Some Thermodynamic Properties of Calcium Chromate

Tiangui Wang*

Chemistry and Chemical Engineering Department, Zhengzhou Institute of Technology, Zhengzhou, Henan 450052, China

Zuohu Li

Institute of Process Engineering, Chinese Academy of Sciences, P.O. Box 353, Beijing 100080, China

Solubilities of CaCrO₄ in water from 110 °C to 160 °C and aqueous sodium chromate solution from 25 °C to 80 °C were measured. From these data, activity coefficients were calculated and compared with Bromley's method. The results agree. The standard enthalpy of formation and standard Gibbs free energy of formation of CaCrO₄ calculated through thermodynamic laws were compared with literature values. Recalculated values are $\Delta_{\rm f} H$ (CaCrO₄, 298 K) = -1401.2 kJ·mol⁻¹ and $\Delta_{\rm f} G$ (CaCrO₄, 298 K) = -1299.4 kJ·mol⁻¹.

1. Introduction

CaCrO₄ has long been used as a cathode material in thermally activated electrochemical cells.¹ It is also an intermediate compound formed in the system of Ca–Cr– O, which is involved in many industrial processes.² Therefore, reliable thermodynamic information such as the enthalpy, Gibbs free energy, and solubility product is needed to better understand systems involving CaCrO₄. Unfortunately, the values in the literature^{3–7} are rather scattered; some are even contradictory and inaccurate. The purpose of this work is to determine some solubility data of CaCrO₄. Its standard enthalpy of formation and standard Gibbs free energy of formation in the literature are also checked through thermodynamic relationships.

2. Experimental Section

Solubilities of CaCrO₄ in water from 110 °C to 160 °C and in aqueous sodium chromate solution from 25 °C to 80 °C were measured. Literature data exist for the solubility of CaCrO₄ in water below 100 °C, and a few solubility data exist for CaCrO₄ in aqueous sodium chromate solution.

Reagents. Analytical-grade CaCO₃ (purity \geq 99.0 mass %), Na₂CrO₄·4H₂O (purity \geq 99.5 mass %), and Na₂Cr₂O₇· 2H₂O (purity \geq 99.5 mass %) were purchased from the Beijing Chemical Plant. CaCrO₄ (purity \geq 99.5 mass %, mean size 5 μ m) was prepared from CaCO₃ and Na₂Cr₂O₇· 2H₂O according to the method of Wang et al.⁸

Apparatus and Procedure. CaCrO₄ (20 g) and distillated water (1500 mL) were put into a 2-L autoclave (model WHFK-2, Weihai Automation Control Autoclave Co. Ltd., China) with a temperature control unit. The slurry was heated and kept at a predetermined temperature. Samples were taken in a given time interval and filtered with a 0.22- μ m membrane filter. Cr⁶⁺ in the filtrates was titrated with ammonium ferrous sulfate with *N*-phenylanthranilic acid as the indicator⁹ (uncertainty of 0.08 mass %), and the amount of dissolved CaCrO₄ was calculated. When the

Table 1. Solubility of CaCrO4 s_1 in Water between 110 $^\circ\text{C}$ and 160 $^\circ\text{C}$

t/°C	110	120	130	140	150	160
$10^3 s_1$ /mol·kg ⁻¹	22.244	19.167	15.192	11.923	10.385	9.487

composition reached a constant (in about 12 h), the value was recorded as the solubility at that temperature.

