Solubility and Density of 2,6-Dimethylnaphthalene in C_1-C_7 1-Alkanols

Kwang-Joo Kim* and Yang-Ho Cheon

National Research Laboratory for Crystallization Process & Engineering, Korea Research Institute of Chemical Technology, P.O. Box 107, Yusung, Taejeon 305-600, Korea

Experimental data on the solid–liquid equilibria in 2,6-dimethylnaphthalene (DMN) + C_1-C_7 1-alkanols were obtained over the temperature range of 243.15 K to 343.15 K. The solubility of 2,6-DMN in alcohols increases with increase in polarity of alcohol. The results were well fitted by the best correlation equation. Densities of their binary mixtures have been measured at the temperatures from 253.15 K to 333.15 K and at the mole fractions from 0.0017 to 0.0167. Results for the density were well correlated with the empirical equations.

Introduction

2,6-Dimethylnaphthalene (DMN) is a starting material for the manufacture of polyethylene naphthalate (PEN) and liquid crystal polymer. PEN has especially received much attention because of its higher performance properties in respect to heat resistance, elasticity, chemical stability, and gas barrier than polyethylene terephthalate. Such higher performance properties make it possible to be used in applications such as special films, fibers, reaction containers, and packings.

2,6-DMN must be obtained first to produce PEN. It can be obtained by separation from naphtha oil and by alkylation of naphthalene or xylene.^{1,2} These are inevitable for byproduction of DMN isomers, which consist of 10 components. The conventional processes as a distillation and adsorption for separation of 2,6-DMN from the isomer mixtures have a limitation at the purity and yield of products because of isomers.³ Extractive crystallization was one possibility to apply to separation of multicomponent mixtures.^{4,5} A third component, usually a liquid called the extract, induces the change of solid-liquid phase diagram. Findly and Weedman⁶ describe in detail an extractive crystallization process in which *p*-xylene and *m*-xylene are completely separated from each other by using *n*-heptane as the extractive solvent. Separation capacity depends mainly on the type of solvent, which affects the kinetic of crystallization such as nucleation and crystal growth. Therefore, selecting the proper solvent is needed before crystallization.

Many organic mixtures with their isomers were separated by extractive crystallization. Solid—liquid-phase equilibria (SLE) must be understood for the possibility of extractive crystallization processes, which in turn are used in the chemical industry for the separation of isomers. The selection of the extractive crystallization process is dependent on the SLE behavior of the mixtures. An extractive solvent to improve the crystal quality must be selected. Alcohols are recommended as a suitable extractive solvent in a cooling crystallizer. The solubility and the density of 2,6-DMN in solution must be known in order to interpret the kinetics of extractive crystallization.

* To whom correspondence may be addressed. E-mail: kjookim@ krict.re.kr. Fax: +42-82-860-7518.

Table 1. Physical Properties of 2,6-DMN and C_1-C_8 Alcohols

compound	$T_{\rm fus}/{ m K}$	$T_{\rm b}/{ m K}$	ρ/(g cm ⁻³)	$T_{\rm tri}/{ m K}$	$\Delta_{\rm fus} H/(\rm kJ\ mol^{-1})$
2,6-DMN	384.15 ⁷	535.15 ⁷	1.020	383.317	25.06 ⁸
methanol ⁹	176.00	337.00	0.786	175.50	2.196
ethanol ⁹	159.00	351.50	0.785	158.80	4.962
1-propanol ⁹	146.70	370.30	0.799	148.70	5.192
1-butanol ⁹	188.00	390.60	0.805	184.50	9.372
1-pentanol ⁹	194.60	400.00	0.810	194.20	10.50
1-hexanol ⁹	226.00	430.00	0.815	225.80	15.48
1-heptanol ⁹	238.60	448.00	0.821	240.00	18.16
-					

In this work, the solubility of 2,6-DMN in C_1-C_7 1-alkanols and densities for their binary mixtures over temperature ranges from 245.15 K to 340.15 K, which is the adequate operating conditions of 2,6-DMN extractive crystallization, have been measured.

Experimental Section

Materials. Reagent-grade 2,6-DMN (Aldrich Chemical Co., +99%) was used. The alcohols used in this work were from Jin Chemical Pharmaceutical Co., reagent-grade with a minimum purity of 99.5%. Before use, 2,6-DMN was purified further by recrystallization using methanol, and the purity was more than 99.9%. All the alcohols were used without further purification. The materials were analyzed by flame-ionization detection gas chromatography (DONAM GC 6200) equipped with capillary columns; Shinwa, GC-8A capillary column ULBON HR-1. The physical properties of 2,6-DMN and C_1-C_8 alcohols are shown in Table 1.

