, respectively. The agreement is satisfactory.

Conclusions

The properties of P-V-T have been measured for 1-octanol + acetophenone, PPG-4000 + 1-octanol + acetophenone, and PEG-200 + PEGME-350 + anisole at temperatures from 298.15 K to 348.15 K and pressures up to 50 MPa. The Tait equation represented accurately the pressure effect on liquid density for 1-octanol + acetophenone. The excess volumes are positive for 1-octanol + acetophenone over the entire composition range. It was also found that the excess volumes increased with an increase of temperature but were insensitive to pressure. Both the FOV and the Schotte EOSs correlated accurately the P-V-T data of the constituent binaries. Moreover, these two polymer EOSs predicted the specific volumes to an AAD better than 0.13% for the polymer solutions of PPG with the mixed solvent of 1-octanol/acetophenon and the polymer blends of PEG/PEGME with anisole, over the entire experimental conditions.

Literature Cited

- Zoller, P.; Walsh, D. J. Standard Pressure-Volume-Temperature Data for Polymers; Technomic Pub. Co.: Lancaster, PA, 1995.
- (2) Muller, E. A.; Rasmussen, P. Densities and Excess Volumes in Aqueous Poly(ethylene glycol) Solutions. J. Chem. Eng. Data 1991, 36, 214–217.
- (3) Sandell, L. S.; Goring, D. A. I. Correlation between the Temperature Dependence of Apparent Specific Volume and the Conformation of Oligomeric Propylene Glycols in Aqueous Solution. J. Polym. Sci., Part A: Polym. Chem. 1971, 9, 115–126.
- (4) Compostizo, A.; Cancho, S. M.; Crespo, A.; Rubio, R. G. Polymer Solutions with Specific Interactions: Equation of State for Poly-(4-Hydroxystyrene) + Acetone. *Macromolecules* 1994, 27, 3478– 3482.
- (5) Compositizo, A.; Cancho, S. M.; Rubio, R. G.; Colin, A. C. Equation of State of Hydrogen-Bonded Polymer Solutions: Poly(4-Hydroxystyrene) + Ethanol and + Tetrahydrofuran. J. Phys. Chem. 1995, 99, 10261–10266.
- (6) Colin, A. C.; Cancho, S. M.; Rubio, R. G.; Compostizo, A. Equation of State of Hydrogen-Bonded Polymer Solutions. Poly(Propylene Glycol) + n-Hexane and Poly(Propylene Glycol) + Ethanol. *Macromolecules* **1997**, *30*, 3389–3394.
- (7) Colin, A. C.; Rubio, R. G.; Compostizo, A. Equation of State of a Blend of Water-Soluble Polymers: Poly(Propylene Glycol) + Poly-(Ethylene Glycol). *Polymer* **2000**, *41*, 7407–7414.

- (8) Panayiotou, C.; Sanchez, I. C. Statistical Thermodynamics of Associated Polymer-Solutions. *Macromolecules* 1991, 24, 6231– 6237.
- (9) Lee, M. J.; Lo, C. K.; Lin, H. M. PVT Measurements for Mixtures of Poly(Ethylene Glycol Methyl Ether) with Poly(Ethylene Glycol) from 298 K to 338 K and Pressures up to 30 MPa. *J. Chem. Eng. Data* **1998**, *43*, 1076–1081.
- (10) Chang, J. S.; Lee, M. J.; Lin, H. M. PVT of Fractionation Cuts of Poly(Ethylene Glycol) and Poly(Propylene Glycol) from 298 K to 338 K and Pressures up to 30 MPa. *J. Chem. Eng. Jpn.* **1999**, *32*, 611–618.
- (11) Lee, M. J.; Lo, C. K.; Lin, H. M. PVT Measurements for Mixtures of 1-Octanol with Oligomeric Poly(Ethylene Glycol) from 298 K to 338 K and Pressures up to 30 MPa. *J. Chem. Eng. Data* 1999, 44, 1379–1385.
- (12) Lee, M. J.; Tuan, Y. C.; Lin, H. M. Pressure, Volume, and Temperature for Mixtures of Poly(Ethylene Glycol Methyl Ether)-350 + Anisole and Poly(Ethylene Glycol)-200 + Anisole from 298 K to 338 K and Pressures up to 50 MPa. *J. Chem. Eng. Data* 2000, 45, 1100–1104.
- (13) Lin, H. M.; Hsu, T. S.; Lee, M. J. Pressure–Volume–Temperature Properties for Binary Polymer Solutions of Poly(Propylene Glycol) with 1-Octanol and Acetophenone. *Macromolecules* 2001, 34, 6297–6303.
- (14) Lee, M. J.; Tuan, Y. C.; Lin, H. M. Pressure-Volume-Temperature Properties for Binary and Ternary Polymer Solutions of Poly(Ethylene Glycol), Poly(Propylene Glycol), and Poly(Ethylene Glycol Methyl Ether) with Anisole. *Polymer* 2003, 44, 3891-3900.
 (15) Haar, L.; Gallagher, J. S.; Kell, G. S. *NBS/NRC Steam Tables:*
- (15) Haar, L.; Gallagher, J. S.; Kell, G. S. NBS/NRC Steam Tables: Thermodynamic and Transport Properties and Computer Programs for Vapor and Liquid States of Water in SI Units; Hemisphere: New York, 1984.
- (16) Vargaftik, N. B. Tables on the Thermodynamical Properties of Liquids and Gases, 2nd ed.; Hemisphere: Washington, DC, 1975.
- (17) Ashcroft, S. J.; Booker, D. R.; Turner, J. C. R. Density Measurement by Oscillating Tube–Effects of Viscosity, Temperature, Calibration and Signal Processing. *J. Chem. Soc., Faraday Trans.* **1990**, *86*, 145–149.
- (18) Flory, P. J.; Orwoll, R. A.; Vrij, A. Statistical Thermodynamics of Chain Molecule Liquids. I. An Equation of State for Normal Paraffin Hydrocarbons. J. Am. Chem. Soc. 1964, 86, 3507–3514.
- (19) Schotte, W. Vapor-Liquid Equilibrium Calculations for Polymer Solutions. Ind. Eng. Chem. Process Des. Dev. 1982, 21, 289–296.

Received for review February 13, 2004. Accepted April 20, 2004. The financial support from the National Science Council, ROC, through Grant Nos. 89-2214-E011-045 and 90-2214-E011-019, is gratefully acknowledged.

JE049930E