# Study of the Phase Equilibrium and Solution Properties of the Quinary System Na<sup>+</sup> + K<sup>+</sup> + Cl<sup>-</sup> + CO<sub>3</sub><sup>2-</sup> + B<sub>4</sub>O<sub>7</sub><sup>2-</sup> + H<sub>2</sub>O at T = 298.15 K

# Ying Zeng,\* Hongmei Yang, Huian Yin, and Minglin Tang

Department of Chemical Engineering, College of Materials and Biology Engineering, Chengdu University of Technology, Chengdu 610059, PRC

The phase equilibria of the quinary system  $Na^+ + K^+ + Cl^- + CO_3^{2-} + B_4O_7^{2-} + H_2O$  was studied at T = 298.15 K by the isothermal dissolution equilibrium method. The solubility and physicochemical properties (density, viscosity, refractive index, conductivity, and pH value) of the equilibrium solutions were determined. A phase diagram and physicochemical properties – composition diagrams were plotted on the basis of the solubility data. The isothermal solubility diagram of the quinary system (saturated with KCl) consists of 14 univariant curves, 7 invariant points, and 8 crystallization regions corresponding to NaCl, Na<sub>2</sub>B<sub>4</sub>O<sub>7</sub>·10H<sub>2</sub>O, Na<sub>2</sub>CO<sub>3</sub>·10H<sub>2</sub>O, Na<sub>2</sub>CO<sub>3</sub>·7H<sub>2</sub>O, Na<sub>2</sub>CO<sub>3</sub>·H<sub>2</sub>O, NaKCO<sub>3</sub>·6H<sub>2</sub>O, and K<sub>2</sub>CO<sub>3</sub>·1.5H<sub>2</sub>O, respectively. Pitzer's theory was adapted for theoretically describing relations of the high-concentration multicomponent systems in the study. Using Harvie's chemical equations, which are based on Pitzer's theory, the solubility of the quinary system at T = 298.15 K was calculated. The calculated values agree with the measured ones, with a deviation of less than 9.59%.

# 1. Introduction

The Zabuye Saline Lake, Tibet, PRC, is unrivaled in the world for its high concentration of chloride, sulfate, carbonate, and borate of lithium, sodium, and potassium, especially for the very high concentration of lithium, potassium, and boron.<sup>1</sup> The main components of its brines can be described with the Li<sup>+</sup> + Na<sup>+</sup> + K<sup>+</sup> + Cl<sup>-</sup> + SO<sub>4</sub><sup>2-</sup> + CO<sub>3</sub><sup>2-</sup> + borate + H<sub>2</sub>O system.

In aqueous solutions containing boron, the dissolving behavior of boron is very complicated. The various species of boron in aqueous solution depend on the pH value, the total concentration of boron and salts, and the kinds of coexistent salts, in which the total boron concentration is the most important.

Until now, the existing research has demonstrated that boron exists in aqueous solution in the forms of planar monomeric boric acid B(OH)<sub>3</sub>, the tetrahedral orthoborate ion B(OH)<sub>4</sub><sup>-</sup>,<sup>2,3</sup> and several different polyborate species.<sup>2,4,5</sup> However, at high pH and total boron concentration, the main species of borate in aqueous solutions are polytriborate B<sub>3</sub>O<sub>3</sub>(OH)<sub>4</sub><sup>-</sup> and polytetraborate B<sub>4</sub>O<sub>5</sub>(OH)<sub>4</sub><sup>2-,6,7</sup> Until now, there has been no good experimental method to determine the accurate concentration distribution among polyborate species except for theoretical calculation;<sup>6</sup> therefore, B<sub>4</sub>O<sub>7</sub><sup>2-</sup> is often used to denote the traditional stoichiometric expression for various boric species in solution. In this way, the system mentioned above can be approximately simplified to the Li<sup>+</sup> + Na<sup>+</sup> + K<sup>+</sup> + Cl<sup>-</sup> + SO<sub>4</sub><sup>2-</sup> + CO<sub>3</sub><sup>2-</sup> + B<sub>4</sub>O<sub>7</sub><sup>2-</sup> + H<sub>2</sub>O system.

In this paper, the phase equilibrium of the quinary subsystem  $Na^+ + K^+ + Cl^- + CO_3^{2-} + B_4O_7^{2-} + H_2O$  of this complex system was studied at T = 298.15 K by the isothermal dissolution equilibrium method. The solubility and physicochemical properties (density, viscosity, refrac-

tive index, conductivity, and pH value) of the equilibrium solutions were determined at T = 298.15 K. Also, a study on the prediction of the solubility was done.

# 2. Experiments

**2.1.** *Reagents.* Deionized water (pH ~6.6, conductivity less than  $1.5 \times 10^{-4}$  S·m<sup>-1</sup>) and reagents NaCl, KCl, Na<sub>2</sub>CO<sub>3</sub>, K<sub>2</sub>CO<sub>3</sub>, Na<sub>2</sub>B<sub>4</sub>O<sub>7</sub>·10H<sub>2</sub>O, and K<sub>2</sub>B<sub>4</sub>O<sub>7</sub>·5H<sub>2</sub>O were used. All reagents were analytical reagent grade. More attention should be given to sodium and potassium carbonate; sodium and potassium bicarbonate should be removed from them at about T = 470 K before being used.

2.2. Experimental Method. The isothermal dissolution equilibria method was used. The composition of the invariant points of the quaternary subsystems (saturated with three kinds salts) is taken as the composition of the initial samples. The desired samples were obtained by adding the fourth salt of different quantities to the initial samples. Then, all of the samples were transferred into sealed hardplastic bottles, which were put into a water bath constanttemperature oscillator  $(\pm 0.1 \text{ K}, \text{ model HZS-H}, \text{ made by})$ Haerbin Donglian Electronic Technology Corporation, China) kept at a constant temperature of  $T = (298 \pm 0.1)$  K and a constant oscillation frequency (130 rpm) to accelerate equilibration. The liquid phase of each sample was analyzed periodically, usually within (2 to 3) days after 1 month. When the composition of the liquid phase remained constant for a long period of time, the system was assumed to be at equilibrium. Generally, it took about (45 to 50) days to reach equilibrium. The equilibrium solid phase was identified by X-ray diffraction and micropolariscopy.