Sodium chromate solution (100 mL), with a composition ranging from about (2 to 30)g/100 g of H₂O prepared from Na2CrO4·4H2O and distilled water, and (2 to 5) g of CaCrO4 were placed into 150-mL conical flasks. For comparison, 100 mL of H₂O without sodium chromate was also used. The mixtures were kept in a shaker bath (model HZS-H, Haerbin Donglian Electronic Development Co., China) to attain the desired temperature with an uncertainty of ± 0.1 °C. Samples were taken at time intervals and filtered with a 0.22-µm membrane filter. The amounts of Cr⁶⁺ and Ca²⁺ in the filtrates were determined by the above-mentioned method, and EDTA titration was carried out according to the method in ref 10 (uncertainty of 0.1 mass %). When the compositions became constant (at 25 °C, it took 4 weeks; at 80 °C, it took 2 days), the results were recorded. The same procedure was used to analyze all of the filtrates. By means of the electrically neutral condition, the amounts of Na₂CrO₄ and CaCrO₄ in the solutions were calculated. The densities of the equilibrium solutions were measured using a 5-mL pycnometer.

Results. The solubilities of $CaCrO_4$ in water from 110 °C to 160 °C determined in this study are shown in Table 1 and compared with those in the literature and shown in Figure 1. It can be found that the values obtained in this study are in very close agreement with those of ref 11. The values of ref 12 are slightly higher.

The solubilities of CaCrO_4 in aqueous sodium chromate solution from 25 $^\circ C$ to 80 $^\circ C$ are shown in Table 2.

3. Thermodynamic Analysis and Discussion

CaCrO₄ dissolves in water and dissociates as follows:

* Corresponding author. E-mail: tianguiwang@hotmail.com. Fax: 86371-7977237.

$$CaCrO_4(s) \leftrightarrow Ca^{2+}(aq) + CrO_4^{2-}(aq)$$
 (I)

Figure 1. Solubilities of CaCrO4 in water: +, this work; $\times,$ Linke; 11 *, Silcock. 12

Table 2. Solubility of CaCrO₄ s_1 and Density ρ in an Aqueous Sodium Chromate Solution of m_2

t	$10^{3}s_{1}$	m_2	ρ	t	$10^{3}s_{1}$	m_2	ρ
°C	$\overline{\text{mol}\cdot\text{kg}^{-1}}$	$\overline{\text{mol}\cdot\text{kg}^{-1}}$	$kg \cdot dm^{-3}$	°C	$\overline{\mathrm{mol}\cdot\mathrm{kg}^{-1}}$	$\overline{\text{mol}\cdot\text{kg}^{-1}}$	kg ∙dm ⁻³
25	131.310	0	1.0091	55	72.310	0	1.0024
	114.942	0.123	1.0181		59.658	0.138	1.0197
	112.413	0.234	1.0386		58.472	0.257	1.0317
	109.711	0.394	1.0576		57.002	0.421	1.0531
	104.431	0.530	1.0697		55.276	0.514	1.0648
	103.531	0.636	1.0936		55.337	0.682	1.0873
	105.007	0.791	1.1033		44.549	1.553	1.1814
	105.433	0.997	1.1252		30.476	2.620	1.2904
	105.502	1.342	1.1714	60	68.728	0	0.9969
35	109.173	0	1.0189		47.566	0.130	1.0097
	96.901	0.126	1.0256		53.284	0.289	1.0375
	94.219	0.253	1.0461		53.192	0.652	1.0766
	94.179	0.405	1.0645		47.866	1.261	1.1159
	94.235	0.526	1.0794	70	51.131	0	0.9960
	92.003	0.673	1.0987		40.011	0.142	1.0118
	76.810	1.425	1.1865		39.299	0.422	1.0509
	49.966	2.791	1.2950		38.657	0.613	1.0721
45	89.431	0	1.0073		39.036	0.754	1.0931
	73.878	0.143	1.0249		34.327	1.620	1.1857
	72.005	0.261	1.0382	80	44.101	0	0.9956
	71.261	0.421	1.0589		31.881	0.140	1.0116
	69.596	0.531	1.0695		31.79	0.278	1.0279
	68.953	0.727	1.0939		31.949	0.414	1.047
	56.368	1.579	1.1831		32.512	0.576	1.0643
	33.868	2.644	1.2923		32.367	0.715	1.0842
50	78.473	0	0.9979		29.529	1.672	1.1887
	63.858	0.124	1.0161		21.175	2.759	1.2888
	62.125	0.240	1.0341				
	63.398	0.399	1.0532				
	62.819	0.511	1.0707				
	58.772	0.648	1.0869				

