Density and Viscosity Correlation for Several Common Fragrance and Flavor Esters

Hiannie Djojoputro and Suryadi Ismadji*

Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia

The density and viscosity of several fragrance and flavor esters were measured over a temperature range of (293.15 to 343.15) K. The esters studied were ethyl formate, *cis*-3-hexenyl formate, ethyl acetate, butyl acetate, isoamyl acetate, hexyl acetate, *trans*-2-hexenyl acetate, *cis*-3-hexenyl acetate, ethyl propionate, ethyl butyrate, butyl butyrate, isoamyl butyrate, hexyl butyrate, *cis*-3-hexenyl isobutyrate, ethyl isovalerate, ethyl 2-methylbutyrate, and ethyl hexanoate. The experimental data were correlated by temperature-dependence equations.

Introduction

In the flavor and fragrance industries, aliphatic and acrylic esters are important materials in manufacturing processes.¹ Most of the esters used in the flavor and fragrance industries are acetates, and ethanol is the most common alcohol component. In addition to straight-chain saturated compounds, branched-chain compounds and unsaturated compound esters are also important.

Several studies of the thermodynamic behavior and physical properties of several ester compounds in binary mixtures have been performed.¹⁻⁴ However, detailed investigations of the physical properties of pure esters, especially their densities and viscosities over a wide range of temperature, are scarce in the literature. Therefore, this study was undertaken to obtain reliable density and viscosity data for a number of important flavor esters over a wide temperature range. The fragrance and flavor ester compounds chosen in this study with their physical characteristics are given in Table 1.

Experimental Section

Materials. High-purity and AR-grade samples of fragrance and flavor esters were purchased from Sigma-Aldrich Singapore. The purity of these chemicals was analyzed by gas chromatography (Shimadzu GC-17A) using a flame ionization detector with a DB-5 column. Helium (high purity) was used as the carrier gas. The purities of these esters are given in Table 1.

Density Measurements. Measurements of the densities of the pure components were carried out using a Mettler Toledo density meter type DE50 with an uncertainty of about 10^{-5} g·cm⁻³. Prior to measurement, the instrument was calibrated with double-distilled water. The temperature of the measuring cell was maintained at various temperatures using a Julabo Thermostat model F12-MD with an uncertainty of 0.1 K.

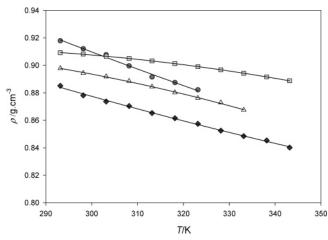
Viscosity Measurements. For viscosity measurements, an automatic microviscosimeter (Anton Paar type AMV_n) equipped with an automatic timer (± 0.01 s) was used. This instrument uses the rolling-ball principle according to DIN

* To whom correspondence should be addressed. E-mail: suryadi@ mail.wima.ac.id. Tel: 62 31 3891264. Fax: 62 31 3891267.

53015 and ISO/DIS 12058, where a gold-covered steel ball rolls down inside an inclined, sample-filled glass capillary (diameter 0.16 cm). The uncertainty in time in the range of (0 to 250) s is less than 0.02 s with a resolution of ± 0.01 s. The temperature range of this viscosimeter is (283.15 to 343.15) K with an uncertainty of less than 0.05 K. The instrument was periodically calibrated with double-distilled water. The uncertainty in the viscosity measurement was estimated to be better than 0.004 mPa·s. The measuring temperature was kept at the desired temperature by placing the sample-filled glass capillary in a block controlled with a Julabo refrigerating and heating circulator.

All measurements described above were performed at least three times, and the results were averaged to give the final values.

Experimental Results


The experimental results of the density and viscosity measurements of several fragrance and flavor ester compounds are given in Table 2. The density and viscosity of ethyl formate were measured only at 323.15 K, whereas for *trans*-2-hexenyl acetate and *cis*-3-hexenyl acetate the density and viscosity were measured only at 333.15 K because of the low boiling points of these esters. From this Table, it can be seen that the experimental values of the density and viscosity are generally in agreement with those from the literature.^{1,4-10} However, for several viscosity data points, the deviation between experimental and literature data is as high as 0.04 mPa·s. This deviation is likely due to impurities in the flavor esters that we used.