**2.3.** Analytical Method.<sup>8</sup> The concentration of Cl<sup>-</sup> ions was measured by AgNO<sub>3</sub> precipitation titration. The concentration of  $CO_3^{2^-}$  ions was measured by acid-base titration. The concentration of  $B_4O_7^{2^-}$  ions was measured by basic titration with the existence of mannitol. The concentration of K<sup>+</sup> ions was measured by sodium tetra-

<sup>\*</sup> Corresponding author. E-mail: zengy@cdut.edu.cn. Tel: +86-28-84079016. Fax: +86-28-84079074.

Table 1. Experimental Solubility Values of the Quinary System  $Na^+ + K^+ + Cl^- + CO_3^{2-} + B_4O_7^{2-} + H_2O$  at T = 298.15 K (Saturated with KCl)<sup>a</sup>

|             |                                           | composition of liquid phase, $(w(B) \times 10^2)$ |                                 |                                             |                           |                                             |                | ecke index,             | <i>n</i> (B)     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------|-------------------------------------------|---------------------------------------------------|---------------------------------|---------------------------------------------|---------------------------|---------------------------------------------|----------------|-------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| no.         | $w(Na_2^{2+})$                            | $w(\mathbf{K}_2^{2+})$                            | $w(\operatorname{Cl}_2{}^{2-})$ | $w(\mathrm{CO}_3{}^{2-})$                   | $w(\mathrm{B_4O_7^{2-}})$ | $w(H_2O)$                                   | $n(Na_2^{2+})$ | $n(\mathrm{CO}_3^{2-})$ | $n(B_4O_7^{2-})$ | equilibrium solid phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| A<br>B      | $\begin{array}{c} 10.3\\ 8.54\end{array}$ | 4.18<br>7.05                                      | $9.77 \\ 4.04$                  | $\begin{array}{c} 16.7 \\ 26.3 \end{array}$ | 0.00<br>0.00              | $\begin{array}{c} 59.1 \\ 54.1 \end{array}$ | 61.6<br>45.9   | $38.4 \\ 54.1$          | 0.00<br>0.00     | $\frac{\text{KCl} + \text{NaCl} + \text{Na}_2\text{CO}_3 \cdot 7\text{H}_2\text{O}}{\text{KCl} + \text{Na}_2\text{CO}_3 \cdot 7\text{H}_2\text{O}} + \frac{\text{Na}_2\text{CO}_3 \cdot 7\text{H}_2\text{O}}{\text{Na}_2\text{CO}_3 \cdot \text{H}_2\text{O}} + \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| С           | 6.71                                      | 10.7                                              | 2.04                            | 30.5                                        | 0.00                      | 50.0                                        | 36.5           | 63.5                    | 0.00             | $KCl + Na_2CO_3 H_2O + NaKCO_3 H_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| D           | 1.59                                      | 22.4                                              | 0.320                           | 37.9                                        | 0.00                      | 37.8                                        | 9.84           | 90.2                    | 0.00             | $\frac{\text{NaRCO}_{3} \cdot 6\text{H}_{2}\text{O}}{\text{KCl} + \text{NaRCO}_{3} \cdot 6\text{H}_{2}\text{O} + \frac{1}{5}\text{H}_{2}\text{O} + \frac{1}{5}\text{H}_{2$                                                                                                                                                                                                                                                                     |
| Е           | 0.00                                      | 30.9                                              | 2.02                            | 21.6                                        | 1.15                      | 44.4                                        | 0.00           | 98.0                    | 2.01             | $K_2CO_3^{-1.5H}_{2O}$<br>$KCl + K_2B_4O_7^{-4}H_2O + K_2O_{-1.5H}^{-1.5H}_{-0.5H}O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| F           | 5.71                                      | 9.62                                              | 17.6                            | 0.00                                        | 1.52                      | 66.6                                        | 96.2           | 0.00                    | 3.80             | $K_2 CO_3^{-1.5H_2O}$<br>$KCl + NaCl + Na_2B_4O_7^{-10H_2O}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| G           | 4.71                                      | 9.60                                              | 14.4                            | 0.00                                        | 3.17                      | 68.0                                        | 83.4           | 0.00                    | 16.6             | $\frac{1}{10} + \frac{1}{10} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1           | 6 23                                      | 3 28                                              | 8 58                            | 2.50                                        | 2 29                      | 77 1                                        | 70.6           | 217                     | 7 69             | $K_2D_4O_7 \cdot 4H_2O$<br>$KCl + NaCl + Na_2B_4O_7 \cdot 10H_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2           | 8.99                                      | 4.96                                              | 12.2                            | 3.89                                        | 3.35                      | 66.6                                        | 69.4           | 23.0                    | 7.65             | $KCl + NaCl + Na_2B_4O_7 \cdot 10H_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3           | 9.95                                      | 1.33                                              | 10.6                            | 4.25                                        | 2.11                      | 71.8                                        | 71.9           | 23.5                    | 4.52             | $KCl + NaCl + Na_2B_4O_7 \cdot 10H_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4           | 10.5                                      | 2.84                                              | 11.9                            | 5.03                                        | 2.18                      | 67.5                                        | 70.0           | 25.7                    | 4.30             | $\mathrm{KCl} + \mathrm{NaCl} + \mathrm{Na}_{2}\mathrm{B}_{4}\mathrm{O}_{7} \cdot 10\mathrm{H}_{2}\mathrm{O}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $E_1$       | 9.85                                      | 4.52                                              | 12.4                            | 4.97                                        | 2.34                      | 