Measurement of Solubility. The mixtures were prepared by mass using a Metter AG 204 balance with a standard uncertainty of 0.0001 g. The estimated accuracy in the mass fraction is less than $\pm 2 \times 10^{-4}$. The solubility of 2,6-DMN in C₁–C₇ 1-alkanols was measured using a polythermal method described in detail previously.^{10–12} The equilibrium cell, a cylindrical glass vessel (50-mm inside diameter, 120 mm long), was placed, by ground-glass joint, in a triple-jacketed vessel. The outer jacket was evacuated, and either heated or cooled medium from a thermostated bath could be circulated through the middle jacket. A methanol was thermostated and controlled by a thermo-electric Eurotherm 808 PID controller with ± 0.1 K accuracy. The cell had a perforated rubber stopper, through

Tab	le 2	. Expe	rimental	Solu	bilities	of	2,6-DMN	l in	Vari	ious	Sol	vents
-----	------	--------	----------	------	----------	----	---------	------	------	------	-----	-------

meth	methanol		ethanol		1-propanol 1-butano		tanol	1-pentanol		1-hexanol		1-heptanol	
<i>X</i> 1	<i>T</i> /K	<i>X</i> 1	<i>T</i> /K	<i>X</i> 1	<i>T</i> /K	<i>X</i> 1	<i>T</i> /K	<i>X</i> 1	<i>T</i> /K	<i>X</i> 1	<i>T</i> /K	<i>X</i> 1	<i>T</i> /K
$\begin{array}{c} 0.0074\\ 0.0097\\ 0.0175\\ 0.0232\\ 0.0330\\ 0.0470\\ 0.0712\\ 0.1064\\ 0.1285\\ 0.1588\\ 0.1808\\ \end{array}$	$\begin{array}{c} 251.15\\ 257.15\\ 266.35\\ 274.15\\ 281.15\\ 289.85\\ 300.15\\ 310.15\\ 314.45\\ 321.25\\ 324.55\\ \end{array}$	$\begin{array}{c} 0.0057\\ 0.0119\\ 0.0188\\ 0.0314\\ 0.0414\\ 0.0523\\ 0.0736\\ 0.0806\\ 0.0907\\ 0.1058\\ 0.1268\end{array}$	$\begin{array}{c} 247.15\\ 259.55\\ 270.75\\ 282.05\\ 290.35\\ 296.15\\ 304.75\\ 307.05\\ 309.95\\ 315.65\\ 320.15\\ \end{array}$	$\begin{array}{c} 0.0045\\ 0.0096\\ 0.0165\\ 0.0258\\ 0.0469\\ 0.0601\\ 0.0699\\ 0.0783\\ 0.0928\\ 0.1050\\ 0.1155\end{array}$	248.75 259.95 271.15 281.95 295.15 301.85 304.65 307.35 312.45 316.05 318.15	$\begin{array}{c} 0.0040\\ 0.0084\\ 0.0142\\ 0.0266\\ 0.0384\\ 0.0543\\ 0.0637\\ 0.0781\\ 0.0990\\ 0.1176\\ 0.1372\\ \end{array}$	247.55 257.95 269.35 284.05 293.15 300.05 303.35 308.55 313.25 318.05 323.35	$\begin{array}{c} 0.0044\\ 0.0075\\ 0.0152\\ 0.0255\\ 0.0418\\ 0.0507\\ 0.0750\\ 0.0832\\ 0.0943\\ 0.1121\\ 0.1447 \end{array}$	252.65 261.95 274.25 285.25 294.15 298.25 306.25 308.95 311.55 315.75 321.45	$\begin{array}{c} 0.0030\\ 0.0107\\ 0.0216\\ 0.0315\\ 0.0426\\ 0.0600\\ 0.0713\\ 0.0868\\ 0.1011\\ 0.1205\\ 0.1490\\ \end{array}$	246.15 269.95 282.85 299.95 296.15 303.05 306.15 310.05 313.25 317.45 322.05	$\begin{array}{c} 0.0015\\ 0.0043\\ 0.0097\\ 0.0187\\ 0.0302\\ 0.0421\\ 0.0605\\ 0.0764\\ 0.0921\\ 0.1149\\ 0.1390\\ \end{array}$	246.35 266.05 277.85 285.45 293.15 298.15 303.55 308.15 311.85 316.05 320.15
0.2044 0.2388 0.2639	328.45 332.65 335.55	0.1535 0.1884 0.2096	327.15 332.15 336.15	0.1418 0.1818 0.2037	323.15 329.15 333.15	0.1557 0.1834 0.1930	327.95 333.45 336.35	0.1808 0.2152 0.2651	326.75 332.05 338.65	0.1915 0.2228 0.2464	327.45 331.55 335.15	$\begin{array}{c} 0.1615 \\ 0.1806 \\ 0.2081 \\ 0.2329 \\ 0.2830 \end{array}$	323.85 326.95 331.05 333.45 339.05