The densities of pure esters were correlated using a temperature-dependence equation that has the following form:

$$\rho(T)/g \cdot cm^{-3} = a + b(T/K) + c(T/K)^2$$
 (1)

Here, $\rho(T)$ is the density of the ester at absolute temperature and a, b, and c are fitted parameters. The fitted density parameters of each ester and standard deviation (σ) between experimental and calculated data are summarized in Table 3. Figure 1 depicts the experimental density data and predicted value versus temperature for several flavor esters. From Table 3 and Figure 1, it can be seen that eq 1 can predict the experimental data very well.

name of ester	molecular formula	molecular weight/g·mol ⁻¹	characteristic	purity/%	used
ethyl formate	$C_3H_6O_2$	74.08	clear liquid with a slightly pungent, fruity, ethereal odor	pungent, 98.2 fruit flavors	
cis-3-hexenyl formate	$C_7H_{12}O_2$	128.17	green-fruity odor, sweet	97.4	perfume and flavor to impart fruity-green notes
ethyl acetate	$C_4H_8O_2$	88.11	fruity-smelling liquid with a brandy note	99.6	fruit and brandy flavors
butyl acetate	$\mathrm{C_6H_{12}O_2}$	116.16	liquid with a strong fruity odor	99.7	constituent of apple aroma
isoamyl acetate	$\mathrm{C_7H_{14}O_2}$	130.19	strongly fruity-smelling liquid	98.9	banana flavors
hexyl acetate	$\mathrm{C_8H_{16}O_2}$	144.21	liquid with a sweet-fruity, pearlike odor	99.0	fruit aroma composition
trans-2-hexenyl acetate	$C_8H_{14}O_2$	142.20	fresh-fruity, slightly green- smelling liquid	98.9	fruit flavors
cis-3-hexenyl acetate	$\mathrm{C_8H_{14}O_2}$	142.20	fruit aromas and green tea	99.5	fruit flavors
ethyl propionate	$C_5H_{10}O_2$	102.13	liquid with fruity odor reminiscent of rum	99.4	creating both fruity and rum notes
ethyl butyrate	$\mathrm{C}_{6}\mathrm{H}_{12}\mathrm{O}_{2}$	116.16	clear liquid with a fruity odor reminiscent of pineapples	99.6	perfume and flavor compositions
butyl butyrate	$\mathrm{C_8H_{16}O_2}$	144.21	clear liquid with a sweet-fruity odor	99.3	fruit flavor composition
isoamyl butyrate	$\mathrm{C_9H_{18}O_2}$	158.23	clear liquid with a very strong fruity odor	98.5	fruit flavors
hexyl butyrate	$\mathrm{C_{10}H_{20}O_2}$	172.27	liquid with a very strong fruity odor	98.4	fruit flavor composition
cis-3-hexenyl isobutyrate	$C_{10}H_{18}O_2$	170.25	fruity-green odor	96.2	in perfume to create freshness in blossom compositions
ethyl isovalerate	$\mathrm{C_7H_{14}O_2}$	130.19	colorless liquid with a fruity odor reminiscent of blueberries	98.8	fruity aroma composition
ethyl 2-methylbutyrate	$\mathrm{C_7H_{14}O_2}$	130.19	liquid with a green-fruity odor reminiscent of apples	99.2	fruit flavor compositions
ethyl hexanoate	$\mathrm{C_8H_{16}O_2}$	144.21	colorless liquid with a strong fruity odor reminiscent of pineapples	98.7	flowery-fruity notes in perfume compositions and fruit flavors

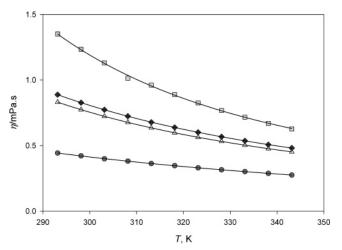


Figure 1. Experimental density data and correlated values for several flavor esters: \bullet , ethyl formate; \blacksquare , *cis*-3-hexenyl formate; \blacktriangle , *trans*-2-hexenyl acetate; \blacklozenge , *cis*-3-hexenyl isobutyrate.