66.0                                        | 68.6           | 26.5                    | 4.83             | $ \begin{array}{l} KCl + NaCl + Na_2B_4O_7 {\boldsymbol \cdot} 10H_2O + \\ Na_2CO_3 {\boldsymbol \cdot} 10H_2O \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <b>5</b>    | 9.20                                      | 3.34                                              | 10.9                            | 4.66                                        | 1.77                      | 70.1                                        | 69.2           | 26.9                    | 3.94             | $\mathrm{KCl} + \mathrm{NaCl} + \mathrm{Na_2CO_3 \cdot 10H_2O}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6           | 9.73                                      | 3.15                                              | 11.4                            | 4.86                                        | 1.57                      | 69.3                                        | 69.9           | 26.8                    | 3.34             | $\mathrm{KCl} + \mathrm{NaCl} + \mathrm{Na_2CO_3} \cdot 10\mathrm{H_2O}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 7           | 10.9                                      | 3.01                                              | 12.2                            | 5.80                                        | 1.25                      | 66.8                                        | 69.4           | 28.2                    | 2.35             | $\text{KCl} + \text{NaCl} + \text{Na}_2\text{CO}_3 \cdot 10\text{H}_2\text{O}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $E_2$       | 10.8                                      | 4.89                                              | 11.7                            | 7.10                                        | 2.28                      | 63.3                                        | 63.9           | 32.2                    | 3.99             | $ \begin{array}{l} \mathrm{KCl} + \mathrm{NaCl} + \mathrm{Na_2CO_3} \cdot 10\mathrm{H_2O} + \\ \mathrm{Na_2CO_3} \cdot 7\mathrm{H_2O} \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 8           | 8.52                                      | 5.44                                              | 11.7                            | 4.51                                        | 2.32                      | 67.5                                        | 67.3           | 27.3                    | 5.43             | $\mathrm{KCl} + \mathrm{Na}_{2}\mathrm{CO}_{3}$ ·10 $\mathrm{H}_{2}\mathrm{O} + \mathrm{Na}_{2}\mathrm{B}_{4}\mathrm{O}_{7}$ ·10 $\mathrm{H}_{2}\mathrm{O}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $E_3$       | 7.41                                      | 5.19                                              | 9.38                            | 4.72                                        | 2.57                      | 70.7                                        | 62.9           | 30.7                    | 6.46             | $\frac{\text{KCl} + \text{Na}_2\text{CO}_3 \cdot 10\text{H}_2\text{O} + \text{Na}_2\text{B}_4\text{O}_7 \cdot 10\text{H}_2\text{O} + \text{Na}_2\text{CO}_3 \cdot 7\text{H}_2\text{O}}{10000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 9           | 5.55                                      | 10.5                                              | 7.61                            | 7.86                                        | 2.51                      | 66.0                                        | 45.1           | 48.9                    | 6.04             | $\frac{\text{KCl} + \text{Na}_2\text{B}_4\text{O}_7 \cdot 10\text{H}_2\text{O} + \text{Na}_2\text{CO}_3 \cdot \text{H}_2\text{O}}{\text{Na}_2\text{CO}_3 \cdot \text{H}_2\text{O}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 10          | 5.72                                      | 10.5                                              | 7.96                            | 7.84                                        | 2.51                      | 65.5                                        | 45.9           | 48.2                    | 5.96             | $KCl + Na_2B_4O_7 \cdot 10H_2O + Na_2CO_3 \cdot H_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ${\rm E}_4$ | 3.66                                      | 23.0                                              | 0.770                           | 4.75                                        | 1.03                      | 66.8                                        | 48.1           | 47.9                    | 4.01             | $\frac{\text{KCl} + \text{Na}_2\text{B}_4\text{O}_7 \cdot 10\text{H}_2\text{O} + \text{Na}_2\text{CO}_3 \cdot \text{H}_2\text{O} + \text{Na}_2\text{CO}_3 \cdot 7\text{H}_2\text{O}}{10000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 11          | 1.78                                      | 9.58                                              | 8.05                            | 1.13                                        | 4.48                      | 75.0                                        | 44.8           | 21.8                    | 33.4             | $\frac{\text{KCl} + \text{Na}_2\text{B}_4\text{O}_7 \cdot 10\text{H}_2\text{O} + \text{K}_2\text{B}_4\text{O}_7 \cdot 4\text{H}_2\text{O} + \text{K}_2\text{O} + \text{K}_2\text{O}_7 \cdot 4\text{H}_2\text{O} + \text{K}_2\text{O}_7 \cdot 4\text{H}_2\text{O} + \text{K}_2\text{O}_7 \cdot 4\text{H}_2\text{O} + \text{K}_2\text{O} + \text{K}_2\text{O}_7 \cdot 4\text{H}_2\text{O} + \text{K}_2\text{O}_7 \cdot 4\text{H}_2\text{O} + \text{K}_2\text{O}_7 \cdot 4\text{H}_2\text{O} + \text{K}_2\text{O} + \text{K}_2\text{O}_7 \cdot 4\text{H}_2\text{O} + \text{K}_2\text{O}_7 \cdot 4\text{H}_2\text{O} + \text{K}_2\text{O} + \text{K}_2\text{O}_7 \cdot 4\text{H}_2\text{O} + \text{K}_2\text{O}_7 \cdot 4\text{H}_2\text{O} + \text{K}_2\text{O} + \text{K}_2\text{O}_7 \cdot 4\text{H}_2\text{O} + \text{K}_2\text{O} + \text{K}_2\text{O}_7 \cdot 4\text{H}_2\text{O} + \text{K}_2\text{O}_7 \cdot 4\text{H}_2\text{O} + \text{K}_2\text{O} + \text{K}_2\text{O}_7 \cdot 4\text{H}_2\text{O} + \text{K}_2\text{O} + \text{K}_2\text{O}$ |