Activity coefficients of $CaCrO_4$ in saturated water solution and in aqueous sodium chromate solution can be calculated through the following equation:

$$\gamma_{\pm}^{2} = \frac{K_{\rm sp}({\rm CaCrO}_{4})}{m({\rm Ca}^{2+}) \ m({\rm CrO}_{4}^{2-})} \tag{1}$$

 $m(\text{Ca}^{2+})$ and $m(\text{CrO}_4^{2-})$ are the molalities of Ca^{2+} and CrO_4^{2-} in solution. However, only the value of $K_{\text{sp}}(\text{Ca}\text{CrO}_4, 298 \text{ K})$ is available. Thermodynamically, the solubility product of CaCrO_4 , $K_{\text{sp}}(\text{Ca}\text{CrO}_4)$, and the standard Gibbs free energy change, ΔG_1 , for reaction I have the following relationship:

$$\Delta G_1 = -RT \ln K_{\rm sp} ({\rm CaCrO}_4) \tag{2}$$

where $R = 8.314 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$ and T is the absolute

Table 3. Standard Gibbs Free Energies of Formation, Enthalpies of Formation, and Entropies of CaCrO₄, $Ca^{2+}(aq)$, and $CrO_4^{2-}(aq)$

	CaCr	•O ₄ (s)	Ca ²⁺ (aq)	CrO ₄ ²⁻ (aq)		
$-\Delta G/kJ\cdot mol^{-1}$ $-\Delta H/kJ\cdot mol^{-1}$ $S/J\cdot mol^{-1}\cdot K^{-1}$	1277.4^4 1379.1^4 133.9^4	1299.4 ^a 1401.2 ^a	553.5^4 542.8^4 -53.1^4	727.9^4 881.2 ⁴ 50.2 ⁴		

^a Values from this work.

 Table 4. Activity Coefficients of CaCrO₄ in Aqueous

 Sodium Chromate Solution^a

	1/					1/			
t/°C	mol∙kg ⁻¹	γ_{\pm}	${\gamma_\pm}^*$	$\gamma_\pm/\gamma_\pm ^*$	t/°C	$mol \cdot kg^{-1}$	γ_{\pm}	${\gamma_\pm}^*$	$\gamma_{\pm}/\gamma_{\pm}^{*}$
25	0.516	0.205	0.181	1.132	55	0.290	0.244	0.227	1.074
	0.829	0.164	0.148	1.111		0.653	0.163	0.162	1.004
	1.153	0.137	0.128	1.069		1.004	0.131	0.135	0.971
	1.620	0.116	0.110	1.052		1.49	0.108	0.114	0.955
	2.008	0.107	0.100	1.070		1.763	0.101	0.105	0.961
	2.324	0.099	0.093	1.059		2.266	0.089	0.094	0.952
	2.792	0.09	0.085	1.056		4.836	0.070	0.066	1.051
	3.414	0.082	0.078	1.053		7.981	0.068	0.056	1.215
	4.449	0.072	0.069	1.040	60	0.275	0.243	0.232	1.046
35	0.445	0.207	0.191	1.085		0.580	0.182	0.170	1.071
	0.766	0.158	0.153	1.034		1.08	0.124	0.131	0.946
	1.136	0.128	0.129	0.994		2.17	0.088	0.096	0.919
	1.592	0.107	0.111	0.970		3.976	0.071	0.072	0.986
	1.955	0.097	0.101	0.960	70	0.204	0.287	0.261	1.101
	2.387	0.088	0.092	0.964		0.586	0.174	0.169	1.028
	4.583	0.071	0.068	1.040		1.423	0.111	0.116	0.958
	8.573	0.069	0.055	1.244		1.992	0.095	0.099	0.956
45	0.358	0.225	0.209	1.076		2.418	0.086	0.091	0.944
	0.725	0.159	0.156	1.022		4.998	0.065	0.066	0.999
	1.07	0.131	0.132	0.993	80	0.176	0.298	0.277	1.077
	1.548	0.109	0.112	0.971		0.546	0.179	0.174	1.026
	1.871	0.100	0.103	0.976		0.962	0.134	0.137	0.975
	2.457	0.088	0.090	0.973		1.371	0.111	0.117	0.949
	4.962	0.070	0.066	1.067		1.858	0.095	0.102	0.932
	8.066	0.074	0.056	1.313		2.275	0.086	0.093	0.927
50	0.32	0.239	0.218	1.094		5.135	0.062	0.065	0.960
	0.626	0.173	0.165	1.048		8.363	0.060	0.055	1.087
	0.968	0.138	0.137	1.007					
	1.451	0.111	0.115	0.968					
	1.783	0.1	0.105	0.959					
	2.179	0.094	0.095	0.985					