The viscosity of fragrance and flavor esters is a function of temperature and can be represented by the following equation

$$\log(\eta/\mathrm{mPa}\cdot\mathrm{s}) = A + \frac{B}{T/\mathrm{K}} + C(T/\mathrm{K}) + D(T/\mathrm{K})^2 \quad (2)$$

where A, B, C, and D are fitted parameters and η is the viscosity of pure esters in mPa·s. The fitted viscosity parameters of each ester and standard deviation (σ) between experimental and calculated data are summarized in Table 4. Figure 2 shows the experimental viscosity data

Figure 2. Experimental viscosity data and predicted values for several flavor esters: \bullet , ethyl acetate; \blacksquare , hexyl butyrate; \blacktriangle , ethyl 2-methylbutyrate; \blacklozenge , isoamyl acetate.

and predicted value versus temperature for several flavor esters. Table 4 and Figure 2 reveal that eq 2 can also represent the experimental viscosity data very well.

Conclusions

New experimental density and viscosity data for several important flavor ester compounds over a wide range of temperature were obtained. The results were then correlated using temperature-dependence equations. It was found that the models used in this study represent the experimental data very well.

		$ ho_{ m L}/ m g{f \cdot} m cm^{-3}$		$\eta/mPa \cdot s$			$ ho_{\rm L}/{ m g}$	·cm ⁻³	$\eta/mPa \cdot s$	
compounds	T/K	exptl	lit	exptl	lit	<i>T</i> /K	exptl	lit	exptl	li
ethyl formate	293.15 298.15 303.15	0.91782 0.91206 0.90768	0.91680^5 0.92080^6 0.90760^6	0.402 0.381 0.362		318.15 323.15 328.15 333.15	0.88741 0.88214	0.883906	0.314 0.300	
cis-3-hexenyl	308.15 308.15 313.15 293.15	0.90708 0.89954 0.89150 0.90915	0.89360 ⁶	0.302 0.345 0.329 0.599		343.15 323.15	0.89899		0.421	
formate	293.15298.15303.15308.15313.15318.15	$\begin{array}{c} 0.90913\\ 0.90813\\ 0.90660\\ 0.90495\\ 0.90317\\ 0.90119\end{array}$	0.908005	$\begin{array}{c} 0.399 \\ 0.561 \\ 0.527 \\ 0.496 \\ 0.469 \\ 0.443 \end{array}$		323.15 328.15 333.15 338.15 343.15	$\begin{array}{c} 0.89899\\ 0.89672\\ 0.89416\\ 0.89154\\ 0.88873\end{array}$		$\begin{array}{c} 0.421 \\ 0.400 \\ 0.380 \\ 0.363 \\ 0.346 \end{array}$	