| $E_5$       | 5.13                                      | 11.2                                              | 7.84                            | 7.61                                        | 2.66                      | 65.6                                        | 43.6           | 49.6                    | 6.71             | $ \begin{array}{l} \tilde{\mathrm{KCl}} + \mathrm{Na}_{2}\tilde{\mathrm{B}}_{4}\mathrm{O}_{7}\cdot10\mathrm{H}_{2}\mathrm{O} + \\ \mathrm{K}_{2}\mathrm{B}_{4}\mathrm{O}_{7}\cdot4\mathrm{H}_{2}\mathrm{O} + \mathrm{Na}_{2}\mathrm{CO}_{3}\cdot7\mathrm{H}_{2}\mathrm{O} \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 12          | 5.45                                      | 7.69                                              | 4.13                            | 8.46                                        | 2.75                      | 71.5                                        | 42.8           | 50.9                    | 6.39             | $\frac{\text{KCl} + \text{K}_2\text{B}_4\text{O}_7 \cdot 4\text{H}_2\text{O} + \text{N}_2\text{O}_3 \cdot \text{H}_2\text{O}}{\text{N}_2\text{O}_3 \cdot \text{H}_2\text{O}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 13          | 5.21                                      | 10.8                                              | 6.81                            | 8.45                                        | 2.25                      | 66.5                                        | 42.2           | 52.4                    | 5.40             | $\frac{\text{KCl} + \text{K}_2\text{B}_4\text{O}_7 \cdot 4\text{H}_2\text{O} + \text{N}a_2\text{CO}_3 \cdot \text{H}_2\text{O}}{\text{N}a_2\text{O}_3 \cdot \text{H}_2\text{O}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 14          | 5.95                                      | 13.8                                              | 4.63                            | 13.3                                        | 2.30                      | 77.9                                        | 35.4           | 60.6                    | 4.05             | $\begin{array}{l} \mathrm{KCl} + \mathrm{K_2B_4O_7 \cdot 4H_2O} + \\ \mathrm{Na_2CO_3 \cdot H_2O} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ${\rm E}_6$ | 3.33                                      | 16.7                                              | 0.710                           | 16.1                                        | 1.08                      | 62.1                                        | 20.8           | 77.2                    | 2.00             | $\begin{array}{l} \mathrm{KCl} + \mathrm{K_2B_4O_7 \cdot 4H_2O} + \\ \mathrm{Na_2CO_3 \cdot H_2O} + \mathrm{NaKCO_3 \cdot 6H_2O} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 15          | 3.54                                      | 21.8                                              | 1.14                            | 19.8                                        | 1.41                      | 52.3                                        | 18.5           | 79.3                    | 2.18             | $\begin{array}{l} \mathrm{KCl} + \mathrm{K_2B_4O_7 \cdot 4H_2O} + \\ \mathrm{NaKCO_3 \cdot 6H_2O} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 16          | 2.80                                      | 21.5                                              | 0.950                           | 18.9                                        | 1.37                      | 54.5                                        | 15.9           | 81.8                    | 2.30             | $\begin{array}{l} \mathrm{KCl} + \mathrm{K_2B_4O_7 \cdot 4H_2O} + \\ \mathrm{NaKCO_3 \cdot 6H_2O} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 17          | 2.42                                      | 21.5                                              | 0.910                           | 18.3                                        | 1.53                      | 55.3                                        | 14.3           | 83.0                    | 2.68             | $\begin{array}{l} \mathrm{KCl} + \mathrm{K_2B_4O_7 \cdot 4H_2O} + \\ \mathrm{NaKCO_3 \cdot 6H_2O} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 18          | 2.91                                      | 25.9                                              | 0.670                           | 22.8                                        | 0.760                     | 47.0                                        | 14.1           | 84.8                    | 1.09             | $\begin{array}{l} \mathrm{KCl} + \mathrm{K_{2}B_{4}O_{7} \cdot 4H_{2}O} + \\ \mathrm{NaKCO_{3} \cdot 6H_{2}O} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 19          | 1.51                                      | 24.6                                              | 0.650                           | 19.9                                        | 1.10                      | 52.2                                        | 8.84           | 89.3                    | 1.91             | $\begin{array}{l} \mathrm{KCl} + \mathrm{K_2B_4O_7 {\color{red}{\cdot}} 4H_2O} + \\ \mathrm{NaKCO_3 {\color{red}{\cdot}} 6H_2O} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 20          | 1.40                                      | 26.0                                              | 0.920                           | 20.8                                        | 0.680                     | 50.2                                        | 7.99           | 90.9                    | 1.15             | $\begin{array}{l} \mathrm{KCl} + \mathrm{K_2B_4O_7 \cdot 4H_2O} + \\ \mathrm{NaKCO_3 \cdot 6H_2O} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $E_7$       | 1.05                                      | 26.1                                              | 0.720                           | 16.5                                        | 0.510                     | 55.2                                        | 7.60           | 91.3                    | 1.09             | $\begin{array}{l} KCl+K_{2}B_{4}O_{7}\textbf{\cdot} 4H_{2}O+\\ NaKCO_{3}\textbf{\cdot} 6H_{2}O+K_{2}CO_{3}\textbf{\cdot} 1.5H_{2}O \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 21          | 1.09                                      | 26.3                                              | 0.710                           | 20.8                                        | 0.700                     | 50.4                                        | 6.34           | 92.5                    | 1.21             | $\begin{array}{l} \mathrm{KCl} + \mathrm{NaKCO_3}\textbf{\cdot}\mathbf{6H_2O} + \\ \mathrm{K_2CO_3}\textbf{\cdot}\mathbf{1.5H_2O} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 22          | 0.190                                     | 23.6                                              | 1.10                            | 19.2                                        | 1.05                      | 54.8                                        | 1.25           | 96.7                    | 2.04             | $\begin{array}{l} \mathrm{KCl} + \mathrm{NaKCO_3}\textbf{\cdot} \mathbf{6H_2O} + \\ \mathrm{K_2CO_3}\textbf{\cdot} \mathbf{1.5H_2O} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 23          | 0.180                                     | 26.2                                              | 0.950                           | 19.5                                        | 1.03                      | 51.7                                        | 1.17           | 96.9                    | 1.98             | KCl + NaKCO <sub>3</sub> •6H <sub>2</sub> O +<br>K <sub>2</sub> CO <sub>3</sub> •1.5H <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