 $^a\gamma_{\pm}$ was calculated from equation 1 and $\gamma_{\pm}{}^*$ was calculated using Bromley's method and the ionic strength I.

temperature. The values of ΔG_1 are not available. If the heat capacity change is assumed to be zero, then the following equation holds

$$\ln \frac{K_{\rm sp2}}{K_{\rm sp1}} \approx \frac{\Delta H_1(298 \text{ K})}{R} \left(\frac{T_2 - T_1}{T_2 T_1}\right)$$
(3)

where $K_{\rm sp1}$ and $K_{\rm sp2}$ are the solubility products of CaCrO₄ at temperatures T_1 and T_2 . $\Delta H_1(298 \text{ K})$ is the enthalpy change for reaction I at 298 K and can be calculated from the enthalpies of formation of CaCrO₄, Ca²⁺(aq), and CrO₄²⁻(aq), which are listed in Table 3. The result for ΔH_1 -(298 K) is $-44.88 \text{ kJ} \cdot \text{mol}^{-1}$.

When the calculated results of $K_{\rm sp}({\rm CaCrO_4})$ were used in our research work, unreasonable results occurred. Therefore, we doubted the accuracy of $\Delta_{\rm f} H({\rm CaCrO_4}, 298 \text{ K}) = -1379.1 \text{ kJ} \cdot \text{mol}^{-1}$. $\Delta H_1(298 \text{ K})$ was redetermined by the following equation:

$$\Delta H_1(298 \text{ K}) = \Delta G_1(298 \text{ K}) - 298.15 \Delta S_1(298 \text{ K})$$

where $\Delta G_1(298 \text{ K}) = 17.97 \text{ kJ} \cdot \text{mol}^{-1}$ was calculated by means of eq 2 and $K_{\text{sp}}(\text{CaCrO}_4, 298 \text{ K}) = 7.1 \times 10^{-4}$ (ref 4). $\Delta S_1(298 \text{ K}) = -136.8 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$ was calculated from the data of Table 1. Recalculated $\Delta H_1(298 \text{ K})$ is -22.80 kJ·mol⁻¹. With this value, K_{sp} (CaCrO₄, 298 K), and eq 3, $K_{sp}(CaCrO_4)$ values of different temperatures were obtained and used to calculated the mean ionic activity coefficients of CaCrO₄. The results are shown in Table 4 and compared with those calculated by Bromley's method.¹³

The activity coefficients calculated by eq 1 and those by Bromley's method are consistent with each other. Except for three values at about $I = 8.0 \text{ mol} \cdot \text{kg}^{-1}$, the majority of the differences are less than 10%. However, if $\Delta H_1(298 \text{ K})$ = $-44.88 \text{ kJ} \cdot \text{mol}^{-1}$ were used instead of $\Delta H_1(298 \text{ K})$ = -22.80 kJ·mol⁻¹, then the differences would be substantial. Although Bromley's method is an empirical correlation and cannot be used to justify $\Delta H_1(298 \text{ K}) = -22.80 \text{ kJ} \cdot \text{mol}^{-1}$ fully, we may consider $\Delta H_1(298 \text{ K}) = -22.80 \text{ kJ} \cdot \text{mol}^{-1}$ to be more reasonable.