acetate	$\begin{array}{c} 293.15\\ 298.15\\ 303.15\\ 308.15\\ 313.15\\ 318.15\\ 318.15\end{array}$	$\begin{array}{c} 0.90048\\ 0.89481\\ 0.88714\\ 0.88221\\ 0.87892\\ 0.87451\end{array}$	0.90030^5 0.89450^7 0.88239^7	$\begin{array}{c} 0.443 \\ 0.421 \\ 0.399 \\ 0.381 \\ 0.363 \\ 0.346 \end{array}$	$0.424^4 \\ 0.400^4 \\ 0.385^4$	323.15 328.15 333.15 338.15 343.15	$\begin{array}{c} 0.87039 \\ 0.86713 \\ 0.86472 \\ 0.86141 \\ 0.85836 \end{array}$		$\begin{array}{c} 0.330 \\ 0.315 \\ 0.301 \\ 0.288 \\ 0.275 \end{array}$	
butyl acetate	$\begin{array}{c} 293.15\\ 298.15\\ 303.15\\ 308.15\\ 313.15\\ 313.15\\ 318.15\\ \end{array}$	$\begin{array}{c} 0.88104 \\ 0.87645 \\ 0.87130 \\ 0.86625 \\ 0.86184 \\ 0.85732 \end{array}$	$\begin{array}{c} 0.87630^7 \\ 0.87120^8 \\ 0.86620^7 \end{array}$	$\begin{array}{c} 0.732 \\ 0.677 \\ 0.628 \\ 0.585 \\ 0.546 \\ 0.512 \end{array}$	0.631 ⁸	$\begin{array}{c} 323.15\\ 328.15\\ 333.15\\ 338.15\\ 343.15\end{array}$	$\begin{array}{c} 0.85461 \\ 0.85078 \\ 0.84792 \\ 0.84439 \\ 0.84177 \end{array}$		$\begin{array}{c} 0.481 \\ 0.453 \\ 0.428 \\ 0.405 \\ 0.384 \end{array}$	
soamyl acetate	$\begin{array}{c} 293.15\\ 298.15\\ 303.15\\ 308.15\\ 313.15\\ 313.15\\ 318.15\\ \end{array}$	$\begin{array}{c} 0.87824\\ 0.87601\\ 0.87594\\ 0.87310\\ 0.87015\\ 0.86732\end{array}$	$0.86800 - 0.87800^5$	$\begin{array}{c} 0.888\\ 0.827\\ 0.773\\ 0.724\\ 0.678\\ 0.638\end{array}$		$\begin{array}{c} 323.15\\ 328.15\\ 333.15\\ 338.15\\ 343.15\end{array}$	$\begin{array}{c} 0.86431 \\ 0.86014 \\ 0.85798 \\ 0.85405 \\ 0.85107 \end{array}$		$\begin{array}{c} 0.601 \\ 0.567 \\ 0.536 \\ 0.507 \\ 0.481 \end{array}$	
nexyl acetate	293.15	0.87290	$0.87310^1 \\ 0.87260^9$	1.118	1.078^{1}	323.15	0.84421		0.733	
accuate	$298.15 \\ 303.15$	$0.86730 \\ 0.86260$	0.86800^5 0.86320^1 0.86360^9	$\begin{array}{c} 1.036\\ 0.962 \end{array}$	0.982^{1}	$328.15 \\ 333.15$	$0.83964 \\ 0.83515$		$0.689 \\ 0.649$	
	308.15 313.15	0.85833 0.85490	$0.85350^1 \\ 0.85460^9$	0.895 0.836		$338.15 \\ 343.15$	$0.83140 \\ 0.82630$		$0.612 \\ 0.579$	
rans-2-hexenyl	318.15 293.15	0.84884 0.89784	0.89800^{5}	$0.782 \\ 0.901$		323.15	0.87614		0.582	
acetate	$298.15 \\ 303.15 \\ 308.15 \\ 313.15 \\ 318.15 \\ 318.15 \\$	$\begin{array}{c} 0.89432 \\ 0.89178 \\ 0.88846 \\ 0.88435 \\ 0.88019 \end{array}$		$\begin{array}{c} 0.831 \\ 0.770 \\ 0.715 \\ 0.666 \\ 0.622 \end{array}$		328.15 333.15 338.15 343.15	0.87281 0.86749		0.547 0.514	