<sup>*a*</sup> Note:  $w(B) = mass fraction; n(Na_2^{2+}) + n(CO_3^{2-}) + n(B_4O_7^{2-}) = 100 mol.$ 

phenylborated-hexadecyltrimethylammonium bromide titration. The concentration of Na<sup>+</sup> ions was measured by atomic absorption spectroscopy (AAS) and evaluated according to ion balance. The accuracy of the measurement was better than 1%. 2.4. Determination Methods of Physicochemical Properties. The densities of the equilibrium solution were measured by a specific gravity bottle method with a correction for the floating force of air. The measured values are accurate to  $\pm 0.0001 \text{ g} \cdot \text{cm}^{-1}$ . Viscosities were measured



Figure 1. Isothermal diagram of the Na<sup>+</sup> + K<sup>+</sup> + Cl<sup>-</sup> + CO<sub>3</sub><sup>2-</sup> +  $B_4O_7^{2-}$  +  $H_2O$  quinary system at 298.15 K. Solid line, experimental values; dotted line, calculated values (saturated with KCl).

using a capillary viscosimeter (size 75, supplied by Shanghai Grass Instrument Factory). The measured viscosity values are accurate to  $\pm 0.0001$  mPa·s. Refractive indices were measured using a thermostatically controlled Abbe refractometer (supplied by Beijing Science Instrument Factory). A minimum of three independent readings were taken for each composition, and their average value is used in all of the calculations. The measured values are accurate to  $\pm 0.0001$  units. Conductivities were measured to an accuracy of  $\pm 0.015$  S·m<sup>-1</sup> using a DDS-11A conductometer (supplied by the Second Analytical Instrument Factory, China). The pH values were measured using a numerical acidometer (PHS-3C, supplied by Jiangshu Electronic-Analytical Instrument Factory, China). The results of pH values are accurate to  $\pm 0.01$  units.

### **3. Experimental Results**

The experimental solubility data of equilibrium solutions of the quinary system Na<sup>+</sup> + K<sup>+</sup> + Cl<sup>-</sup> + CO<sub>3</sub><sup>2-</sup> + B<sub>4</sub>O<sub>7</sub><sup>2-</sup> + H<sub>2</sub>O at *T* = 298.15 K are listed in Table 1, in which *w*(B) is the mass fration of B; *n*(B) is Janëcke index values of B, with  $n(Na_2^{2+}) + n(CO_3^{2-}) + n(B_4O_7^{2-}) = 100$  mol.

According to the Janëcke index of ions, the experimented phase diagram (saturated with KCl) was plotted and is shown with solid lines in Figure 1. The isothermal solubility diagram of the quinary system consists of 14 univariant curves, 7 invariant points, and 8 crystallization phase regions corresponding to salts NaCl, Na<sub>2</sub>B<sub>4</sub>O<sub>7</sub>·10H<sub>2</sub>O, K<sub>2</sub>B<sub>4</sub>O<sub>7</sub>·4H<sub>2</sub>O, Na<sub>2</sub>CO<sub>3</sub>·10H<sub>2</sub>O, Na<sub>2</sub>CO<sub>3</sub>·7H<sub>2</sub>O, Na<sub>2</sub>CO<sub>3</sub>·10H<sub>2</sub>O, Na<sub>2</sub>CO<sub>3</sub>·10H<sub>2</sub>O, Na<sub>2</sub>CO<sub>3</sub>·15H<sub>2</sub>O, respectively. Among the eight crystallization fields, the crystallization field of K<sub>2</sub>B<sub>4</sub>O<sub>7</sub>·4H<sub>2</sub>O is the largest. This feature is very important for extracting potassium borate from the salt lake brine.

The seven invariant points are marked as follows:

 $E_1$ , saturated with salts  $KCl + NaCl + Na_2B_4O_7 \cdot 10H_2O$ +  $Na_2CO_3 \cdot 10H_2O$ ;

 $E_2$ , saturated with salts KCl + NaCl + Na<sub>2</sub>CO<sub>3</sub>·10H<sub>2</sub>O + Na<sub>2</sub>CO<sub>3</sub>·7H<sub>2</sub>O;

 $E_{3},$  saturated with salts  $KCl+Na_{2}CO_{3}\boldsymbol{\cdot}10H_{2}O+Na_{2}CO_{3}\boldsymbol{\cdot}7H_{2}O+Na_{2}B_{4}O_{7}\boldsymbol{\cdot}10H_{2}O;$ 

E<sub>4</sub>, saturated with salts KCl +  $Na_2B_4O_7 \cdot 10H_2O$  +  $Na_2CO_3 \cdot H_2O$  +  $Na_2CO_3 \cdot 7H_2O$ ;

E<sub>5</sub>, saturated with salts KCl +  $Na_2B_4O_7 \cdot 10H_2O + K_2B_4O_7 \cdot 4H_2O + Na_2CO_3 \cdot H_2O;$ 

 $E_6,$  saturated with salts  $KCl+K_2B_4O_7{\boldsymbol{\cdot}}4H_2O+Na_2CO_3{\boldsymbol{\cdot}}H_2O+NaKCO_3{\boldsymbol{\cdot}}6H_2O;$  and