Table 3. Values of Parameters for Equations 1, 2, and 3 in Various Solvents

system	<i>a</i> /mole fraction	<i>b</i> /(mole fraction K ⁻¹)	$c imes 10^4$ /(mole fraction K^{-2})	$d imes 10^4$ /(mole fraction K ⁻³)	RSD	AAD
methanol	-7.8719	0.0898	-3.4366	4.4180	0.050914	0.001099
ethanol	-4.8369	0.0560	-2.1805	2.8558	0.029163	0.001376
1-propanol	-8.0238	0.0908	-3.4374	4.3654	0.066315	0.001563
1-butanol	-0.6483	0.0124	-0.6764	1.1332	0.185056	0.002540
1-pentanol	-6.0792	0.0792	-3.0979	4.0521	0.147034	0.001171
1-ĥexanol	-9.4468	0.1084	-4.1523	5.3155	0.206937	0.001494
1-heptanol	-6.9230	0.0823	-3.2590	4.3035	0.086619	0.001174

which a copper-constantan thermocouple was inserted. The contents were stirred with a magnetic spin bar. The cell was tightly sealed to protect the system from dust and moisture condensation. Mixtures of solute and solvent were cooled in batch until an abundant amount of crystal was formed and then heated very slowly at less than 0.005 K min⁻¹ near the equilibrium temperature. The crystal disappearance temperature, detected visually, was measured with a calibrated thermocouple connected to a recorder (data acquisition system). The thermocouples were calibrated with a calibrated thermometer from Fisher Scientific (No. 15-078-7) with a standard uncertainty of 0.05 K. The accuracy of the thermocouple measurements is believed to be ± 0.1 K. Some of the experiments were conducted in triplicate to check the reproducibility. The saturation temperature for a given mixture was reproducible within ± 0.1 K.

Measurement of Density. The density of solutions of 2,6-DMN + alcohols has been determined using a digital densimeter (Mettler Toledo, AG) with density measurement packages (No. 210260 and No. 238491), which uses the Archimedes' principle. The method was described in detail in our previous works.^{10,11} Before measurement, the densimeter was calibrated and water was distilled at the experimental temperatures. The bath temperature was measured with a calibrated thermocouple and maintained constant to \pm 0.1 K at the desired temperature.

Results and Discussion

Solubility. The mole fraction solubilities of 2,6-DMN from methanol through heptanol were measured over the temperature range from 243 K to 318 K, and the values are listed in Tables 2 and plotted in Figure 1. The solubilities of 2,6-DMN increase with an increase in the temperature and increase with an increase in the number of carbon atoms in alcohols. This means that the solubility of 2,6-DMN in 1-alkanols increases with decreasing polarity of the solvent. The enhancement in the solubility of 2,6-

DMN from methanol through heptanol was due to a decrease in the self-association of these alcohols.

Thus, mole fraction solubility of 2,6-DMN, x_1 , with the temperature *T* was analyzed using the polynomial equation

$$x_1 = a + bT + cT^2 + dT^3$$
 (1)

where *T* is the absolute temperature and *a*, *b*, *c*, and *d* are parameters. The linear expression describes satisfactorily the temperature dependence of the solubility, within the temperature range studied. Table 3 lists the parameters in eq 1 for C_1 – C_7 alcohols.

Temperature dependence on solubility is higher at higher alcohol. Therefore, combination of cooling and extractive

Figure 1. Solubility curves of 2,6-DMN in C_1-C_7 1-alkanol solutions. \bigcirc , methanol; \square , ethanol; \triangle , 1-propanol; \triangledown , 1-butanol; \diamondsuit , 1-pentanol; \bigcirc , 1-hexanol; \blacksquare , 1-heptanol.