sis-3-hexenyl acetate	$\begin{array}{c} 293.15\\ 298.15\\ 303.15\\ 308.15\\ 313.15\\ 313.15\\ 318.15\end{array}$	$\begin{array}{c} 0.90082\\ 0.89714\\ 0.89314\\ 0.89028\\ 0.88619\\ 0.88143\end{array}$		$\begin{array}{c} 0.893 \\ 0.823 \\ 0.763 \\ 0.708 \\ 0.660 \\ 0.616 \end{array}$		323.15 328.15 333.15 338.15 343.15	0.87789 0.87521 0.87143		$0.576 \\ 0.542 \\ 0.509$	
ethyl propionate	$\begin{array}{c} 293.15\\ 298.15\\ 303.15\\ 308.15\\ 313.15\\ 318.15\\ 318.15\end{array}$	$\begin{array}{c} 0.89162 \\ 0.88410 \\ 0.87931 \\ 0.87412 \\ 0.87061 \\ 0.86734 \end{array}$	0.89170 ⁵ 0.87887 ⁸	$\begin{array}{c} 0.523 \\ 0.492 \\ 0.464 \\ 0.441 \\ 0.418 \\ 0.398 \end{array}$	0.494 ⁸	$\begin{array}{c} 323.15\\ 328.15\\ 333.15\\ 338.15\\ 343.15\end{array}$	$\begin{array}{c} 0.86433\\ 0.86089\\ 0.85814\\ 0.85681\\ 0.85348\end{array}$		$\begin{array}{c} 0.378 \\ 0.360 \\ 0.344 \\ 0.329 \\ 0.315 \end{array}$	
ethyl butyrate	$\begin{array}{c} 293.15\\ 298.15\\ 303.15\\ 308.15\\ 313.15\\ 318.15\\ 318.15\\ \end{array}$	$\begin{array}{c} 0.87691 \\ 0.87442 \\ 0.87013 \\ 0.86621 \\ 0.86431 \\ 0.86132 \end{array}$	0.87850^5 0.87347^{10}	$\begin{array}{c} 0.662 \\ 0.620 \\ 0.583 \\ 0.549 \\ 0.519 \\ 0.491 \end{array}$		323.15 328.15 333.15 338.15 343.15	$\begin{array}{c} 0.85843 \\ 0.85444 \\ 0.85389 \\ 0.85132 \\ 0.85004 \end{array}$		$\begin{array}{c} 0.465 \\ 0.442 \\ 0.420 \\ 0.400 \\ 0.382 \end{array}$	
butyl butyrate	$\begin{array}{c} 293.15\\ 298.15\\ 303.15\\ 308.15\\ 313.15\\ 313.15\\ 318.15\end{array}$	$\begin{array}{c} 0.87245\\ 0.86914\\ 0.86610\\ 0.86219\\ 0.85894\\ 0.85431\end{array}$	0.87090^{5}	$\begin{array}{c} 0.948 \\ 0.876 \\ 0.812 \\ 0.755 \\ 0.705 \\ 0.659 \end{array}$		323.15 328.15 333.15 338.15 343.15	$\begin{array}{c} 0.85147 \\ 0.84801 \\ 0.84622 \\ 0.84403 \\ 0.84147 \end{array}$		$\begin{array}{c} 0.618 \\ 0.581 \\ 0.548 \\ 0.517 \\ 0.486 \end{array}$	
isoamyl butyrate	$\begin{array}{c} 293.15\\ 298.15\\ 303.15\\ 308.15\\ 313.15\\ 318.15\\ 318.15\end{array}$	$\begin{array}{c} 0.86613 \\ 0.86204 \\ 0.85914 \\ 0.85708 \\ 0.85342 \\ 0.85011 \end{array}$	0.86510^5	$1.044 \\ 0.967 \\ 0.897 \\ 0.836 \\ 0.781 \\ 0.731$		323.15 328.15 333.15 338.15 343.15	$\begin{array}{c} 0.84578 \\ 0.84231 \\ 0.84073 \\ 0.83545 \\ 0.83276 \end{array}$		$\begin{array}{c} 0.686 \\ 0.646 \\ 0.609 \\ 0.575 \\ 0.545 \end{array}$	