Table 2. Density  $\rho$ , Viscosity  $\eta$ , Refractive Index  $n_D$ , Conductivity  $\kappa$ , and pH Values for the Quinary System Na<sup>+</sup> + K<sup>+</sup> + Cl<sup>-</sup> + CO<sub>3</sub><sup>2-</sup> + B<sub>4</sub>O<sub>7</sub><sup>2-</sup> + H<sub>2</sub>O at T = 298.15 K (Saturated with KCl)<sup>a</sup>

| no.            | $ ho/(g\cdot cm^{-3})$ | $10^{-3}\eta/({\rm Pa}{\boldsymbol{\cdot}}{\rm s})$ | $n_{ m D}$ | $\kappa/(\mathbf{S}\boldsymbol{\cdot}\mathbf{m}^{-1})$ | pH value |
|----------------|------------------------|-----------------------------------------------------|------------|--------------------------------------------------------|----------|
| 1              | 1.2669                 | 4.6275                                              | 1.3877     | 6.08                                                   | 10.55    |
| <b>2</b>       | 1.3057                 | 4.2445                                              | 1.3962     | 6.38                                                   | 10.00    |
| 3              | 1.2678                 | 4.3308                                              | 1.3895     | 5.38                                                   | 10.30    |
| 4              | 1.2932                 | 3.7184                                              | 1.3909     | 6.42                                                   | 10.45    |
| $\mathbf{E_1}$ | 1.3040                 | 7.5303                                              | 1.3968     | 5.08                                                   | 10.58    |
| <b>5</b>       | 1.2661                 | 3.5990                                              | 1.3893     | 5.65                                                   | 10.21    |
| 6              | 1.2583                 | 3.4561                                              | 1.3849     | 5.10                                                   | 10.00    |
| 7              | 1.2952                 | 4.7026                                              | 1.3929     | 5.42                                                   | 10.50    |
| $\mathbf{E}_2$ | 1.3109                 | 4.9937                                              | 1.3934     | 6.09                                                   | 10.75    |
| 8              | 1.2966                 | 3.8930                                              | 1.3920     | 6.32                                                   | 10.40    |
| $E_3$          | 1.3077                 | 4.0689                                              | 1.3952     | 6.02                                                   | 10.60    |
| 9              | 1.2976                 | 3.1645                                              | 1.3896     | 7.11                                                   | 10.19    |
| 10             | 1.3053                 | 3.4153                                              | 1.3918     | 6.71                                                   | 10.60    |
| ${ m E}_4$     | 1.5557                 | 13.816                                              | 1.4202     | 4.66                                                   | 12.85    |
| 11             | 1.1913                 | 1.4354                                              | 1.3712     | 7.07                                                   | 9.28     |
| $E_5$          | 1.3092                 | 3.6319                                              | 1.3916     | 6.20                                                   | 10.60    |
| 12             | 1.2574                 | 3.2998                                              | 1.3821     | 6.26                                                   | 10.51    |
| 13             | 1.3006                 | 3.3365                                              | 1.3900     | 7.28                                                   | 10.20    |
| 14             | 1.3958                 | 7.2884                                              | 1.3998     | 6.45                                                   | 11.40    |
| $E_6$          | 1.8579                 | 16.915                                              | 1.4126     | 4.79                                                   | 12.25    |
| 15             | 1.4897                 | 9.6283                                              | 1.4112     | 5.84                                                   | 12.25    |
| 16             | 1.4850                 | 9.3228                                              | 1.4127     | 4.24                                                   | 12.08    |
| 17             | 1.4850                 | 9.3228                                              | 1.4094     | 5.22                                                   | 12.08    |
| 18             | 1.5471                 | 13.529                                              | 1.4193     | 4.41                                                   | 13.03    |
| 19             | 1.5622                 | 12.263                                              | 1.4188     | 6.11                                                   | 12.60    |
| 20             | 1.5433                 | 13.410                                              | 1.4193     | 4.88                                                   | 13.00    |
| $\mathbf{E}_7$ | 1.5400                 | 13.716                                              | 1.4180     | 4.81                                                   | 13.02    |
| 21             | 1.5491                 | 13.272                                              | 1.4162     | 4.75                                                   | 13.10    |
| 22             | 1.5046                 | 8.6087                                              | 1.4142     | 6.00                                                   | 12.40    |
| 23             | 1.5151                 | 9.5988                                              | 1.4150     | 5.11                                                   | 13.35    |
|                |                        |                                                     |            |                                                        |          |

<sup>*a*</sup> Note: Numbers in Table 2 corresponding to Table 1.



**Figure 2.** Physicochemical properties—Jenneck index of  $CO_3^{2-}$  diagrams of the quinary system  $Na^+ + K^+ + Cl^- + CO_3^{2-} + B_4O_7^{2-}$ +  $H_2O$  at 298.15 K: •, viscosity; •, pH value; •, conductivity; •, density; \*, refractive index (saturated with KCl).

Table 3. Pitzer Single Salt Parameters for the Quinary System Na<sup>+</sup> + K<sup>+</sup> + Cl<sup>-</sup> + CO<sub>3</sub><sup>2-</sup> + B<sub>4</sub>O<sub>7</sub><sup>2-</sup> + H<sub>2</sub>O at T = 298.15 K

|               | NaCl    | KCl      | $Na_2CO_3$ | $K_2CO_3$ | $Na_2B_4O_7$ | $K_2B_4O_7$ |
|---------------|---------|----------|------------|-----------|--------------|-------------|
| $\beta^{(0)}$ | 0.07722 | 0.04835  | 0.0399     | 0.1488    | -0.11        | -0.1129     |
| $\beta^{(1)}$ | 0.25183 | 0.2122   | 1.389      | 1.43      | -0.40        | 0.3370      |
| $C^{\Phi}$    | 0.00106 | -0.00084 | 0.0044     | -0.0015   | 0.00         | -0.1030     |
| source        | [11]    | [11]     | [9]        | [9]       | [6]          | this work   |

 $E_7$ , saturated with salts  $KCl + K_2B_4O_7 \cdot 4H_2O + NaKCO_3 \cdot 6H_2O + K_2CO_3 \cdot 1.5H_2O$ .