Tab	le	4.	Activity	Coefficient	of	2,6-DMN	in	C_1	- C 7	1-All	canols	5
-----	----	----	----------	-------------	----	---------	----	-------	--------------	-------	--------	---

2,6-DMN(1) + methanol(2) 2,6-I			2,6-DMN	I(1) + etha	anol(2)	2,6-DM	2,6-DMN(1) + 1-propanol(2)			2,6-DMN(1) + 1-butanol(2)		
<i>T</i> /K	x_1^L	γ_1^L	<i>T</i> /K	x_1^L	γ_1^L	<i>T</i> /K	x_1^L	γ_1^L	<i>T</i> /K	x_1^L	γ_1^L	
253.1500	0.0098	1.7534	253.1500	0.0104	1.6592	253.1500	8.1226×10^{-3}	2.1233	253.1500	0.0102	1.6979	
258.1500	0.0122	1.7814	258.1500	0.0126	1.7238	258.1500	0.0100	2.1623	258.1500	0.0123	1.7690	
263.1500	0.0151	1.7952	263.1500	0.0153	1.7761	263.1500	0.0124	2.1838	263.1500	0.0148	1.8279	
268.1500	0.0187	1.7954	268.1500	0.0185	1.8160	268.1500	0.0153	2.1886	268.1500	0.0179	1.8742	
273.1500	0.0231	1.7832	273.1500	0.0224	1.8435	273.1500	0.0189	2.1778	273.1500	0.0216	1.9079	
278.1500	0.0286	1.7599	278.1500	0.0270	1.8592	278.1500	0.0234	2.1529	278.1500	0.0261	1.9294	
283.1500	0.0353	1.7270	283.1500	0.0327	1.8639	283.1500	0.0288	2.1157	283.1500	0.0314	1.9393	
288.1500	0.0434	1.6863	288.1500	0.0394	1.8584	288.1500	0.0354	2.0680	288.1500	0.0378	1.9386	
293.1500	0.0534	1.6394	293.1500	0.0475	1.8439	293.1500	0.0435	2.0119	293.1500	0.0454	1.9282	
298.1500	0.0655	1.5880	298.1500	0.0571	1.8218	298.1500	0.0534	1.9494	298.1500	0.0545	1.9096	
303.1500	0.0801	1.5340	303.1500	0.0685	1.7934	303.1500	0.0653	1.8824	303.1500	0.0652	1.8839	
308.1500	0.0976	1.4790	308.1500	0.0820	1.7601	308.1500	0.0797	1.8131	308.1500	0.0779	1.8527	
313.1500	0.1185	1.4245	313.1500	0.0980	1.7236	313.1500	0.0968	1.7432	313.1500	0.0929	1.8175	
318.1500	0.1431	1.3721	318.1500	0.1165	1.6851	318.1500	0.1173	1.6745	318.1500	0.1103	1.7798	
323.1500	0.1719	1.3230	323.1500	0.1381	1.6463	323.1500	0.1414	1.6086	323.1500	0.1306	1.7409	
328.1500	0.2050	1.2786	328.1500	0.1630	1.6084	328.1500	0.1694	1.5471	328.1500	0.1540	1.7024	
333.1500	0.2427	1.2399	333.1500	0.1913	1.5728	333.1500	0.2018	1.4912	333.1500	0.1806	1.6657	
2,6-	DMN(1) +	1-pentano	ol(2)		2,6-DMN	(1) + 1-hexan	ol(2)	2,6-	DMN(1) + 1	heptanol(2)	
<i>T</i> /K		x ₁ ^L	γ_1^L	<i>T</i> /K		x_1^L	γ_1^L	<i>T</i> /K	x_1^{L}		γ_1^L	
253.1500	6.777	$0 imes 10^{-3}$	2.5449	253.15	00 5	$.3924 \times 10^{-3}$	3.1984	253.1500	5.1613 >	< 10 ⁻³	3.3416	
258.1500	8.541	$3 imes 10^{-3}$	2.5430	258.15	00 6	$.9240 \times 10^{-3}$	3.1369	258.1500	6.6356 >	< 10 ⁻³	3.2732	
263.1500	0.010	8	2.5200	263.15	00 8	$.8868 \times 10^{-3}$	3.0511	263.1500	8.5275 >	< 10 ⁻³	3.1797	
268.1500	0.013	5	2.4781	268.15	00 0	.0114	2.9449	268.1500	0.0110		3.0650	
273.1500	0.017	0	2.4197	273.15	00 0	.0146	2.8222	273.1500	0.0141		2.9335	
278.1500	0.021	4	2.3474	278.15	00 0	.0187	2.6872	278.1500	0.0180		2.7894	
283.1500	0.026	9	2.2640	283.15	00 0	.0239	2.5437	283.1500	0.0231		2.6369	
288.1500	0.033	7	2.1721	288.15	00 0	.0306	2.3955	288.1500	0.0295		2.4798	
293.1500	0.042	2	2.0746	293.15	00 0	.0390	2.2460	293.1500	0.0377		2.3217	
298.1500	0.052	7	1.9740	298.15	00 0	.0496	2.0983	298.1500	0.0480		2.1657	
303.1500	0.065	6	1.8727	303.15	00 0	.0629	1.9550	303.1500	0.0610		2.0146	
308.1500	0.081	5	1.7730	308.15	00 0	.0794	1.8185	308.1500	0.0772		1.8709	
313.1500	0.100	7	1.6767	313.15	00 0	.0999	1.6906	313.1500	0.0972		1.7363	
318.1500	0.123	8	1.5857	318.15	00 0	.1249	1.5729	318.1500	0.1218		1.6126	
323.1500	0.151	4	1.5015	323.15	00 0	.1550	1.4668	323.1500	0.1515		1.5010	
328.1500	0.183	9	1.4254	328.15	00 0	.1909	1.3730	328.1500	0.1869		1.4023	
333.1500	0.221	5	1.3584	333.15	00 0	.2328	1.2924	333.1500	0.2284		1.3173	