Table 2 (Continued)

		$\rho_{\rm L}/{ m g}$	•cm ⁻³	η/mP	a•s		$ ho_{\rm L}/{ m g}{ m \cdot}{ m cm}$	1-3	η/mP	a•s
compounds	T/K	exptl	lit	exptl	lit	T/K	exptl	lit	exptl	lit
hexyl butyrate	$\begin{array}{c} 293.15\\ 298.15\\ 303.15\\ 308.15\\ 313.15\\ 318.15\\ 318.15\\ \end{array}$	$\begin{array}{c} 0.86073 \\ 0.85100 \\ 0.84652 \\ 0.84151 \\ 0.83746 \\ 0.83465 \end{array}$	0.865205	$1.351 \\ 1.234 \\ 1.131 \\ 1.014 \\ 0.961 \\ 0.889$		$\begin{array}{c} 323.15\\ 328.15\\ 333.15\\ 338.15\\ 343.15\\ \end{array}$	$\begin{array}{c} 0.83078 \\ 0.82819 \\ 0.82677 \\ 0.82381 \\ 0.82076 \end{array}$		$\begin{array}{c} 0.825\\ 0.768\\ 0.716\\ 0.669\\ 0.627\end{array}$	
<i>cis</i> -3-hexenyl isobutyrate	$\begin{array}{c} 293.15\\ 298.15\\ 303.15\\ 308.15\\ 313.15\\ 318.15\\ 318.15\\ \end{array}$	$\begin{array}{c} 0.88508 \\ 0.87812 \\ 0.87361 \\ 0.87034 \\ 0.86522 \\ 0.86149 \end{array}$		$1.024 \\ 0.941 \\ 0.868 \\ 0.804 \\ 0.741 \\ 0.690$		323.15 328.15 333.15 338.15 343.15	$\begin{array}{c} 0.85738 \\ 0.85244 \\ 0.84844 \\ 0.84531 \\ 0.84009 \end{array}$		$0.650 \\ 0.606 \\ 0.560 \\ 0.535 \\ 0.503$	
ethyl isovalerate	$\begin{array}{c} 293.15\\ 298.15\\ 303.15\\ 308.15\\ 313.15\\ 318.15\\ 318.15\\ \end{array}$	$\begin{array}{c} 0.86623 \\ 0.86401 \\ 0.86012 \\ 0.85598 \\ 0.85179 \\ 0.84739 \end{array}$	0.86560 ⁵	$\begin{array}{c} 0.805 \\ 0.752 \\ 0.703 \\ 0.659 \\ 0.620 \\ 0.581 \end{array}$		323.15 328.15 333.15 338.15 343.15	$\begin{array}{c} 0.84624 \\ 0.84235 \\ 0.84007 \\ 0.83631 \\ 0.83362 \end{array}$		$\begin{array}{c} 0.544 \\ 0.516 \\ 0.485 \\ 0.457 \\ 0.431 \end{array}$	
ethyl 2-methylbutyrate	$\begin{array}{c} 293.15\\ 298.15\\ 303.15\\ 308.15\\ 313.15\\ 318.15\\ 318.15\\ \end{array}$	$\begin{array}{c} 0.86973 \\ 0.86500 \\ 0.86148 \\ 0.85788 \\ 0.85341 \\ 0.84932 \end{array}$	0.86890 ⁵	$\begin{array}{c} 0.831 \\ 0.774 \\ 0.723 \\ 0.677 \\ 0.635 \\ 0.597 \end{array}$		323.15 328.15 333.15 338.15 343.15	$\begin{array}{c} 0.84674 \\ 0.84159 \\ 0.83841 \\ 0.83548 \\ 0.83146 \end{array}$		$\begin{array}{c} 0.563 \\ 0.532 \\ 0.503 \\ 0.476 \\ 0.452 \end{array}$	
ethyl hexanoate	$\begin{array}{c} 293.15\\ 298.15\\ 303.15\\ 308.15\\ 313.15\\ 318.15\\ 318.15\\ \end{array}$	$\begin{array}{c} 0.87901 \\ 0.87253 \\ 0.86931 \\ 0.86674 \\ 0.86328 \\ 0.86019 \end{array}$	0.87100 ⁵	$\begin{array}{c} 0.816 \\ 0.757 \\ 0.704 \\ 0.656 \\ 0.614 \\ 0.576 \end{array}$		323.15 328.15 333.15 338.15 343.15	$\begin{array}{c} 0.85642 \\ 0.85193 \\ 0.84788 \\ 0.84532 \\ 0.84146 \end{array}$		$\begin{array}{c} 0.541 \\ 0.509 \\ 0.482 \\ 0.456 \\ 0.429 \end{array}$	