In this system, the double salt NaKCO<sub>3</sub>·6H<sub>2</sub>O was found. Such a double salt for sodium and potassium carbonate also emerged in Teeple's studies on Searles Lake.<sup>9</sup>

Table 2 shows the physicochemical properties (density, viscosity, refractive indice, conductivity, and pH values) of the equilibrium solutions of the quinary system  $Na^+ + K^+$ 

Table 4. Pitzer Mixing Ion-Interaction Parameters for the Quinary System  $Na^+ + K^+ + Cl^- + CO_3^{2-} + B_4O_7^{2-} + H_2O$  at T = 298.15 K<sup>a</sup>

| parameter | $\theta_{\mathrm{Na,K}}$ | $\theta_{\rm Cl,B}$ | $\theta_{\rm Cl,C}$ | $	heta_{ m C,B}$  | $\Psi_{Na,K,Cl}$ | $\Psi_{\text{Na},\text{K},\text{C}}$ | $\Psi_{\text{Na},\text{K},\text{B}}$ | $\Psi_{\text{Na,Cl,C}}$ | $\Psi_{Na,Cl,B}$ | $\Psi_{\text{Na,C,B}}$ | $\Psi_{K,Cl,C}$ | $\Psi_{K,Cl,B}$ | $\Psi_{K,C,B}$ |
|-----------|--------------------------|---------------------|---------------------|-------------------|------------------|--------------------------------------|--------------------------------------|-------------------------|------------------|------------------------|-----------------|-----------------|----------------|
| value     | -0.012                   | 0.074               | -0.02               | -2.0630 this work | -0.0018          | 0.003                                | 0.05381                              | 0.0085                  | 0.025            | 0.3062                 | 0.004           | 0.01852         | 0.07432        |
| source    | [9]                      | [6]                 | [9]                 |                   | [9]              | [9]                                  | this work                            | [9]                     | [6]              | this work              | [9]             | this work       | this work      |

<sup>*a*</sup> Note: C-CO<sub>3</sub><sup>2–</sup>, B-[B<sub>4</sub>O<sub>5</sub>(OH)<sub>4</sub>]<sup>2–</sup>.

+ Cl<sup>-</sup> + CO<sub>3</sub><sup>2-</sup> + B<sub>4</sub>O<sub>7</sub><sup>2-</sup> + H<sub>2</sub>O at T = 298.15 K. Combined with the composition of equilibrium solutions in Table 1, the diagrams of the physicochemical properties–Janecke index of CO<sub>3</sub><sup>2-</sup> of one univariant curve (which was saturated with salts KCl + K<sub>2</sub>B<sub>4</sub>O<sub>7</sub>·4H<sub>2</sub>O + Na<sub>2</sub>CO<sub>3</sub>·H<sub>2</sub>O) were plotted; these were depicted in Figure 2. The results show that the physicochemical properties of the equilibrium solutions present normal changes with solution composition and reach the maximum or minimum value at the invariant points.

### 4. Prediction of Solubility

**4.1.** Theory for Calculations. In this study, we adapted the chemical model of Harvie et al.,<sup>10</sup> which is based upon the semiempirical equation of Pitzer<sup>11</sup> and co-workers, to calculate the solubility of the quinary system Na<sup>+</sup> + K<sup>+</sup> + Cl<sup>-</sup> + CO<sub>3</sub><sup>2-</sup> + B<sub>4</sub>O<sub>7</sub><sup>2-</sup> + H<sub>2</sub>O at T = 298.15 K. Using the activity coefficient and the solubility product of the equilibrium solid phase, the coexisting phases and their compositions at equilibrium were identified. The necessary model parameters for the activity coefficient expressions were fit from binary or ternary subsystems' solubility data by a multiple linear regression method.

**4.2.** *Model Parameters.* The molecular formulas of the equilibrium solid phases adapted in this work are NaCl, Na<sub>2</sub>[B<sub>4</sub>O<sub>5</sub>(OH)<sub>4</sub>]·8H<sub>2</sub>O, K<sub>2</sub>[B<sub>4</sub>O<sub>5</sub>(OH)<sub>4</sub>]·2H<sub>2</sub>O, Na<sub>2</sub>CO<sub>3</sub>·10H<sub>2</sub>O, Na<sub>2</sub>CO<sub>3</sub>·7H<sub>2</sub>O, Na<sub>2</sub>CO<sub>3</sub>·H<sub>2</sub>O, Na<sub>2</sub>CO<sub>3</sub>·6H<sub>2</sub>O, and K<sub>2</sub>CO<sub>3</sub>·1.5H<sub>2</sub>O. The used parameters and their sources are given in Tables 3 and 4. The values for the Pitzer single salt parameters for K<sub>2</sub>B<sub>4</sub>O<sub>7</sub>,  $\theta_{C,B}$  and  $\Psi_{K,C,B}$ , were fit from the solubility data in the system K<sub>2</sub>CO<sub>3</sub>-K<sub>2</sub>B<sub>4</sub>O<sub>7</sub>-H<sub>2</sub>O.<sup>13</sup> The values for  $\Psi_{Na,K,B}$ ,  $\Psi_{K,C,B}$ , and  $\Psi_{Na,C,B}$  were fit from the solubility data of Na<sub>2</sub>B<sub>4</sub>O<sub>7</sub>-K<sub>2</sub>B<sub>4</sub>O<sub>7</sub>-H<sub>2</sub>O.<sup>14</sup> KCl-K<sub>2</sub>B<sub>4</sub>O<sub>7</sub>-H<sub>2</sub>O.<sup>14</sup> and Na<sub>2</sub>CO<sub>3</sub>-Na<sub>2</sub>B<sub>4</sub>O<sub>7</sub>-H<sub>2</sub>O.<sup>15</sup> respectively.