crystallizations can be recommended for separation of 2,6-DMN.

The relative standard deviations (RSD) of the equilibrium temperatures are given by

$$RSD = \left[\left(\frac{1}{N}\right) \sum_{i=1}^{N} \left[\frac{\operatorname{cal}, i - \exp, i}{\exp, i} \right]^2 \right]^{1/2}$$
(2)

and the average absolute deviations (AAD) are given by

$$AAD = \left(\frac{1}{N}\right) \sum_{i=1}^{N} |cal, i - exp, i|$$
(3)

where N is the number of experimental points. The RSD and the AAD between the measured solubility data and the data calculated from eq 1 are listed in Table 4.

Data of solubility can be used to estimate the activity coefficient through the equilibrium relationship. The following fundamental equation used to calculate the solid—liquid-phase equilibria can be derived starting from the isofugacity criterion.¹³ With some useful simplifications it leads to the following formula which was described elsewhere¹⁴

$$\ln x_{1}^{\rm L} \gamma_{1}^{\rm L} = -\frac{\Delta_{\rm fus} H_{\rm l}}{RT} \left(1 - \frac{T}{T_{\rm fus,1}}\right) - \frac{\Delta_{\rm trs} H_{\rm l}}{RT} \left(1 - \frac{T}{T_{\rm trs,1}}\right)$$
(4)

where x_1^{L} is the mole fraction of component 1 (2,6-DMN) in the liquid phase, γ_1^{L} is the activity coefficient of compo-

 Table 5. Enthalpy of Dissolution and Enthalpy of Mixing for 2,6-DMN in Solvents

solvent	$d(\ln x_1)/d(T^{-1})$	$\Delta_{sol}H_1/kJ \cdot mol^{-1}$	$\Delta_{\rm mix}H_1/kJ\cdot {\rm mol}^{-1}$
methanol	-3562.9	29.6220	4.5620
ethanol	-3314.6	27.5576	2.4976
1-propanol	-3664.9	30.4700	5.4100
1-butanol	-3636.8	30.2364	5.1764
1-pentanol	-4134.9	34.3776	9.3176
1-ĥexanol	-4196.2	34.8872	9.8272
1-heptanol	-4968.8	41.3106	16.2506

nent 1 in the liquid phase, $\Delta_{\text{fus}}H_1$ is the mole enthalpy of fusion of component 1, $T_{\text{fus},1}$ is the melting temperature of component 1, $\Delta_{\text{trs}}H_1$ is the molar enthalpy of transition of component 1, $T_{\text{trs},1}$ is the transition temperature of component 1, T is the absolute temperature of the mixture, and R is the universal gas constant.