Table 3. Parameters for the Density Correlation for the Fragrance and Flavor Esters

compounds	а	b	С	σ
ethyl formate	1.46554	$-2.44133 imes 10^{-3}$	$1.96192 imes 10^{-6}$	0.0041
cis-3-hexenyl formate	0.67480	$1.83502 imes 10^{-3}$	$-3.53118 imes 10^{-6}$	0.0006
ethyl acetate	1.99860	$-6.24971 imes 10^{-3}$	$8.53568 imes 10^{-6}$	0.0016
butyl acetate	1.69608	$-4.48155 imes 10^{-3}$	$5.80616 imes 10^{-6}$	0.0006
isoamyl acetate	0.59007	$2.30538 imes 10^{-3}$	$-4.50699 imes 10^{-6}$	0.0026
hexyl acetate	1.20940	$-1.34331 imes 10^{-3}$	$6.6227 imes10^{-7}$	0.0011
trans-2-hexenyl acetate	0.74015	$1.66995 imes 10^{-3}$	$-3.86207 imes 10^{-6}$	0.0011
cis-3-hexenyl acetate	1.19615	$-1.23970 imes 10^{-3}$	$7.94135 imes 10^{-7}$	0.0016
ethyl propionate	1.97642	$-6.25409 imes 10^{-3}$	$8.69699 imes 10^{-6}$	0.0021
ethyl butyrate	1.47568	$-3.31059 imes 10^{-3}$	$4.33167 imes 10^{-6}$	0.0026
butyl butyrate	1.42365	$-2.93727 imes 10^{-3}$	$3.61375 imes 10^{-6}$	0.0021
isoamyl butyrate	0.95837	$-1.78027 imes 10^{-5}$	$-1.01675 imes 10^{-6}$	0.0026
hexyl butyrate	2.09934	$-7.22490 imes 10^{-3}$	$1.02082 imes 10^{-5}$	0.0021
cis-3-hexenyl isobutyrate	1.33005	$-2.08366 imes 10^{-3}$	$1.91639 imes 10^{-6}$	0.0016
ethyl isovalerate	1.31271	$-2.24912 imes 10^{-3}$	$2.48654 imes 10^{-6}$	0.0026
ethyl 2-methylbutyrate	1.23053	$-1.63423 imes 10^{-3}$	$1.37424 imes 10^{-6}$	0.0011
ethyl hexanoate	1.11638	$-8.93011 imes 10^{-4}$	$2.68015 imes 10^{-7}$	0.0016

Table 4. Parameters for Viscosity Correlation for the Fragrance and Flavor Esters

compounds	а	b	С	d	σ
ethyl formate	-5.06064	737.37681	0.01075	$-1.16726 imes 10^{-5}$	0.0011
cis-3-hexenyl formate	-6.01904	954.74783	0.01202	$-1.14524 imes 10^{-5}$	0.0006
ethyl acetate	-4.74308	$659.9798\ 103$	0.01145	$-1.41899 imes 10^{-5}$	0.0006
butyl acetate	-5.49829	1000.90027	0.0086087	$-6.69263 imes 10^{-6}$	0.0011
isoamyl acetate	-5.02068	865.50152	$9.9597 imes10^{-3}$	$-1.05078 imes 10^{-5}$	0.0006
hexyl acetate	-4.40456	856.32033	$7.3099 imes 10^{-3}$	$-7.10792 imes 10^{-6}$	0.0006
trans-2-hexenyl acetate	-5.31784	976.68866	$9.0022 imes10^{-3}$	$-8.12428 imes 10^{-6}$	0.0016
cis-3-hexenyl acetate	-5.33417	976.77772	$9.0874 imes10^{-3}$	$-8.27495 imes 10^{-6}$	0.0006
ethyl propionate	-5.14522	806.15186	0.01028	$-1.04632 imes 10^{-5}$	0.0011
ethyl butyrate	-5.17455	852.90821	0.01003	$-9.94419 imes 10^{-6}$	0.0006
butyl butyrate	-7.18299	1161.06978	0.01531	$-1.49862 imes 10^{-5}$	0.0006
isoamyl butyrate	-5.23957	959.94502	$9.2246 imes 10^{-3}$	$-8.38321 imes 10^{-6}$	0.0011
hexyl butyrate	-5.56517	1119.93544	$8.0075 imes10^{-3}$	$-5.49352 imes 10^{-6}$	0.0011
cis-3-hexenyl isobutyrate	-5.36123	1021.97306	$8.5427 imes 10^{-3}$	$-7.19934 imes 10^{-6}$	0.0011
ethyl isovalerate	-4.72611	759.09741	0.01110	$-1.41134 imes 10^{-5}$	0.0006
ethyl 2-methylbutyrate	-5.12216	884.82001	$9.8046 imes10^{-3}$	$-9.89965 imes 10^{-6}$	0.0006
ethyl hexanoate	-6.42963	1054.49049	0.01315	$-1.29215 imes 10^{-5}$	0.0011