4.3. Calculated Solubilities. Using the parameters above, the solubilities of the quinary system at 298.15 K were calculated. According to the calculated values, the calculated phase diagram (saturated with KCl) was plotted and is shown with dotted lines in Figure 1. From Figure 1, we can see from most of the univariant curves that the calculated values of the quinary system Na<sup>+</sup> + K<sup>+</sup> + Cl<sup>-</sup> + CO<sub>3</sub><sup>2-</sup> + B<sub>4</sub>O<sub>7</sub><sup>2-</sup> + H<sub>2</sub>O agree with determined ones, with a deviation of less than 2%. But deviation still exist in measured and calculated values, especially on the univariant curves E<sub>5</sub>G, which contain borate. The maximum deviation is up to 9.59%.

## **5.** Conclusions

The quinary system  $Na^+ + K^+ + Cl^- + CO_3^{2-} + B_4O_7^{2-}$ +  $H_2O$  is one of the most important subsystems of brines for Zabuye Lake. The phase relationships among the coexisting salts of this system are very complex, with crystallization regions of different hydrated salts of sodium carbonate and the double salt NaKCO<sub>3</sub>·6H<sub>2</sub>O.

The chemical equilibrium model of Harvie, based on Pitzer's semiempirical equation, was applied to predict the solubility of this complex system. The agreement between the calculated and experimental solubility data is good. This demonstrated that the parameters obtained in this work are reliable and the model is valid for the multicomponent, high-ionic-strength, high-concentration natural water in the Zabuye Lake.

Finally, it should be pointed out that borate in aqueous solution can exist in several different species. However, because no other species except for the polymeric species  $[B_4O_5(OH)_4]^{2-}$  is involved in the calculation, the prediction for the solubility curves containing borate has some inaccuracy. This needs further study.

### **Literature Cited**

- Zheng M. P.; Xiang J. Saline Lakes on the Qinghai-Xizang (Tibet) Plateau. Beijing Scientific and Technical Publishing House: Beijing, 1989.
- (2) Mesmer R. E.; Baes C. F.; Sweetow F. H. Acidity Measurements at Elevated Temperatures. VI. Boric Acid Equalibria. *Inorg. Chem.* 1972, 11, 537-543.
- (3) Farmer J. B. Metal Borates. In Advances in Inorganic Chemistry And Radiochemistry; Emeleus, H. J., Sharpe, A. G., Eds.; Academic Press: New York, 1982; Vol. 25.
- (4) Spessard J. E. Investigation of borate equilibria in neutral salt solutions. J. Inorg. Nucl. Chem. 1970, 32, 2607-2631.
- (5) Ingri N.; Largefstrom G.; Frydman M.; Sillen L. G. Equilibrium studies of polyanions. II. Polyborates in NaClO<sub>4</sub> medium. Acta Chem. Scand. **1957**, 11, 1034–1058.
- (6) Felmy A. R.; Weare J. H. The prediction of borate mineral equilibria in natural waters: application to Searles Lake, California. *Geochim. Cosmochim. Acta* **1986**, *50*, 2771–2783.
- (7) Li J.; Gao S. Y. Chemistry of borate. J. Salt Lake Sci.(Chinese) 1993, 3, 62–66.
- (8) Analytical Room of Qinghai Saline Lake Research Institute of Academy of Science, P.R. China. Analytical Method for Saline Brine and Salt; Science Press: Beijing, 1988.
- (9) Teeple J. E. The Industrial Development of Searles Lake Brines; The Chemical Catalog Company, Inc.: New York, 1929.
- (10) Harvie C. E.; Móller N.; Weare J. H. The prediction of mineral solubilities in natural waters: The Na-K-Mg-Ca-H-Cl-SO<sub>4</sub>-OH-HCO<sub>3</sub>-CO<sub>3</sub>-CO<sub>2</sub>-H<sub>2</sub>O system to high ionic strengths at 25 °C. Geochim. Cosmochim. Acta **1984**, 48, 723-751.
- (11) Pitzer K. S. Thermodynamics of Electrolytes. I. Theoretical Basis and General Equations. J. Phys. Chem. **1973**, 77, 268–277.
- (12) Kim H. T.; Frederick W. J. Evaluation of Pitzer Ion Interaction Parameters of Aqueous Electrolytes at 25 °C. I. Single Salt Parameters. J. Chem. Eng. Data 1988, 33, 177–184.
- (13) Zeng Y.; Tang M. L.; Yin H. A study on the phase equilibrium and physicochemical properties of the tenary system Na<sup>+</sup>/CO<sup>2-</sup><sub>3</sub>, BORATE-H<sub>2</sub>O at 298 K. Sea-Lake Salt Chem. Ind. **1999**, 2, 25– 27.
- (14) Yan S. W.; Tang M. L.; Deng T. L. A study on the phase equilibrium of quaternary system Na<sup>+</sup>, K<sup>+</sup>//Cl<sup>-</sup>, B<sub>4</sub>O<sub>7</sub><sup>2-</sup>-H<sub>2</sub>O at 25 °C. *The 6th International Salt Lake Symposium*, September 1996, Beijing, China.
- (15) Zeng Y.; Tang M. L.; Yin H. A.; Wang L. S. Phase equilibrium of ternary system K<sup>+</sup>/CO<sub>3</sub><sup>2-</sup>, B<sub>4</sub>O<sub>7</sub><sup>2-</sup>-H<sub>2</sub>O and Li<sup>+</sup>/CO<sub>3</sub><sup>2-</sup>, B<sub>4</sub>O<sub>7</sub><sup>2-</sup>-H<sub>2</sub>O at 298 K. *Miner. Rock* **1999**, *2*, 89–92.

Received for review February 10, 2004. Accepted August 2, 2004. This work was supported by the National Natural Science Foundation of China (49773200) and the Key Discipline Growing Point Foundation of the National Land and Resources Ministry of China (H.Y.).

JE049934J