If no solid–solid transition occurs in the considered temperature range, the last term in eq 5 has little effect on the values of the coefficients and has therefore been neglected.¹⁵

The activity coefficients γ_1^L can be calculated using eq 4 from experimentally determined solution composition *x* and temperature *T*. Table 5 gives mole fractions, equilibrium temperatures, and activity coefficients. As can be seen in Table 4, in nearly all the cases, positive deviations from ideal solution ($\gamma_1^L > 1$) are observed. The solubilities of the solute were close to ideal values in the order: methanol < ethanol < propanol < butanol < pentanol < hexanol < heptanol. Such deviations are attributed to the interaction of a chemical nature between the 2,6-DMN and solvent.

Figure 2. Density of 2,6-DMN + methanol solution at mole fraction: \bigcirc , x = 0.0081; \square , x = 0.0160; \triangle , x = 0.0315; \triangledown , x = 0.0465; \diamondsuit , x = 0.0610; \blacklozenge , x = 0.0752.

To procure the enthalpy of dissolution of 2,6-DMN crystals in solvent, mole fraction solubility can be expressed as the following ideal solution theory¹⁰

$$\ln x_{1} = \frac{-\Delta_{\text{sol}}H_{1}}{R} \left(\frac{1}{T} - \frac{1}{T_{\text{m}}}\right)$$
(5)

where x_1 is the mole fraction of solute, $\Delta_{sol}H_1$ is the enthalpy of dissolution of 2,6-DMN, and $T_{\rm m}$ is the melting temperature of 2,6-DMN. $\Delta_{sol}H_1$ is equal to $\Delta_{fus}H_1$ for an ideal system, which is obtained by taking $\gamma_1 = 1$ in eq 4 and $\Delta_{fus}H_1 + \Delta_{mix}H_1$ for nonideal systems. The enthalpy of mixing, $\Delta_{mix}H_1$, is a measure for the solute-solvent interaction, whereas the enthalpy of fusion $\Delta_{fus}H_1$ is solvent independent. Through the plot of $\ln x_1$ vs T^{-1} , the enthalpy of dissolution was calculated using its slope, d ln x_1/dT^{-1} , and its values are listed in Table 5. It was found that $\Delta_{\rm mix}H_1$ increases with an increase in carbon number in alcohols. This means that attractive interaction between 2,6-DMN and alcohols is larger in alcohol with higher number in carbon atoms. Such a large $\Delta_{mix}H_1$ shows a large solvent-solute interaction, and this could have a large effect on inclusion of solvent inside crystals.

Density of 2,6-DMN + **1-Alkanols Solution.** The densities of 2,6-DMN in 1-alkanol solutions were measured in the range 258.15 K to 333.15 K and mole fraction from 0.0017 to 0.0167. Densities of 2,6-DMN + methanol solution as functions of mole fraction and temperature were shown in Figure 2. Density of solution decreases linearly with increasing temperature. The results of the density for 2,6-DMN + 1-alkanol solutions were correlated for the absolute temperature T and the 2,6-DMN mole fraction *x* dependence by the following equation

$$\rho = k_1 + k_2 x + k_3 T + k_4 x T \tag{6}$$

where *T* is the temperature and *x* is mole fraction of the 2,6-DMN in solutions. The values of coefficients k_1 , k_2 , k_3 , and k_4 of the eq 6 are listed in Table 6 with the AAD, in kgm⁻³, between the measured value and the calculated value, which is defined in eq 3.

Figure 3. Density of 2,6-DMN + C_1 - C_7 1-alkanol solutions at mole fraction x = 0.0081. \bigcirc , methanol; \Box , ethanol; \triangle , 1-propanol; \bigtriangledown , 1-butanol; \diamondsuit , 1-pentanol; \blacklozenge , 1-hexanol; \blacksquare , 1-heptanol.

 Table 6. Values of Parameters in Equations 3 and 6 for

 Various Solvents

solvent	k_1	k_2	k_3	k_4	AAD
methanol	501.1243	62889.0062	-0.3691	-45.5671	0.5668
ethanol	533.2065	65716.4937	-0.4496	-55.5094	0.2985
1-propanol	562.9970	69372.4649	-0.5378	-66.4005	0.3571
1-butanol	589.4701	72621.5256	-0.6154	-75.9741	0.4086
1-pentanol	607.3693	74818.2490	-0.6680	-82.4736	0.4436
1-hexanol	628.5796	77875.4051	-0.7365	-90.9196	0.4921
1-heptanol	646.6937	81292.9135	-0.8111	-100.1288	0.9855

Figure 3 shows density of 2,6-DMN + C_1 - C_7 1-alkanols at a mole fraction of 0.0081. The density correlation for 2,6-DMN alcohols solution fit the density results with mean deviations of $\pm 0.1\%$.