Literature Cited

- Indraswati, N.; Mudjijati; Wicaksana, F.; Hindarso, H.; Ismadji, S. Density and Viscosity for a Binary Mixture of Ethyl Valerate and Hexyl Acetate with 1-Pentanot and 1-Hexanol at 293.15 K, 303.15 K, and 313.15 K. J. Chem. Eng. Data 2001, 46, 134–137.
 Indraswati, N.; Mudjijati; Wicaksana, F.; Hindarso, H.; Ismadji,
- (2) Indraswati, N.; Mudjijati; Wicaksana, F.; Hindarso, H.; Ismadji, S. Measurements of Density and Viscosity of Binary Mixtures of Several Flavor Compounds with 1-Butanol and 1-Pentanol at 293.15 K, 303.15 K, 313.15 K, and 323.15 K. J. Chem. Eng. Data 2001, 46, 696-702.
- (3) Sastry, N. V.; George, A.; Jain, N. J.; Bahadur, P. Densities, Relative Permittivities, Excess Volumes, and Excess Molar Polarization for Alkyl Esters (Methyl Propanoate, Methyl Butanoate, Ethyl Propanoate, and Ethyl Butanoate) + Hydrocarbons (n-Heptane, Benzene, Chlorobenzene, and 1,1,2,2-Tertrachloroethane) at 308.15 K and 318.15 K. J. Chem. Eng. Data 1999, 44, 456-464.
- (4) Nikam, P. S.; Mahale, T. R.; Hasan, M. Densities and Viscosities for Ethyl Acetate + Penta-1-ol, + Hexan-1-ol, + 3,5,5-Trimethylhexan-1-ol, + Heptan-1-ol, + Octan-1-ol, and Decan-1-ol at (298.15, 303.15, and 308.15) K. J. Chem. Eng. Data **1998**, 43, 436-440.
- (5) Bauer, K.; Garbe, D.; Surburg, H. Common Fragrance and Flavor Materials: Preparation, Properties and Uses, 4th ed.; Wiley-VCH: Weinheim, Germany, 2001.

- (6) Emmerling, U.; Figurski, G.; Rasmussen, P. Densities and Kinematic Viscosities for the Systems Benzene + Methyl Formate, Benzene + Ethyl Formate, Benzene + Propel Formate, and Benzene + Butyl Formate. J. Chem. Eng. Data 1998, 43, 289– 292.
- (7) Chandrasekhar, G.; Venkatesu, P.; Rao, M. V. P. Excess Molar Volumes and Speed of Sound of Ethyl Acetate and Butyl Acetate with 2-Alkoxyethanols at 308.15 K. J. Chem. Eng. Data 2000, 45, 590–593.
- (8) Visak, Z. P.; Ferreira, A. G. M.; Fonseca, I. M. A. Densities and Viscosities of the Ternary Mixtures Water + Butyl Acetate + Methanol and Water + Ethyl Propionate + Methanol at 303.15 K. J. Chem. Eng. Data 2000, 45, 926–931.
- K. J. Chem. Eng. Data 2000, 45, 926-931.
 (9) Riddick, J. A.; Bunger, W. B.; Sakano, T. K. Organic Solvents: Physical Properties and Methods of Purification, 4th ed.; John Wiley & Sons: New York, 1986.
- (10) Resa, J. M.; Gonzalez, C.; de Landaluce, S. O.; Lanz, J. Density, Refractive Index, and Speed of Sound at 298.15 K, and Vapor Liquid Equilibria at 101.3 kPa for Binary Mixtures of Methanol + Ethyl Butyrate and Vinyl Acetate + Ethyl Butyrate. J. Chem. Eng. Data 2002, 47, 1123-1127.

Received for review January 1, 2005. Accepted January 20, 2005.

JE050001C