With $\Delta H_1(298 \text{ K}) = -22.80 \text{ kJ} \cdot \text{mol}^{-1}$, $\Delta_f H(\text{Ca}^{2+}(\text{aq}), 298 \text{ K})$ K) = $-542.8 \text{ kJ} \cdot \text{mol}^{-1}$, and $\Delta_f H(\text{CrO}_4^{2-}(\text{aq}), 298 \text{ K}) =$ -881.2 kJ·mol⁻¹, the recalculated formation enthalpy of CaCrO₄ is -1401.2 kJ·mol⁻¹ and is also shown in Table 3.

4. Conclusions

The solubilities of CaCrO₄ in water and aqueous sodium chromate solution were measured from experiments, and the activity coefficients were calculated from the thermodynamic relationship and Bromley's method. The results are consistent with each other. The enthalpy of formation and Gibbs free energy of formation of CaCrO₄ calculated through thermodynamic laws were compared with the data in the literature, which indicated that $\Delta_{\rm f} H$ (CaCrO₄, 298 K) = $-1401.2 \text{ kJ} \cdot \text{mol}^{-1}$ and $\Delta_f G(\text{CaCrO}_4, 298 \text{ K}) = -1299.4$ kJ⋅mol⁻¹ seem to be more reasonable.

Literature Cited

- Clark, R. P.; Gallagher, P. K.; Dillard, B. M. Thermoanalytical Investigation of Calcium Chromate. *Thermochim. Acta* 1979, *33*, 141 - 155.
- Lee, Y. M.; Nassaralla, C. L. Heat Capacities of Calcium Chromate and Calcium Chromite. *Thermochim. Acta* **2001**, *371*, 1–5. Jacob, K. T.; Kale, M. K.; Abraham, K. P. Electrochemical
- (3)Determination of Gibbs Energies of Formation of Calcium Chromite and Chromate. J. Electrochem. Soc. 1992, 139, 517-520.
- Dean, J. A. *Lange's Handbook of Chemistry*, 2nd ed.; Science and Technology Press: Beijing, 2003 (in Chinese). Lide, D. R. *CRC Handbook of Chemistry and Physics*, 82nd ed.;
- (5)CRC Press: Boca Raton, FL, 2002.
- Azad, A. M.; Sreedharan, O. M. The Standard Gibbs Energies of (6)Formation of ACrO4 (A = Ca, Sr or Ba) from EMF Measurements. Thermochim. Acta 1992, 194, 129-136.
- Kanteeva, I. A.; Kogan, B. S. Calculation of the Thermodynamic Constants of Magnesium and Calcium Chromites, Chromates and Bichromates. Izv. Akad. Nauk SSSR, Neorg. Mater. 1980, 16, 1069-1072.
- Wang, T.; Li, Z. A Method for Manufacturing Calcium Chromate. Patent Application No. 03100638.8, Application date 1-20-2003.
- (9) Government Standard of China: GB 7466-87.
- (10) Government Standard of China: GB 7476-87.
- (11) Linke, W. F. Solubilities. Inorganic and Metal-Organic Compounds, 4th ed;. American Chemical Society: Washington, DC, 1958; Vol. 1, p 600.
- (12) Silcock, H. L. Solubilities of Inorganic and Organic Compounds; Pergamon Press: Oxford, U.K., 1979; Vol. 3, Part 3, pp 71–72.
- (13) Bromley, L. A. Thermodynamic Properties of Strong Electrolytes in Aqueous Solutions. AIChE J. 1973, 19, 313-320.

Received for review January 11, 2004. Accepted June 17, 2004.

JE049968R