Literature Cited

- Inui, T.; Pu, S. B. Separation of 2,6-Dimethylnaphthalene from a Mixture of Its Isomers Using Lithium-Incorporated Zeolite Y Synthesized by Rapid Crystallization Method. *Sep. Tech.* **1995**, *5*, 229–237.
- (2) Pu, S. B.; Inui, T., Synthesis of 2,6-Dimethylnaphthalene by Methylation of Methylnaphthalene on Various Medium and Large-Pore Zeolite Catalysts. *Appl. Catal., A* **1996**, *146*, 305– 316.
- (3) Pu, S. B.; Tananka, Y.; Inui, T. Adsorption and Separation of β , β -Dimethylnaphthalene Isomers on Various Large-Pore Zeolites Having 12-Oxygen-Member-Ring Structure. *Sep. Tech.* **1996**, *6*, 189–195.
- (4) Kim, K. J.; Cheon, Y. H.; Lee, J. M. Separation of 2,6-DMN by Extractive Crystallization. In *BIWIC 2002*; Martin Luther University Halle-Wittenberg, Germany, 2002; pp 187–193.
 (5) Kim, K. J.; Lee, C. H.; Ryu, S. K. Kinetic Study on Thiourea
- (5) Kim, K. J.; Lee, C. H.; Ryu, S. K. Kinetic Study on Thiourea Adduction with Cyclohexanone-Methylcyclopentane System. 1. Equilibrium Study. *Ind. Eng. Chem. Res.* **1994**, *33*, 118–124.
- (6) Findly, R. A.; Weedman, J. A. Separation and Purification by Crystallization, Advances in Petroleum Chemistry and Refining; Interscience: New York, 1958; p 119.
- (7) Kotula, I.; Rabczuk, A. DTA Investigation of the Solid–Liquid Equilibrium for Mehtyl Derivatives of Naphthalene with Some Nitroaromatics. J. Therm. Anal. 1985, 30, 195.
- (8) Acree, W. E., Jr. Thermodynamic Properties of Organic Compounds: Enthalpy of Fusion and Melting Point Temperature Compilation. *Thermochim. Acta* **1991**, 189, *1*, 37.
- (9) Riddick, J. A.; Bunger, W. B.; Sakano, T. K. *Techniques of Chemistry, Organic Solvents*, 4th ed.; John Wiley and Sons: New York, 1986; Vol. II.

- (10) Kim, K. J.; Kim, M. J.; Lee, J. M.; Kim, S. H.; Kim, H. S.; Park, B. S. Experimental Solubility and Density for 3-Nitro-1,2,4-triazol-5-one + C1 to C7 1-Alkanols. *Fluid Phase Equilib.* **1998**,
- (11) Kim, K. J.; Kim, M. J.; Lee, J. M.; Kim, S. H.; Kim, H. S.; Park, B. S. Solubility, Density and Metastable Zone Width of the 3-Nitro-1,2,4-triazol-5-one + Water System. *J. Chem. Eng. Data* 1000, 42 (2010).
- 1998, 43, 65–68.
 (12) Kim, K. J.; Lee, C. H.; Ryu, S. K., Solubilities of Thiourea in *n*-C₁-C₆ Alcohols. *J. Chem. Eng. Data* 1994, *34*, 128–131.
 (13) Gmehling, J.; Kolbe, B. *Thermodynamik*; VCH: Weinheim, 1992.

- Jakob, A.; John, R.; Rose, C.; Gmehling, J. Solid–Liquid Equilibria in Binary Mixtures of Organic Compounds. *Fluid Phase Equilib.* **1995**, *113*, 117–126.
 Gmehling, J.; Anderson, T. F.; Prausnitz, J. M. Solid–Liquid Equilibria Using UNIFAC. *Ind. Eng. Chem. Fundam.* **1978**, *17*, 269–273.

Received for review January 11, 2004. Accepted March 29, 2004. JE049967Z